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Exact solutions for free vibration of multi-step
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Abstract. The governing differential equations for free vibration of multi-step orthotropic shear plates
with variably distributed mass, stiffness and viscous damping are established. It is shown that a shear
plate can be divided into two independent shear bars to determine the natural frequencies and mode
shapes of the plate. Thie-th natural frequency of a shear plate is equal to the square root of the square
sum of thej-th natural frequency of a shear bar and ktib natural frequency of another shear bar. The

jk-th mode shape of the shear plate is the product of-tlhemode shape of a shear bar and khb

mode shape of another shear bar. The general solutions of the governing equations of the orthotropic
shear plates with various boundary conditions are derived by selecting suitable expressions, such as power
functions and exponential functions, for the distributions of stiffness and mass along the height of the
plates. A numerical example demonstrates that the present methods are easy to implement and efficient. It
is also shown through the numerical example that the selected expressions are suitable for describing the
distributions of stiffness and mass of typical multi-storey buildings.
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1. Introduction

Experimental results obtained in dynamic testing of buildings (e.g., Wang 1978, Li 1985alLli
1996, Jeary 1997) have shown that for certain cases the shear deformation is dominant in the total
deformation of multi-storey buildings in their horizontal vibrations. Such buildings are usually
called shear-type buildings. Korgingskee (1953) investigated the free vibration of frame buildings
that are considered as a multi-step cantilever shear bar and in which each step of the bar has
constant parameters (mass and stiffness). Wang (1978) suggested that frame buildings and other
shear-type buildings could be treated as a one-step cantilever shear bar with variably distributed
mass and stiffness along the height of a bar for the analysis of free vibration. He derived the closed-
form solutions for such a problem. But, he assumed that the mass of the shear bar is proportional to
its stiffness. Liet al. (1997) recently proposed an approach to determine the dynamic characteristics
of cantilever shear bars with variably distributed mass and stiffness. In their study, the value of mass
of a shear bar is not necessarily proportional to its stiffness. However, if a building has a narrow
rectangular plane configuratioB/L < ¥, whereB andL are the width and length of the rectangular
plane, the stiffness of each floor of the building cannot be treated as infinitely rigid. This building
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may not be simplified as a cantilever shear bar for free vibration analysis. The field measurements
conducted by Ishizaki and Hatakeyana (1960), Wang (1978gt lal. (1994) and Jeary (1997)
revealed that for multi-storey buildings with narrow rectangular plane configuration (narrow
buildings), shear deformation is usually dominant in the total deformation in their horizontal
vibrations. They reported that not only did the parallel motions between floors occur, but also the
relative motions between parallel frames were observed. Thus, when analysing free vibration of
narrow buildings, it is reasonable to regard such structures as a shear plate with variably distributed
stiffness and mass. Because the stiffness of such a platexyatiein Fig. 1 is different from that

in they-axis, the shear plate considered in this paper is an orthotropic shear plate.

In fact, there are very few equations of vibrating plates with variable cross-section where exact
analytical solutions can be obtained. An analytical approach for the vibration of a simply supported
plate with one change in thickness was developed by Chopra (1974pt@ud1997) found the
closed-form solutions for the free vibration of a stepped, simply supported plate with uniform
thickness and abrupt thickness changes. The concept of orthotropic shear plates was developed and
used by Beiner and Librescu (1984). They have presented an analysis of weight minimisation for
rectangular flat panels with fixed flutter speed. To simplify the problem, a structural model that
considers transverse shear deformation only and neglects the bending stiffness of the plate was
adopted in their study. This has the effect of reducing the linear partial differential equation for this
problem from the fourth to the second order. However, Beiner and Librescu (1984) did not consider
free vibration analysis of orthotropic shear plates. Wang (1978) derived the exact analytical
solutions for free vibration of cantilever shear plates with uniformly distributed mass and stiffness.
However, it is obvious that the distributions of mass and shear stiffness of most narrow buildings
are actually not uniform, especially, along the building heights. In general, the variation of mass and
stiffness along the longitudinal axis of a narrow building g#is in Fig. 1) can be neglected (Li
et al 1994). Thus, it is assumed that the narrow buildings considered in this paper have uniformly
distributed mass and shear stiffness along the longitudinal axis, but variably distributed mass and
shear stiffness along the heights of the narrow buildings. The distributions of mass and shear
stiffness are described by selecting suitable functions, such as power functions and exponential
functions. The general solutions of one-step shear plates with variably distributed mass, shear
stiffness and viscous damping corresponding to various boundary conditions are derived. The
analysis of free vibration of a multi-step shear plate with variably distributed mass and shear
stiffness is a complex problem and the exact solution of this problem has not previously been
obtained. Use of the general solution of a one-step shear plate with variable cross-section together
with a transfer matrix method is presented in this paper in order to resolve this problem. It is shown
through a numerical example that the selected expressions are suitable for describing the
distributions of shear stiffness and mass of typical multi-storey buildings. It should be pointed out
that the method presented in this paper is not only suitable for free vibration analysis of narrow
buildings, but also for that of orthotropic shear plates.

