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Abstract. The governing differential equations for free vibration of multi-step orthotropic shear plates
with variably distributed mass, stiffness and viscous damping are established. It is shown that a shear
plate can be divided into two independent shear bars to determine the natural frequencies and mode
shapes of the plate. The jk-th natural frequency of a shear plate is equal to the square root of the square
sum of the j-th natural frequency of a shear bar and the k-th natural frequency of another shear bar. The
jk-th mode shape of the shear plate is the product of the j-th mode shape of a shear bar and the k-th
mode shape of another shear bar. The general solutions of the governing equations of the orthotropic
shear plates with various boundary conditions are derived by selecting suitable expressions, such as power
functions and exponential functions, for the distributions of stiffness and mass along the height of the
plates. A numerical example demonstrates that the present methods are easy to implement and efficient. It
is also shown through the numerical example that the selected expressions are suitable for describing the
distributions of stiffness and mass of typical multi-storey buildings. 
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1. Introduction

Experimental results obtained in dynamic testing of buildings (e.g., Wang 1978, Li 1995, Li et al.
1996, Jeary 1997) have shown that for certain cases the shear deformation is dominant in the total
deformation of multi-storey buildings in their horizontal vibrations. Such buildings are usually
called shear-type buildings. Korqingskee (1953) investigated the free vibration of frame buildings
that are considered as a multi-step cantilever shear bar and in which each step of the bar has
constant parameters (mass and stiffness). Wang (1978) suggested that frame buildings and other
shear-type buildings could be treated as a one-step cantilever shear bar with variably distributed
mass and stiffness along the height of a bar for the analysis of free vibration. He derived the closed-
form solutions for such a problem. But, he assumed that the mass of the shear bar is proportional to
its stiffness. Li et al. (1997) recently proposed an approach to determine the dynamic characteristics
of cantilever shear bars with variably distributed mass and stiffness. In their study, the value of mass
of a shear bar is not necessarily proportional to its stiffness. However, if a building has a narrow
rectangular plane configuration, B/L < ¼, where B and L are the width and length of the rectangular
plane, the stiffness of each floor of the building cannot be treated as infinitely rigid. This building
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may not be simplified as a cantilever shear bar for free vibration analysis. The field measurements
conducted by Ishizaki and Hatakeyana (1960), Wang (1978), Li et al. (1994) and Jeary (1997)
revealed that for multi-storey buildings with narrow rectangular plane configuration (narrow
buildings), shear deformation is usually dominant in the total deformation in their horizontal
vibrations. They reported that not only did the parallel motions between floors occur, but also the
relative motions between parallel frames were observed. Thus, when analysing free vibration of
narrow buildings, it is reasonable to regard such structures as a shear plate with variably distributed
stiffness and mass. Because the stiffness of such a plate in the x-axis in Fig. 1 is different from that
in the y-axis, the shear plate considered in this paper is an orthotropic shear plate.

In fact, there are very few equations of vibrating plates with variable cross-section where exact
analytical solutions can be obtained. An analytical approach for the vibration of a simply supported
plate with one change in thickness was developed by Chopra (1974). Guo et al. (1997) found the
closed-form solutions for the free vibration of a stepped, simply supported plate with uniform
thickness and abrupt thickness changes. The concept of orthotropic shear plates was developed and
used by Beiner and Librescu (1984). They have presented an analysis of weight minimisation for
rectangular flat panels with fixed flutter speed. To simplify the problem, a structural model that
considers transverse shear deformation only and neglects the bending stiffness of the plate was
adopted in their study. This has the effect of reducing the linear partial differential equation for this
problem from the fourth to the second order. However, Beiner and Librescu (1984) did not consider
free vibration analysis of orthotropic shear plates. Wang (1978) derived the exact analytical
solutions for free vibration of cantilever shear plates with uniformly distributed mass and stiffness.
However, it is obvious that the distributions of mass and shear stiffness of most narrow buildings
are actually not uniform, especially, along the building heights. In general, the variation of mass and
stiffness along the longitudinal axis of a narrow building (the x-axis in Fig. 1) can be neglected (Li
et al. 1994). Thus, it is assumed that the narrow buildings considered in this paper have uniformly
distributed mass and shear stiffness along the longitudinal axis, but variably distributed mass and
shear stiffness along the heights of the narrow buildings. The distributions of mass and shear
stiffness are described by selecting suitable functions, such as power functions and exponential
functions. The general solutions of one-step shear plates with variably distributed mass, shear
stiffness and viscous damping corresponding to various boundary conditions are derived. The
analysis of free vibration of a multi-step shear plate with variably distributed mass and shear
stiffness is a complex problem and the exact solution of this problem has not previously been
obtained. Use of the general solution of a one-step shear plate with variable cross-section together
with a transfer matrix method is presented in this paper in order to resolve this problem. It is shown
through a numerical example that the selected expressions are suitable for describing the
distributions of shear stiffness and mass of typical multi-storey buildings. It should be pointed out
that the method presented in this paper is not only suitable for free vibration analysis of narrow
buildings, but also for that of orthotropic shear plates.

