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Abstract. A new structure-vibration-control approach is proposed which uses a passive coupling
element between two parallel structures to reduce the seismic response of a system due to earthquake
excitation. Dynamic characteristics of the two coupled single-degree-freedom systems subject to stationary
white-noise excitation are examined by means of statistical energy analysis (SEA) techniques. Optimal
parameters of the passive coupling element such as damping and stiffness under different circumstances
are determined with an emphasis on the influence of the structural parameters of the system on the
optimal parameters and control effectiveness. Numerical results including the root mean square values of
the response due to the filtered white-noise excitation and the time-histories of response to El Centro
1940 NS excitation are presented.
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1. Introduction

The problem of ensuring the structural integrity of buildings under strong earthquake excitation
has always been a challenge for structural engineers. Design for strength alone does not necessarily
ensure that the building will respond dynamically in such a way that the comfort and safety of the
occupants are maintained. In fact, requirements for strength and safety can be in conflict. Thus,
alternative means of increasing the resistance of a structure while maintaining the desired dynamic
properties based on the use of various passive, semi-active, active and hybrid control schemes offer
great promise (Housner et al. 1997).

Base isolation systems have been implemented in civil engineering structures for a number of
years because of their simplicity, reliability and effectiveness. Even though it can reduce the inter-
story drift and the absolute acceleration of the structure, base isolation induces large base relative
displacement, which causes instability in tall structures under wind loads. Thus, base isolation
systems are of limited use in seismic control for low or medium buildings (Kelly 1986).

The tuned mass (TMD) or liquid damper system is an another widely used vibration suppressing
strategy. The first-mode response of a structure with a TMD tuned to the fundamental frequency of
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the structure can be substantially reduced, which accounts for how TMD systems succeed in
reducing wind-excited structural vibrations. But, in general, the higher modal responses may only be
marginally suppressed or even amplified, hence, TMD systems are not necessarily effective for
seismically induced vibration (Housner et al. 1997).

Active or hybrid control may control multiple vibration modes and improve the performance of a
passive control scheme. An essential feature of active control systems is that external power is used
to effect the control action. This makes such systems vulnerable to power failure, which is highly
probable during a strong earthquake. At the same time, active control can destabilize if
implementation errors are serious enough, due to neglected dynamics of the implemented systems.
In addition, the high cost of active and hybrid systems prevents them from being implemented.
(Lee-Glauser et al. 1997).

In this study, an innovative method of vibration control for buildings under strong earthquake is
presented. The new method of vibration control can be realized by means of installing a passive-
energy-dissipation coupling element between two parallel substructures, which takes advantage of
the interaction between the parallel substructures to achieve better control effectiveness. In a simpler
form, the strategy of the control approach is to remove energy associated with vibration from only
one system, the Primary system (P). This is done by transferring energy to another system, the
Auxiliary system (A), and the coupling element by means of interaction between the two systems. In
a more complex form, the control strategy is to minimize the total energy of the combined primary-
auxiliary system. 

The analysis of this primary-auxiliary (PA) system is inherently complex because both primary
and auxiliary systems are multi-degree-of-freedom systems and the number of degrees of freedom
of the combined system can be prohibitively large. Moreover, resonance effects, non-classical
damping, gyroscopic effects and parametric uncertainties would introduce added difficulties (Chen
and Soong 1988). 

However, important physical insights into complex PA system behavior can be gained by using
more simplified procedures while demanding less-detailed response information. One of these
approaches is the statistical energy analysis (SEA) (Lyon 1975). It is well known that in the past
two decades, SEA has most commonly been applied to the analysis of random vibrations of
complex structural systems which consist of two or more simple identifiable substructures under the
action of broad-band stationary random (Keane and Price 1987). The analysis of conservatively
coupled systems, which are not good representations of practical structures, was studied earlier and
some fundamental relationships between power and energy difference were set up (Scharton and
Lyon 1968). Recently, the theories of SEA for non-conservatively coupled systems excited by
random or correlated forces have been investigated by many researchers (Lai and Soong 1990, Sun
and Wang 1996). Definitions of power flow and energy for these systems in their studies are
somewhat subjective and contain inconsistencies compared to the original systems (uncoupled
systems), thus it is difficult, even impossible, to show the influences of the coupling element on the
dynamic response of the uncoupled (original) systems.