In this paper, exact analytical solutions for free vibrations of orthotropic shear plates with variably
distributed mass, stiffness and viscous damping are derived. In the absence of the exact solutions,
this problem can be solved using approximated methods (e.g., the Rize method) or numerical
methods (e.g., the finite element method and the finite strip method). However, the present exact
solutions can provide adequate insight into the physics of the problem and can be easily
implemented. The availability of the exact solutions will help in examining the accuracy of the
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approximate or numerical solutions. Therefore, it is always desirable to obtain the exact solutions to
such problems.

2. The governing equations

The governing differential equation for vibration of a multi-step orthotropic shear plate (Fig. 1)
which considers transverse shear deformation only and neglects its bending stiffness can be
established as follows:

It is assumed that a multi-step orthotropic shear plate is subjected to a horizontal dynamic load,
ax, v, 1). In order to establish the differential equation of vibration of this plate, an infinitesimal
element of the plate is cut from tiwth step plate, as shown in Fig. 2. The size of the element is
dxxdy. The dynamic loading acting on the element g, Y, t)dxdy The initial force is
(—Miyy (937 0t%)dxdy) and the damping force is-C,,(dw,/ dt)dxdy ), wheseandCyy are the
dynamic displacement of the plate and the viscous damping coefficient Zratige at the pointx
y), respectively. Fig. 2 shows the element that is rotated over an anglé. dE@®Gidering the
equilibrium conditions for all the forces acting on the element (Fig. 2), using d’Almbert priciple,
leads to

[Ho, + Zrayo, Jaxe B, + Z2abdQ, Jayra(x, v, Daxdy

ay
- &'ZWi dWi 1a
—mixy?dXdy—CixyEdXdFO ( )
Thus
0Qu 0Qy_ . 9w, oW
W-‘-Wz_mixy dtz dXdy"'CixyE_q(Xa Y, t) (1b)

in which my, is the mass intensity (mass per unit area) at the poigtic thei-th step plate.
The shear forces can be expressed as

Qix:KixEIv Qiy:KiyEI (2)

&Q, . 7 qlxy.tydxdy
Q, +—dy
y T oy

Fig. 1 A multi-step shear plate Fig. 2 An element of the shear plate
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in which Kix andKj, are the transverse shear stiffness inxtagis and in theg-axis, respectively.
Substituting Eg. (2) into Eq. (1b) gives
°w;, . ow,
(?X%'X aXD dyB<ly ay IXy +Clxy at q(Xy t) (3)
This is the governing equation for vibration of ikt step of a multi-step orthotropic shear plate

with variably distributed mass and stiffness along the height of the plate. S¥kipd=0 gives
the governing equation for free vibration of ik shear plate as follows

0 07 w; ow,
dxa(lx dXD dya(ly dyD 2 Clxy dt 0 (4)
The governing equation for undamped free vibration can be obtained by §gtityas
o o"' W;
axa(lx dXD aya(ly dylj O (5)
It is assumed that
Wi (X,y,t)=Z;(x,y)sin(awt + y,) (6)

whereZ(x, y) is the vibration mode functiony is the undamped circular natural frequerigyis
the initial phase.
Substituting Eg. (6) into Eq. (5) leads to

axB('XaxD ayE('y dyd MixyZi=0 @)
For solving Eq. (4), it is assumed that
wi(x,y,1)=Z;(x,y)exp(At) )
in which A is a complex value.
Substituting Eg. (8) into Eq. (3) leads
axg('x —1 ayE*('y%yZE LA(2C, + A) My Z=0 9)
If it is assumed that
Cixy=2C,my,, (20)
Setting
W=-A(2C, + A) (11)

and substituting Eq. (11) into Eqg. (9) obtains the same expression as that of Eq. (7). This
suggests that the damped mode shape is the same as the undamped mode shape, and the
relationship between the damped frequency and undamped frequency can be found by solving

Eqg. (11) as follows
2
A=—Cotiw [1— E%E (12)
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The real part ofA is damping coefficient and the imaginary part is the damped circular natural
frequency, denoted aa;,

wy = kyw, ky= [1— E&’D_ — & (13)

in which & is the critical damping ratio.

It can be seen from Eq. (13) that the effect of damping on natural frequency can be neglected for
the case of light damping. Even if the damping coefficient is large, the effect of damping can be
also not considered in free vibration analysis. After the undamped natural frequencies have been
found, the damped natural frequencies can be determined from Eq. (13). This suggests that if the
distribution of the damping coefficient of a shear plate is assumed to be proportional to that of the
mass C,=C,m, ), the damped natural frequency is equal to the corresponding undamped natural
frequency multiplied by the coefficienkys, and the damped mode shape is the same as the
corresponding undamped mode shape.