In this paper, exact analytical solutions for free vibrations of orthotropic shear plates with variably
distributed mass, stiffness and viscous damping are derived. In the absence of the exact solutions,
this problem can be solved using approximated methods (e.g., the Rize method) or numerical
methods (e.g., the finite element method and the finite strip method). However, the present exact
solutions can provide adequate insight into the physics of the problem and can be easily
implemented. The availability of the exact solutions will help in examining the accuracy of the
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approximate or numerical solutions. Therefore, it is always desirable to obtain the exact solutions to
such problems. 

2. The governing equations

The governing differential equation for vibration of a multi-step orthotropic shear plate (Fig. 1)
which considers transverse shear deformation only and neglects its bending stiffness can be
established as follows:

It is assumed that a multi-step orthotropic shear plate is subjected to a horizontal dynamic load,
q(x, y, t). In order to establish the differential equation of vibration of this plate, an infinitesimal
element of the plate is cut from the i-th step plate, as shown in Fig. 2. The size of the element is
dx× dy. The dynamic loading acting on the element is q(x, y, t)dxdy. The initial force is
( ) and the damping force is ( ), where wi and Cixy are the
dynamic displacement of the plate and the viscous damping coefficient in the z-axis at the point (x,
y), respectively. Fig. 2 shows the element that is rotated over an angle of 90o. Considering the
equilibrium conditions for all the forces acting on the element (Fig. 2), using d’Almbert priciple,
leads to 

(1a)

Thus

(1b)

in which  is the mass intensity (mass per unit area) at the point (x, y) in the i-th step plate.
The shear forces can be expressed as

(2) 

mixy– ∂ 2wi ∂t2⁄( )dxdy Cixy– ∂wi ∂t⁄( )dxdy

Qiy

∂Qiy

∂y
----------dy+ 

  Qiy– dx+ Qix

∂Qix

∂x
----------dx+ 

  Qix– dy+q x, y, t( )dxdy

−mixy

∂ 2wi

∂t2
------------dxdy−Cixy

∂wi

∂t
--------dxdy=0

∂Qix

∂x
----------+

∂Qiy

∂y
----------=mixy

∂ 2wi

∂t2
------------dxdy+Cixy

∂wi

∂t
--------−q x, y, t( )

mixy

Qix=Kix

∂wi

∂x
--------,     Qiy=Kiy

∂wi

∂y
--------

Fig. 1 A multi-step shear plate Fig. 2 An element of the shear plate
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in which Kix and Kiy are the transverse shear stiffness in the x-axis and in the y-axis, respectively.
Substituting Eq. (2) into Eq. (1b) gives

(3)

This is the governing equation for vibration of the i-th step of a multi-step orthotropic shear plate
with variably distributed mass and stiffness along the height of the plate. Setting q(x,y,t)=0 gives
the governing equation for free vibration of the i-th shear plate as follows

(4)

The governing equation for undamped free vibration can be obtained by setting Cixy=0 as

(5)

It is assumed that 

(6)

where Zi(x, y) is the vibration mode function, ω is the undamped circular natural frequency, γ
0 is

the initial phase.
Substituting Eq. (6) into Eq. (5) leads to

 (7)

For solving Eq. (4), it is assumed that

 (8)

in which λ is a complex value.
Substituting Eq. (8) into Eq. (3) leads

(9)

If it is assumed that

(10)

Setting

 (11)

and substituting Eq. (11) into Eq. (9) obtains the same expression as that of Eq. (7). This
suggests that the damped mode shape is the same as the undamped mode shape, and the
relationship between the damped frequency and undamped frequency can be found by solving
Eq. (11) as follows

 (12)

∂
∂x
----- Kix

∂wi

∂x
-------- 

  +
∂

∂y
----- Kiy

∂wi

∂y
-------- 

  =mixy

∂ 2wi

∂t
2

------------+Cixy

∂wi

∂t
--------−q x,y,t( )

∂
∂x
----- Kix

∂wi

∂x
-------- 

  +
∂

∂y
----- Kiy

∂wi

∂y
-------- 

  −mixy

∂ 2wi

∂t
2

------------−Cixy

∂wi

∂t
--------=0

∂
∂x
----- Kix

∂wi

∂x
-------- 

  +
∂

∂y
----- Kiy

∂wi

∂y
-------- 

  −mixy

∂ 2wi

∂t
2

------------=0

wi x,y,t( )=Zi x,y( )sin ωt γ0+( )