In this paper, formulations for time-averaged energy of a PA-system in terms of the structural
parameters of P-system and A-system, such as natural frequencies and damping, and the stiffness
and damping of coupling elements have been developed so that the optimum design and adjustment
of the A-system under different control strategies could be made simply based on minimizing the
time-averaged energy of the corresponding objectives. Finally, numerical results about the
frequency-response functions and the mean root square values of responses due to filtered white
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noise excitation as well as the time-histories of responses of a PA system under El-Centro 1940 NS
excitation are presented.

2. Basic motion equations and energy formular

Fig. 1 shows the simplest Primary-Auxiliary system consisting of two single-degree-of-freedom
systems connected by a coupling spring KC and a dashpot CC. The base of the PA system is
subjected to a ground acceleration motion . The equations of motion for this system can be
written as

(1a)

(1b)

where M, K and C denote mass, stiffness and damping, respectively. The subscripts, P and A, refer
to P-system and A-system. It is assumed that the earthquake ground motion is Gaussian and broad
band white noise with spectral density Sgg spanning the frequencies of the P-A system (Feng and
Mita 1995).

The displacement responses XP and XA can be obtained from Eq. (1)

 (2)

where

(3a, b)

 (3c)

The other parameters are defined as follows:
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Fig. 1 Two parallel structures connected by a passive coupling element under ground acceleration
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bandwidth of P-system: ;

bandwidth of A-system: ;

coupling damping parameters: ;

natural frequency of P-system: ;

natural frequency of A-system: ;

coupling stiffness parameters: ;

It can be shown using Fourier transform methods that the time-averaged total relative energy of
the P-system is

 (4)

where
 

(5)

Substituting Eqs. (3c) and (5) into Eq. (4) leads to integrals of the forms (Cremer and Heckl 1973)

 

 (6)

Application of this formula to Eq. (4) gives, after some manipulation,

 (7)

Similarly, the time-averaged relative energy of the A-system can be obtained

(8)
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(9)

where

 is the mass ratio of P-system to A-system.

3. Optimum parameters

3.1. Control criteria

The structural control criteria depend on different dynamic loads and response quantities of
interest. Minimizing the relative displacement or absolute acceleration of the controlled structures
has always been considered as the control objective (Warburton 1982). However, for a strong
earthquake, the priority of a structural control objective is to reduce story drift to protect the
structure itself. Therefore, the objective of the proposed approach is to reduce the relative
displacements between adjacent stories of the controlled system from those which occur for the
uncontrolled system. Structural relative vibrational energy provides an upper bound for the absolute
values of story drift (Hayen and Iwan 1994). If we can reduce the relative vibrational energy of
structures, the vibration response of the structure can be controlled with greater certainty.

 There are two forms of excitation time-history for which simple expressions for optimum
parameters can be derived, namely steady-state harmonic and random with a white noise spectral
density. In this paper, the authors obtain the optimum parameters, which minimize the time-
averaged relative vibrational energy of the P or PA systems subjected to white-noise excitation since
the stationary white noise is a reasonable simulation of earthquake ground accelerations.

3.2. Optimization

The time-averaged relative vibrational energies  and  of the PA system shown in Fig. 1,
when subjected to white-noise excitation of the power spectral density Sgg, can be obtained from
Eqs. (7) and (9), respectively.

The optimizing condition for the strategy to minimize the relative energy of P-system is

(10)

where  and 

And the optimizing condition for the strategy to minimize the total energy of the PA system is

(11)
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of the P system and A system are assumed to be zero. For the optimum design of the passive
coupling element, the simplified expressions of the time-averaged energies of P system, A system
and PA system can be obtained by substituting  into Eqs. (7) to (9)

 (12a)

 (12b)

(12c)

where

 is the frequency ratio of A system to P system and

 is stiffness ratio of passive coupling element to P system.