∂
∂x
----- Kix

∂Zi

∂x
------- 

  +
∂

∂y
----- Kiy

∂Zi

∂y
------- 

  −mixyZi=0

wi x,y,t( )=Zi x,y( )exp λt( )

∂
∂x
----- Kix

∂Zi

∂x
------- 

  +
∂

∂y
----- Kiy

∂Zi

∂y
------- 

  λ– 2C0 λ+( )mixyZi=0

Cixy=2C0mixy

ω2= λ– 2C0 λ+( )

λ= C0– iω± 1
C0

ω
------ 

 
2

–
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The real part of λ is damping coefficient and the imaginary part is the damped circular natural
frequency, denoted as ωd,

 (13)

in which ξ is the critical damping ratio.
It can be seen from Eq. (13) that the effect of damping on natural frequency can be neglected for

the case of light damping. Even if the damping coefficient is large, the effect of damping can be
also not considered in free vibration analysis. After the undamped natural frequencies have been
found, the damped natural frequencies can be determined from Eq. (13). This suggests that if the
distribution of the damping coefficient of a shear plate is assumed to be proportional to that of the
mass ( ), the damped natural frequency is equal to the corresponding undamped natural
frequency multiplied by the coefficient, kd, and the damped mode shape is the same as the
corresponding undamped mode shape.

In order to determine the undamped natural frequencies and mode shapes, using the method of
separation of variable gives

 (14a)

It is assumed that Ky is a function of y, Kx and  are also functions of y.

(14b)

i.e., We assume that Kix is directly proportional to , since the values of Kix and  are
mainly dependent on the size and materials of building floors.

Substituting Eqs. (14a) and (14b) into Eq. (7) obtains

(15)

The left hand side of the above equation is a function of y and the right hand side is a function of
x. Thus, both sides should be equal to a constant. It is assumed that the constant is then, the
following two ordinary differential equations are obtained from Eq. (15)

(16)

(17)

where 

(18)

It is obvious that Eqs. (16) and (17) are two governing equation of vibration mode shape of two
shear bars. K2, , Ω are the stiffness, mass intensity and circular natural frequency of a shear bar,
respectively. The boundary conditions of this shear bar are the same as those of the shear plate in
the x-axis. On the other hand, , are the stiffness, mass intensity and circular

ωd kd= ω, kd= 1
C0

ω
------ 

 – = 1 ξ2–

Cx=C0mx

Zi x,y( )=Xi x( )Yi y( )

mxy

Kiy=Ki 1 f1 y( ),   Kix=K2ϕ i y( ),   mixy=mϕi y( )

mixy mixy

d
dy
------ Ki 1 fi y( )

dYi y( )
dy

---------------

Yi y( )ϕ i y( )
-------------------------------------------------=−K2

d2Xi x( )
dx

2
------------------

Xi x( )
------------------−mω2

mθ2,–

K2
d

2
X x( )
dx2

-----------------+mΩ2X=0

d
dy
------ Ki1fi y( )

dYi y( )
dy

--------------- +mϕ i y( )θ2Yi y( )=0

Ω2=ω2−θ2     ω= Ω2 θ2+

m

Ki1 fi y( ), mϕ i y( ), θ
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natural frequency of another shear bar, respectively. Its boundary conditions are the same as those of
the shear plate in the y-axis. The natural frequency of the plate is equal to the square root of the
square sum of the two natural frequencies of the two bars. The mode shape of the plate is the
product of the corresponding two mode shapes of the two bars. This suggests that free vibration
analysis for a shear plate can be carried out by analysing two independent shear bars, i.e., by
solving the two independent ordinary differential equations, Eq. (16) and Eq. (17).

3. Exact solutions of the governing equations

The governing equation for mode shape of the shear bar in the x-axis for each step (see Fig. 1) is
the same as Eq. (16). The general solution of Eq. (16) is found as

(19)

where

(20)

The k-th circular natural frequency and mode shape are as follows

(21)

or

(22)

or

(23)

where L is the length of the shear plate in the x-axis.
The general solution of Eq. (17) for multi-step shear plate can be obtained by use of a transfer

matrix method as described below:
The general solution of Eq. (17) can be expressed as

 (24) 

X x( )=D1sin
Ω
α2

-----x+D2cos
Ω
α2

-----x

α2=
K2

m
------

Ωk=
k 1–( )π

L
-------------------- K2

m
------

Xk x( )=cos
k 1–( )πx

L
-----------------------









 for free-free edges of the shear plate in the x-axis

Ωk=
kπ
L
------ K2

m
------

Xk x( )=sin
kπx
L

---------








 for fixed-fixed edges, or freely supported edges

Ωk=
2k 1–( )

2L
------------------- K2

m
------

Xk x( )=sin
2k 1–( )πx

2L
--------------------------









 for fixed-free edges of the shear plate

Yi y( )=Di 1Si 1 y( )+Di 2Si2 y( )
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where i denotes the i-th step and q is the total number of steps, Si1(y) and Si2(y) are the special
solutions of Eq. (17), which are dependent on the expressions of fi(y) and ϕi(y).

As suggested by Tuma and Cheng (1983), Li et al. (1994) and Li et al. (1998), the functions
which can be used to approximate the variation of mass and stiffness are algebraic polynomials,
exponential functions, trigonometric series, or their combinations. In this paper, two important cases
of fi(y) and ϕi(y) are considered and discussed as follows:

Case 1: The expressions of fi(y) and ϕi(y) are described by the following exponential functions

(25)

The parameters βi, bi are constants that can be determined in terms of the real distributions of
mass and shear stiffness of the shear plate. H is the height of the shear plate. 

The special solutions of this case are found as

(26)

in which the parameters ,  and the variable  are

(27)

If , then

(28)

where  is Bessel function of the first kind, of order is Bessel function of the
second kind, of order ν.

fi y( )=e βi
y
H
----–

ϕ i=e bi
y
H
----– 






Si 1 y( )=ξ i J
νi

ν i
γiξi( )

Si 2 y( )=ξ i J
νi

νi– γiξ i( )  νi=non integer

or Si1 y( )=ξ i Y
ν i

ν i
γiξ i( )  νi= integer 








νi γi ξi

νi=
β i

β i bi–
--------------

γi=
4mθ2

H
2

K1 β i bi–( )2
----------------------------

ξi=e
βi bi–( )y

2H
----------------------- 










β i=bi

Si 1 y( )=e

βi y

2H
-------

cosγiy

Si 2 y( )=e

βi y

2H
-------

sinγiy

γi=
θ2

α1
2

-----−
β i

2

4H2
---------, 

β i
2

4H2
---------<

θ2

α1
2

-----, α1
2=

K1

m
------











Jv ξ( ) ν; Yv ξ( )
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Case 2: The expressions of fi(y) and  are described by the following power functions

(29)

where  are constants which can be determined in terms of the real distributions of mass
and stiffness. 

The special solutions of this case are found as

 (30)

in which 

(31)

If , then

(32a)

If βi=0, i.e., for a uniform shear plate, then

(32b)

ϕ i y( )

fi y( )= 1 βi y+( )
pi

ϕ i y( )= 1 β i y+( )
ci 




β i , pi , ci

Si1 y( )=
ci pi 2+–

2ni

-----------------------ξ i 
  J

ν i

νi
γiξ i( )

Si2 y( )=
ci pi 2+–

2ni

-----------------------ξ i 
  J

ν i

ν i– γiξ i( )  νi=non integer

or Si 2 y( )=
ci pi 2+–

2ni

-----------------------ξi 
  Y

νi

νi
ξ i( )  νi= integer 










νi=
1 pi–

ci pi 2+–
-----------------------

ξ i=
2ni

ci pi 2+–
----------------------- 1 β iy+( )

ci pi 2+ +

2
------------------------

ni
2=

mθ2

Ki 1β i
2

-------------













pi=ci 2+

Si1 y( )= 1 β iy+( )
1 pi–

2
-------------

cos Di ln 1 β iy+( )[ ]

Si2 y( )= 1 β iy+( )
1 pi–

2
-------------

sin Di ln 1 β iy+( )[ ]

Di=ni
2−

1 pi–( )2

4
-------------------->0, ni=

mθ2

Ki 1β i
2

-------------










Si 1 y( )=sin
θ
α1

-----y

Si 2 y( )=cos
θ
α1

-----y

α1=
K1

m
------










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A transfer matrix method is introduced herein to establish the equation of mode shape in the y-
axis and the frequency equation of a multi-step shear plate. The mode shape function of 
displacement and the shear force, , can be expressed as a matrix 

(33)

The relationship between the parameters, Yi1, Qi1 at the end 1 and, Yi0, Qi0 at the end 0 of the i-th
step (Fig. 3) can be expressed as 

(34)

in which

 
 

 

[Ti] is called the transfer matrix, because it transfers the parameters at the end 0 to those at the
end 1 of a step.