Table 1 lists the optimal parameter values obtained by combining Eqs. (10) to (12). The current
optimization study is based on the assumption that the external excitation is represented by a
stationary white noise, and the optimal parameter values do not only depend on the mass ratio µ of
P system to A system, but also the natural frequency ratio β1 of A system to P system. If the A
system is considered as a single mass system, i.e., β1=0, the A system with optimal stiffness and
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Table 1 The optimum parameters of coupling element
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Note: Strategy 1 represents minimizing the relative energy of P-system; Strategy 2 represents minimizing the
total relative energy of P-A-system
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damping becomes the standard TMD system. Thus, the optimal parameter expressions in Table 1
are suitable for more general conditions.

For a given P-system: MP=1.50×105 kg, ωP=10.55 rad/sec, ∆P=0.422 1/sec, the dynamic behavior
of A system is fully characterized by specifying the parameters: mass ratio µ, natural frequency
ratio β1 and damping ratio ξ1=∆A/∆P. To clearly demonstrate the influence of structural parameters of
PA system on the optimal parameters of the coupling element and the optimal control effectiveness,
special emphasis is paid to control Strategy 1 and two control performance indexes are defined:

(13)

where  and  denote root mean square values of relative displacement of
P system and A system with optimum stiffness and damping of the coupling element. The expressions

 and  denote root mean square values of relative displacement of P
system and A system without control.

Fig. 2 shows the influence of structural parameters of PA system on the optimum stiffness and
damping values of the coupling element. When the natural frequency of A system is equal to that of
P system, the optimum stiffness and damping values of the coupling element are equal to zero.
When the natural frequency of A system is larger than that of P system, only the optimum stiffness
is equal to zero, and the mechanism of the control strategy is to dissipate the energy by the coupling
element. If the natural frequency of A system is smaller than that of P system, there exists
simultaneously optimum stiffness and damping values which increase as the frequency ratio β1

becomes smaller. The optimum stiffness also depends largely on the mass ratio µ, it increases as µ
decreases (i.e. the mass of A system increases); on the other hand, the mass ratio µ has hardly any
influence on the optimum damping value. That is to say, as the mass ratio µ and natural frequency
ratio β1 decrease, the interaction between P system and A system through the coupling element
becomes stronger, and the control strategy is to remove energy associated with vibration from one
system in a optimum way.

Fig. 3 shows the indexes R1 and R2 at various mass ratio µ values, natural frequency ratio β1

values and damping ratio ξ1 values. Figs. 3(a) to 3(d) show that the optimal control effectiveness
depends largely on the natural frequency ratio β1 of the A system to P system. The control

R1=
XP〈 〉Controlled

XP〈 〉Uncontrol led

-----------------------------------  and  R2=
XA〈 〉Controlled

XA〈 〉Uncontrolled

-----------------------------------

XP〈 〉Controlled XA〈 〉Controlled

XP〈 〉Uncontrolled XA〈 〉Uncontrolled

Fig. 2 Optimal parameters of coupling element with different mass ratio µ and natural frequency ratio β1:
(a) Optimal stiffness parameter β 2−opt; (b) Optimal damping parameter ∆C−opt
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effectiveness of the two passive control strategies increases as the natural frequency of A system is
far away from that of P system. Figs. 3(a) to 3(b) show that the control effectiveness can be
improved by increasing the damping of A system when its natural frequency is near that of P
system. We can see from Figs. 3(c) to 3(d) that increasing the mass of A system can effectively
reduce the vibration response in both P system and A system. This highlights the importance of
choosing a suitable A system for reducing the vibration responses in both P system and PA system
besides optimally designing the passive coupling element.