The relationship between the parameters at the end 1 for the top step (Fig. 1) and those at the end
0 for the bottom step can be established by using Eq. (34) repeatedly as:

(35)

Yi y( )
Qi y( )

Yi y( )Qi y( )[ ]T=
Si1 y( ) Si2 y( )

KiyS′i 1 y( ) KiyS′i 2 y( )
Di 1

Di 2

Yi1

Qi 1

= Ti[ ] Yi0

Qi 0

Ti[ ]= S yi1( )[ ] S yi 0( )[ ] 1–

S yi0( )[ ]= Si 1 yi 0( ) Si2 yi 0( )
Kiy yi 0( )S′i 1 yi 0( ) Kiy yi 0( )S′i2 yi 0( )

S yi1( )[ ]= Si 1 yi 1( ) Si2 yi 1( )
Kiy yi 1( )S′i 1 yi 1( ) Kiy yi 1( )S′i2 yi 1( )

Yi 0=Yi yi 0( ) Yi 1=Yi yi1( )

Qi 0=Qi yi0( ) Qi1=Qi yi 1( )

Yq1

Qq1

= T[ ] Y10

Q10

Fig. 3 The i-th step
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in which 

(36)

[T] is a matrix which can be expressed as

 (37)

For the case of fixed-free edges of a shear plate in the y-axis (Fig. 4), Eq. (35) becomes

 (38)

From Eq. (38),

Because of Q10 ≠ 0, we have

 (39)

This is the frequency equation of a multi-step shear plate with fixed-free edges in the y-axis.
For the case of fixed-fixed edges of a shear plate in the y-axis (Fig. 5), Eq. (35) becomes

(40)

The frequency equation for this case is

 (41)

For the case of free-free edges of a shear plate in the y-axis (Fig. 6), Eq. (35) becomes

 (42)

T[ ]= Tq[ ] Tq 1–[ ]… T1[ ]

T[ ]= T11 T12

T21 T22

Yq1

0
=

T11 T12

T21 T22

0

Q10

T22Q10=0

T22=0

0

Qq1

=
T11 T12

T21 T22

0

Q10

T12=0

Yq1

0
=

T11 T12

T21 T22

Y10

0

Fig. 4 The case of fixed-free edgesFig. 5 The case of fixed-fixed edges Fig. 6 The case of free-free edges
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The frequency equation for this case is

(43)

Solving the frequency equation obtains (j=1, 2, ...), then substituting  into Eq. (34) and
setting Y10=1 (if Y10 ≠ 0) or Q10=1 (if Q10 ≠ 0) give the j-th mode shape of the shear plate in the y-
axis.

The frequency equation and the j-th mode shape of an one-step orthotropic shear plate in the y-
axis for the case 1 can be obtained by setting q=1 in the above equations as follows

 (44)

or

(45)

or

(46)

where

T21=0

θj θj

J ν 1–( )– γj( )Jν 1– γje
β b–

2
------------

 
  =Jν 1– γj( )J ν 1–( )– γje

β b–
2

------------

 
    ν=non integer

Yj y( )=ξν[Jν γjξ( )−
Jν 1– γj( )

J ν 1–( )– γj( )
------------------------J ν– γjξ( )]

Yν 1– γj( )Jν 1– γje
β b–

2
------------

 
  =Jν 1– γj( )Yν 1– γje

β b–
2

------------

 
    ν= integer

Yj y( )=ξν[Jν γjξ( )−
Jν 1– γj( )
Jν 1– γj( )
-------------------Yν γjξ( )]















 for free-free edges

J ν– γj( )Jν γ je

β b–
2

------------

 
  =Jν γj( )J ν– γ je

β b–
2

------------

 
    ν=non integer

Yj y( )=ξν[Jν γjξ( )−
Jν γ j( )
J ν– γj( )
---------------J ν– γjξ( )]

Yν γj( )Jν γje

β b–
2

------------

 
  =Jν γj( )Yν γje

β b–
2

------------

 
    ν= integer

Yj y( )=ξν[Jν γjξ( )−
Jν γj( )
Yν γj( )
--------------Yν γjξ( )]















 for fixed-fixed edges

J ν– γ j( )Jν 1– γje

β b–
2

------------

 
  =−Jν γj( )J ν 1–( )– γje

β b–
2

------------

 
    ν=non integer

Yj y( )=ξν[Jν γ jξ( )−
Jν γj( )
J ν– γj( )
---------------J ν– γjξ( )]

Yν γj( )Jν 1– γje

β b–
2

------------

 
  =Jν γ j( )Yν 1– γje

β b–
2

------------

 
    ν= integer

Yj y( )=ξν[Jν γ jξ( )−
Jν γj( )
Yν γj( )
--------------Yν γjξ( )]















 for fixed-fixed edges
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(47)

After  is found,  can be determined from Eq. (47). 
If β=b, the frequency equation and the j-th mode shape are

(48)

or

(49)

or

(50)

After  is found from Eq. (48) or Eq. (49) or Eq. (50),  can be determined by

 (51)

For a one-step orthotropic shear plate for the case 2, we have

(52)

or

ν=
β

β b–
------------

γ j=
4mθj

2H2

K1 β b–( )2
-------------------------

ξ=e

β b–( )y
2H

--------------------











γj θj

tan γjH=−
2γjH

β
-----------

Yj y( )=e

βy

2H
-------

sinγj y 




 for fixed-free edges

γj=
 jπ
H
-------

Yj y( )=e

βy

2H
-------

sinγ jy 




 for fixed-fixed edges

γj=
j
 

1–( )π
H

--------------------

Yj y( )=e

βy

2H
-------

cosγj y− β
2Hγj

-----------sinγjy 
 









 for free-free edges

γj θj

θj= γj
2 β2

4H2
---------+

K1

m
------

J ν 1–( )– η j( )Jν 1– η jψ( )=Jν 1– η j( )J ν 1–( )– η jψ( )  ν=non integer

Yj y( )= c p 2+–
2nj

---------------------ξ 
  ν

[Jν ξ( )+
Jν 1– ηj( )

J ν 1–( )– η j( )
-------------------------J ν– ξ( )]

Yν 1– ηj( )Jν 1– η jψ( )=Jν 1– η j( )Yν 1– ηjψ( )  ν= integer

Yj y( )= c p 2+–
2nj

---------------------ξ 
  ν

[Jν ξ( )−
Jν 1– η j( )
Jν 1– η j( )
--------------------Yν ξ( )]













 for free-free edges
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(53)

or

(54)

where

(55)

After  is found,  can be determined by

(56)

If p=c+2, then the frequency equation and the j-th mode shape in the y-axis are as follows

(57)

or

(58)

J ν– ηj( )Jν 1– η jψ( )= J– ν η j( )J ν 1–( )– ηjψ( )  ν=non integer

Yj y( )= c p 2+–
2nj

---------------------ξ 
  ν

[Jν ξ( )+
Jν η j( )
J ν– η j( )
-----------------J ν– ξ( )]

Yν ηj( )Jν 1– η jψ( )=Jν ηj( )Yν 1– η jψ( )  ν= integer

Yj y( )= c p 2+–
2nj

---------------------ξ 
  ν

[Jν ξ( )−
Jν η j( )
Yν η j( )
---------------Yν ξ( )]













 for fixed-free edges

J ν– η j( )Jν η jψ( )=Jν η j( )J ν– η jψ( )  ν=non integer

Yj y( )= c p 2+–
2nj

---------------------ξ 
  ν

[Jν ξ( )+
Jν ηj( )
J ν– η j( )
-----------------J ν– ξ( )]

Yν η j( )Jν η jψ( )=Jν ηj( )Yν η jψ( )  ν= integer

Yj y( )= c p 2+–
2nj

---------------------ξ 
  ν

[Jν ξ( )−
Jν η j( )
Yν η j( )
---------------Yν ξ( )]













 for fixed-fixed edges

ηj=
2nj

c p 2+–
---------------------

ψ= 1 βH+( )
c p 2+–

2
---------------------

nj
2=

mθ j
2

K1β2
-----------











ηj θj

θj=βηj
c p 2+–

2
---------------------

K1

m
------

Dj ln 1 βH+( )=  j 1–( )π

Yj y( )= 1 βy+( )
1 p–

2
------------

cos Dj ln 1 βy+( )[ ]−1 p–
2Dj

------------sin Dj ln 1 βy+( )[ ]
 
 
 






 for free-free edges

tan Dj 1 βH+( )[ ]=
2Dj

p 1–
------------

Yj y( )= 1 βy+( )
1 p–

2
------------

sin Dj ln 1 βy+( )[ ] 




 for fixed-free edges
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or

(59)

where

 (60)

After Dj is solved,  can be determined by

 (61)

4. Numerical example

Fig. 7 shows a sketch of a narrow building that is treated as a cantilever shear plate for free
vibration analysis. The masses of columns are lumped to each floor. The masses in different storeys
are as follows 

m1=2.16×105 kg
m1=m3=m4=2.00×105 kg
m5=m6=m7=1.93×105 kg
m8=1.735×105 kg

The stiffness of columns in different storeys is 
EI1=8.4×104 KN½ m2

Dj ln 1 βH+( )=jπ

Yj y( )= 1 βy+( )
1 p–

2
------------

sin Dj ln 1 βy+( )[ ] 




 for fixed-fixed edges

Dj
2=nj

2− 1 p–( )2

4
------------------->0

θj

θj=β Dj
2 1 p–( )2

4
-------------------+

K1

m
------

Fig. 7 A narrow building
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EI2=EI3=EI4=8.0×104 KN½ m2