4. Numerical examples

To illustrate the performance of the proposed control, the seismic responses of two different
examples PA system with an optimum coupling element as shown in Fig. 1 were numerically
simulated and compared with that of a separated P-system and A-system without the coupling
element. The mass, natural frequency and damping of P-system are the same as those in the
previous section. The structural parameters of A-system are determined by giving the following
dimensionless parameters: 

Example 1: µ=2.0, β1=0.5, ξ1=1.0. 
Example 2: µ=5/3, β1=1.428, ξ1=1.428. 
The optimum values of stiffness and damping of the coupling element can be obtained according

Fig. 3 Structural control indexes R1 and R2 with different mass ratio µ, natural frequency ratio β1 and
damping ratio ξ1: (a) and (b) µ=5/3; (c) and (d) ξ1=1
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to the formulas in Table 1 and are listed in Table 2.
It is instructive to observe the control effect on structural behavior. The system eigenvalues

resulting from the application of the passive coupling element are compared with those without
control in Table 3. Only Control Strategy 1 increases the damping in both modes with obvious
changes in the natural frequencies of Example 1. In the other cases, the main effect of the passive
control strategies is to significantly increase the damping while only slightly altering the natural
frequencies, and consequently, the associated stiffnesses.

The frequency transfer functions between the relative displacements of P system and A system in
different control strategies and the ground acceleration are compared with those in the uncontrolled
case in Fig. 4. Figs. 4(a) and 4(c) show that dramatic reduction at the frequency response of the
relative displacement of P system is achieved by the optimum passive coupling element. The
relative displacement of A system can also be reduced to some extent from Figs. 4(b) and 4(d). For
Example 2, there is no coupling stiffness between P system and A system, only the responses of P
system and A system at the corresponding natural frequencies can be appropriately reduced in Figs.
4(c) and 4(d). However, in Example 1, the resonant peaks of PA system can be dramatically shifted
and reduced because of the existence of optimum stiffness β 2−opt from Figs. 4(a) and 4(b).

In the above section, earthquake ground acceleration has been considered as stationary white noise
with broad band frequency components. However, Fourier analyses of existing strong-motion
accelerograms reveal that the Fourier amplitude spectra are not constant with frequency even over a
limited band (Housner 1955). The Kanai-Tajimi model for ground acceleration, which has the
ability to simulate ground resonance in a very simple way, has been used very widely in the
analysis of engineering structures under earthquake excitation (Lin and Yan 1987). The ground
acceleration is idealized as a stationary random process by passing a Gaussian white noise process
through a second-order filter with frequency transfer function of the form

(14)

where ζg, ωg and S0 are parameters depending on the earthquake magnitude, ground resonance

S ω( )=S0

ωg
4 4ωg

2ζg
2ω2+

ω2 ωg
2–( ) 4ωg

2ζg
 2ω2+

----------------------------------------------------

Table 2 The optimum values of stiffness and damping of the coupling element

Stiffness parameter β2−opt Damping parameter ξ2−opt

Strategy 1 Strategy 2 Strategy 1 Strategy 2

Example 1 0.17578 0.07031 4.0151 5.6782
Example 2 0.0 0.0 4.0010 6.02354

Note: optimum damping parameter ξ2−opt=CC−opt/CP

Table 3 Comparison between eigenvalues of system with and without control

Uncontrolled Control Strategy 1 Control Strategy 2

Example 1 5.275±0.211i
10.55 ±0.211i

7.375±0.9557i
11.34 ±1.725i

4.971±2.509i
9.932±1.108i

Example 2 10.55 ±0.211i
15.07 ±0.3014i

10.73 ±1.074i
14.64 ±1.692i

10.98 ±1.448i
14.18 ±2.252i
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frequency, and the attenuation of seismic waves in the ground. Three groups of parameters of
earthquake excitation, which represent three different types of soil conditions: firm, mid-firm and
soft, used in this example are:

Group 1: ζg=0.60, ωg=15.6 rad/s, S0=4.8×10−3 m2/s3

Group 2: ζg=0.50, ωg=10.55 rad/s, S0=4.8×10−3 m2/s3

Group 3: ζg=0.30, ωg=3.14 rad/s, S0=4.8×10−3 m2/s3

Fig. 4 Comparison of frequency transfer function: (a) and (b) Example 1; (c) and (d) Example 2

Table 4 The root mean square values of relative displacements of P-system and A-system

Earthquake
Excitation Example

P-system (cm) A-system (cm)