EI5=EI6=EI7=7.5×104 KN½ m2

EI8=6.747×104 KN½ m2

 The stiffness of each floor in the y-axis is treated as infinitely rigid and the stiffness of that in the
x-axis is

GF1=8.4×108 KN
GF2=GF3=GF4=8.0×108 KN
GF5=GF6=GF7=7.5×108 KN
GF8=7.0×108 KN

where GFi is the shear stiffness of the i-th floor. 
The storey height is a constant, h=3.0 m. The distance between the transverse frames is 6 m. The

procedure for determining the frequencies and mode shapes of this narrow building is as follows

4.1. Determination of the mass per unit area

Because the mass of a storey is distributed on the area that is equal to the product of the length,
9×6 m, of the building and the storey height, 3 m, thus, the mass per unit area of this building for
the first storey is determined by

The mass per unit area of this building from the second storey to the fourth storey is

For the fifth storey to the seventh storey,

For the eighth storey,

m1=
2.16 105×
3 5× 9×
------------------------=1.60 103× kg m2⁄

m2=1.5257 103× kg m2⁄

m3=1.43 103× kg m2⁄

Fig. 8 The distribution of mass and stiffness
Note: The solid lines represent the real distributions and the dash lines represent the assumed
exponential distributions
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The four-step distribution of the mass per unit area is shown in Fig. 8a. In order to apply the
methods proposed in this paper to analyse free vibration of this narrow building, the four-step
distribution of  (Fig. 8a) is represented by a continuous curve and it can be seen that the mass
distribution can be described reasonably well by the exponential function as follows 

4.2. Evaluation of the shear stiffness Kx

Kx is the value of GF divided by the storey height. 
For the first storey,

For the second storey to the fourth storey,

For the fifth storey to the seventh storey,

For the eighth storey,

The four-step distribution of Kx is shown in Fig. 8b. The steped distribution of Kx (Fig. 8b) is also
represented by a continuous curve. The distribution of Kx is described reasonably well by the
following exponential function (Fig. 8b).

4.3. Evaluation of shear stiffness Ky

The total number of transverse frames is ten, thus, the first storey stiffness is

The stiffness for the second storey to the fourth storey is

The stiffness for the fifth storey to the seventh storey is

The eighth storey stiffness is

m4=1.285 103× kg m2⁄

m

mxy=1.60 103× e
0.2192–

y
H
----

K1x=
8.4 106×

3
---------------------=2.80 106× Nm 1–

K2x=2.67 106× N m 1–⋅

K3x=2.5 106× Nm 1–

K4x=2.249 106× Nm 1–

Kx=2.8 106× e
0.2192–

y
H
----

kN/m

D1y=
12EI1

h3
-------------- 2

12 2EI1( )
h

3
----------------------+× 10× =1.49 106× N/m

D2y=1.42 106N/m×

D3y=1.33 106N/m×
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Kiy (i=1, 2, 3, 4) are the values of Diyh divided by the distance between the transverse frames.

The four-step distribution of Ky is shown in Fig. 8c. The distribution of Ky is also described
reasonably well by the following exponential function (Fig. 8c)

4.4. Determination of natural frequencies

The frequency equation for this shear plate with four-step uniform cross-section is

T22=0

where T22 is the element of [T] that is given by

and [Ti] (i=1, 2, 3, 4) is

Solving the frequency equation obtains

θ1=5.64, θ2=9.58, θ3=12.51, θ4=14.57

Because the two opposite edges of the cantilever shear plate in the x-axis are free edges, thus, 
is found from Eq. (23) as

i.e., Ω1=0, Ω2=10.0908, Ω3=20.1816, Ω4=30.2724
ωjk  is given by

The values of ωjk calculated based on the four-step uniformly distributed mass and stiffness are

D4y=1.197 106N/m×

K1y=
1.49 3×

6
------------------- 10×

6
=7.45 105× N/m

K2y=7.1 105× N/m

K3y=6.67 105× N/m

K4y=5.98 105× N/m

Ky=7.45 105× e
0.2192–

y
H
----

T[ ]= T1[ ] T2[ ] T3[ ] T4[ ]

Ti[ ]=
sin

θ
α1

-----yi 1 cos
θ
α1

-----yi 1

Kiy
θ
α1

-----cos
θ
α1

-----yi 1 Kiy
θ
α1

-----sin
θ
α1

-----yi 1–

sin
θ
α1

-----yi 0 cos
θ
α1

-----yi 0

Kiy
θ
α1

-----cos
θ
α1

-----yi0 Kiy
θ
α1

-----sin
θ
α1

-----yi 0–

1–

Ωk

Ωk=
173.4477k 1–( )π

54
-------------------------------------------,   k=1, 2, 3, 4( )

ωjk= θj
2 Ωk

2+
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listed in Table 1. It is necessary to point out that ωjk is corresponding to the j-th mode shape in the
y-axis and the k-th mode shape in the x-axis. 

As shown in Fig. 8, the narrow building has variably distributed mass and stiffness along the
building height. The stiffness and mass of the building are described reasonably well by the
exponential functions that are the special case, β=b, of the Case 1 discussed previously. Thus, this
building can be treated as a one-step cantilever shear plate for free vibration analysis. The values of
ωjk computed based on a one-step cantilever shear plate with variably distributed mass and stiffness
are also presented in Table 1 for comparison purposes. It can be seen that results calculated in terms
of the two methods are almost identical.

4.5. Determination of mode shape

For the first step, we have,

For the second, third and fourth step, we have

Substituting θj and the expressions of , Eq. (62), into the above equations obtains the j-th
(j=1, 2, 3, 4) mode shapes of displacement which are shown in Fig. 9. 

The k-th mode shape function in the x-axis can be written as

Y11

Q11

= T1[ ] 0

1

Y21

Q21

= T2[ ] T1[ ] 0

1

Y31

Q31

= T3[ ] T2[ ] T1[ ] 0

1
= T3[ ] Y21

Q21

Y41

Q41

= T4[ ] T3[ ] T2[ ] T1[ ] 0

1
= T4[ ] Y31

Q31

T1[ ]

Xk x( )=cos
k 1–( )πx

54
-----------------------

Table 1 The circular natural frequencies of the narrow building 

ω11 ω 21 ω 12 ω 31 ω 22 ω 41 ω 32 ω 42

5.64
(5.65)

9.58
(9.60)

11.5
(11.6)

12.5
(12.4)

13.9
(12.9)

14.6
(14.6)

16.1
(16.0)

17.7
(17.8)

ω13 ω 23 ω 33 ω43 ω14 ω 24 ω 34 ω 44

21.0 22.3 23.7 24.9 30.8 31.8 32.8 33.6

Note: The data in parentheses are the values calculated based on the assumed exponential functions for the
distributions of mass and stiffness.
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Fig. 9 shows the mode shapes in the y-axis, Yj(y), and in the x-axis, Xk(x), (j=1, 2, 3, 4; k=1, 2, 3,
4), respectively. Wang (1978) had measured structural dynamic characteristics of many multi-storey
and tall buildings. He found that narrow buildings that can be treated as a cantilever shear plate
have the same or almost the same mode shapes in the x-axis. The averages of the experimental data
obtained by Wang (1978) are also plotted in Fig. 9 for comparison purposes. It is clear that the
calculated results are in good agreement with the measured field data.

The mode shape functions, Z(x, y), of this building can be found as
 

Zjk(x, y)=Yj(y)Xk(x)

Fig. 10 shows the obtained mode shapes, Z11(x, y), Z22(x, y), Z33(x, y) and Z44(x, y).
If K2 → ó , then ωj1 ( j >1) is found to be less than ω1k (k >1), i.e., only Ω1 will occur. In this

case, X2(x) may not appear in the vibration of the building, thus, this narrow building can be
simplified as a shear bar in the analysis of free vibration.

5. Conclusions

In fact, there are very few equations of vibrating plates with variable cross-section where exact
solutions can be obtained. In this paper, an approach to determine the natural frequencies and mode
shapes of orthotropic shear plates with variably distributed mass and stiffness corresponding to
several boundary conditions is proposed. It has been shown that a one-step shear plate and a multi-
step shear plate can be divided into two independent one-step shear bars and multi-step shear bars
with the same boundary conditions as those of the shear plates in analysing their free vibrations.

Fig. 9 (a) The first four mode shapes in the y-direction, (b) The first four mode shapes in the x-direction
Note: The solid lines represent the calculated mode shapes and the circle symbols represent the
measured results by Wang (1978)
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The jk-th natural frequency of a shear plate is equal to the square root of the square sum of the j-th
natural frequency of a shear bar and the k-th natural frequency of another shear bar. The jk-th mode
shape of the shear plate is the product of the j-th mode shape of a shear bar and the k-th mode
shape of another shear bar. The exact solutions that are expressed in terms of Bessel and
trigonometric functions are derived by selecting suitable expressions, such as power functions and
exponential functions, for the distributions of stiffness and mass along the height of the plates.
These closed form expressions presented herein can be also used as benchmarks for checking the
results obtained from numerical or approximate methods. The numerical example demonstrates that
the present methods are easy to implement and efficient. It is also shown through the numerical
example that the selected expressions are suitable for describing the distributions of stiffness and
mass of typical multi-storey buildings. 
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