Noncontrol Control 1 Control 2 Noncontrol Control 1 Control 2

I 1 2.347 0.997 1.104 3.960 1.987 1.579
2 1.087 1.162 1.374 0.822 0.790

II 1 2.510 1.084 1.205 4.415 2.275 1.766
2 1.103 1.203 1.056 0.754 0.704

III 1 0.499 0.468 0.452 2.865 1.036 1.135
2 0.356 0.366 0.208 0.185 0.180
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Where the process intensity is chosen to be S0=4.8×10−3 m2/s3, which represents the intensity of
the NS component of the 1940 El Centro earthquake (Clough and Penzien 1975). The root mean
square values of relative displacement of P system and A system under the three groups of
earthquake excitation are shown in Table 4. Table 4 tells us that different degrees of response
reduction for P system and A system can be achieved by selecting optimum stiffness and damping
of the coupling element under different kinds of earthquake excitation. Especially, under relatively
firm soil conditions (Group 1 and 2) these strategies are more effective in reducing the response of
P system, and this reduction is over 50%. In general, Control Strategy 1 is more effective in
reducing the response of P system, while the Control Strategy 2 is better for vibration reduction of
A system.

The peaks of seismic response of structures are the key parameters for structural safety. Table 5
lists the peak values of the responses of P system and A system including relative displacement and
absolute acceleration. The input ground acceleration is the El Centro 1940 NS earthquake with
normalized peak acceleration of 140.0 gal. At the same time, Fig. 5 and Fig. 6 provide a
comparison of the relative displacements and absolute accelerations of P system and A system

Table 5 Peak responses subject to El Centro 1940 NS earthquake excitation

Example 1 Example 2

uncontrolled Control 1 Control 2 uncontrolled Control 1 Control 2

P-System Relative Dis. (cm) 3.04 2.55 2.65 3.04 2.28 2.34
Absolute Acc. (gal) 339.41 225.31 235.03 339.41 293.07 299.59

A-System Relative Dis. (cm) 12.99 5.25 4.94 1.56 1.67 1.56
Absolute Acc. (gal) 362.83 282.78 194.29 355.10 291.69 282.28

Fig. 5 Comparison of time histories of responses of P-system and A-system in Example 1: (a) Relative
displacement of P-system; (b) Absolute acceleration of P-system; (c) Relative displacement of A-
system; (d) Absolute acceleration of A-system
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under Control Strategy 1 and those without control. The control effectiveness of this strategy for
different objectives is clearly demonstrated in Table 5 and Figs. 5 and 6. The rigid A system (in
Example 2) is more effective in reducing the relative displacement of P system than the flexural A
system (in Example 1), there is an appropriate 25% reduction. On the other hand, the flexural A
system is helpful in reducing the absolute acceleration of P system, a reduction amounts to
approximately 35%. However, the absolute acceleration of A system in both examples can be
reduced to some degree.

5. Conclusions

A new vibration-control method using the interaction of two parallel systems to reduce the
vibration response of the system by means of a coupling element was proposed. In its simplest
form, the strategy is to remove energy out of the primary system to another system (the auxiliary
system and coupling system) as much as possible by choosing the optimum interaction element. In
a more complex form, the control strategy is to minimize the total vibration energy of the P-A-
system due to earthquake load.

Firstly, the optimum values of stiffness and damping of coupling element for different objectives
were derived for a simplified model of the PA system which consists of two coupled single-degree-
of-freedom oscillators. The general expressions of optimum stiffness and damping include the mass
ratio of P system to A system, and the natural frequency ratio of A system to P system. Then, the
influence of structural parameters of PA system such as mass ratio µ, frequency ratio β1 and
damping ratio ξ1 on the optimum parameters and control effectiveness was discussed in detail.
Finally, numerical results including the root mean square values of relative displacement of PA
system subjected to filtered white-noise ground excitation and time-histories of relative displacement
and absolute acceleration of PA system due to El Centro 1940 NS excitation were presented to

Fig. 6 Comparison of time histories of responses of P-system and A-system in Example 2: (a) Relative
displacement of P-system; (b) Absolute acceleration of P-system; (c) Relative displacement of A-
system; (d) Absolute acceleration of A-system



A study of response control on the passive coupling element 395

demonstrate the effectiveness of this strategy in controlling structural vibration responses under
earthquake excitation.

The effectiveness of this strategy depends on the determination of parameters of the coupling
element and the structural parameters of PA system. For a suitable PA system, the proposed
vibration control method can be quite robust and effective for the vibration of the P system or the
total vibration of PA system. The control effectiveness increases as the mass of A system increases
and the natural frequency of A system is further away from the P system. A rigid A system is more
useful to decrease the relative displacement of P system, while a flexural A system is more effective
in reducing the absolute acceleration of P system.

Compared to a conventional TMD system, this control strategy can achieve a dramatic reduction
for the vibration of the P system because of the larger mass, more suitable damping and natural
frequency of the A system. It does not change the characteristics of the original systems, therefore,
it does not weaken the stability of systems under wind load, which has always been the challenge
for base-isolation systems. Compared with semi-active or active control systems, it takes advantage
of the interaction between the P system and the A system to achieve better control with no power
requirements.

Acknowledgements

The work was carried out while the first author was a research fellow at Kyoto University
(Japan). And this research was funded by the National Natural Science Foundation of China (NSFC
59908003) and the Japan Society of Promotion for Science (JSPS). This support is greatly
appreciated and helpful suggestions from the reviewers are also acknowledged. The authors wish to
thank the help of Mr. Terry Clayton at Asian Institute of Technology in checking the manuscript.

References

Chen, Y. and Soong, T.T. (1988), “State-of-the-art review: Seismic response of secondary systems”, Engineering
Structure, 10(4), 218-228.

Clough, R.W. and Penzien, J. (1975), Dynamics of Structures, McGraw-Hill, Inc.
Cremer, L. and Heckl, M. (1973), Structure Borne Sound, New York: Springer Verlag.
Feng, M.Q. and Mita, A. (1995), “Vibration control of tall building using mega sub-configuration”, J. of Engrg.

Mech., ASCE, 121(10), 1082-1088.
Hayen, J.C. and Iwan, W.D. (1994), “Response control of structural systems using active interface damping”,

Proceedings of First World Conf. on Struct. Control, Los Angeles, California, 1, 23-32.
Housner, G.W. (1955), “Properties of strong ground motion earthquakes”, Bull. Seismol. Soc. Am., 53(3), 197-

218.
Housner, G.W. etc. (1997), “Structural control: Past, present and future”, J. of Eng. Mech., 123(9). 
Keane, A.J. and Price, W.G. (1987), “Statistical energy analysis of strongly coupled systems”, J. of Sound &

Vib., 117, 363-386.
Kelly, J.M. (1986), “Aseismic base isolation: Review and bibliography”, Soil Dynamics and Earthquake

Engineering, 5(3), 202-216.
Lai, M.L. and Soong, T.T. (1990), “Statistical energy analysis of primary secondary structural systems”, J. of

Engrg. Mech., ASCE, 116(11), 2400-2413.
Lee-Glauser, G.J., Ahmadi, G. and Horta, L.G. (1997), “Integrated passive/active vibration absorber for



396 Hongping Zhu and Hirokazu Iemura

multistory buildings”, J. of Struct. Engrg., ASCE, 123(5).
Lin, Y.K. and Yan, Y. (1987), “Evolutionary Kanai-Majimi earthquake models”, J. of Engrg. Mech., ASCE,

113(8), 197-218.
Lyon, R.H. (1975), Statistical Energy Analysis of Dynamical Systems: Theory and Applications, MIT Press,

Cambridge, Massachusetts.
Scharton, T.D. and Lyon, R.H. (1968), “Power flow and energy sharing in random vibration”, J. of The

Acoustical of America, 43(6), 1332-1343.
Sun, J.C., Wang, C. and Sun, Z.H. (1996), “Power flow between three series coupled oscillators”, J. of Sound

and Vib., 189(2), 215-229.
Warburton, G.B. (1982), “Optimum absorber parameters for various combination of response and excitation

parameters”, Earthquake Engrg. and Struct. Dyn., 10(3), 381-401.