In order to determine the undamped natural frequencies and mode shapes, using the method of
separation of variable gives

Zi(x,y)=X(x)Yi(y) (14a)
It is assumed th&, is a function ofy, K, andm,, are also functions gf
K K|lfl(y) Kix:K2¢'(y), mixyzr-_n¢'(y) (14b)
i.e., We assume thd;, is directly proportional tom,, , since the values Kf and m,, are
malnly dependent on the size and materials of building floors.
Substituting Egs. (14a) and (14b) into Eg. (7) obtains
TPRP:AC) P e
dy[ 1L dy J d 2
=K, - (15)
Yi(y) #i(y) Xi(X)

The left hand side of the above equation is a functionasfd the right hand side is a function of
X. Thus, both sides should be equal to a constant. It is assumed that the conmiﬁt is then, the
following two ordinary differential equations are obtained from Eq. (15)

2
K, 32 ma?x=g (16)
dx’
d .(y)
gyl K ) =4 [#md (1) €Y, ()=0 an
where
Q’=w'-F  w=/JQ°+ & (18)

It is obvious that Egs. (16) and (17) are two governing equation of vibration mode shape of two
shear barsk,, m, Q are the stiffness, mass intensity and circular natural frequency of a shear bar,
respectively. The boundary conditions of this shear bar are the same as those of the shear plate in
the x-axis. On the other hand;, fi(y), m¢;(y), @ , are the stiffness, mass intensity and circular
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natural frequency of another shear bar, respectively. Its boundary conditions are the same as those of
the shear plate in theaxis. The natural frequency of the plate is equal to the square root of the
square sum of the two natural frequencies of the two bars. The mode shape of the plate is the
product of the corresponding two mode shapes of the two bars. This suggests that free vibration
analysis for a shear plate can be carried out by analysing two independent shear bars, i.e., by
solving the two independent ordinary differential equations, Eq. (16) and Eq. (17).

3. Exact solutions of the governing equations

The governing equation for mode shape of the shear bar inatkie for each step (see Fig. 1) is
the same as Eq. (16). The general solution of Eq. (16) is found as

X(x)=Dlsin2x+ chosgx (19)
a a

a;J% (20)

The k-th circular natural frequency and mode shape are as follows

o (k=17 [, .
KL
(21)

O
Ofor free-free edges of the shear plate inxttexis

m
Xk(x)=cos£—Lk _Ll L E

where

0

or

O

m Ofor fixed-fixed edges, or freely supported edges (22)
. knxO
X (X)=sin—
L

0

or

Ofor fixed-free edges of the shear plate (23)

wherelL is the length of the shear plate in thaxis.

The general solution of Eq. (17) for multi-step shear plate can be obtained by use of a transfer
matrix method as described below:

The general solution of Eq. (17) can be expressed as

Yi(¥)=Di1S1(y)*+Di2S2(y) (24)
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wherei denotes the-th step andj is the total number of stepSy(y) and S»(y) are the special
solutions of Eq. (17), which are dependent on the expressidi{g)and ¢i(y).

As suggested by Tuma and Cheng (1983)et.ial (1994) and Liet al. (1998), the functions
which can be used to approximate the variation of mass and stiffness are algebraic polynomials,
exponential functions, trigopnometric series, or their combinations. In this paper, two important cases
of fi(y) and ¢;(y) are considered and discussed as follows:

Case 1 The expressions dfy) and ¢i(y) are described by the following exponential functions

O
f(y)=efa [
O

U
p=e®h 0

The parameter#, b; are constants that can be determined in terms of the real distributions of
mass and shear stiffness of the shear pthis.the height of the shear plate.
The special solutions of this case are found as

S:(Y)=&"3,(%&)
Sa(Y)=& "3, (%&) vi=non integed (26)

(25)

Oom;

or Su()=§ ", (&) v,= integer

in which the parameterg, y  and the variafjle are

(27)

o o o

If Bi=b;, then

By
Sa(y)=€*"cosyy

By
S.(y)=e""sinyy
NN
" a? aH AW o

(28)

Q
PN
3|

I o

where J,(§) is Bessel function of the first kind, of orderY,(¢) is Bessel function of the
second kind, of ordew.
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Case 2 The expressions dfy) and ¢;(y) are described by the following power functions
fiy)=(1+By)" 0
Gi(y)=(1+By)" D

where §;, p;, ¢; are constants which can be determined in terms of the real distributions of mass
and stiffness.

The special solutions of this case are found as

(29)

:w [V g 0
Sl(y) D 2ni E| ‘]Vl(ylfl) E
i—Pi+t2_ . U
Se)=F g 60 Lu(n€) vi=non integer (30)
0
i—Pit2 .
or Sa(V)=F 26, (&) vi= integer
in which
_ 1-p O
Vi_Ci -pit2 E
2n; C'+p'+25
E=———(1+By) ° O (31)
Ci—pit+2 E
ulii 0
K .
If pj=c, +2, then
b 0
Sa(y)=(1+By) * cod./Din(1+By)] DO
1 :
Sa(y)=(1+By) * sin[/Din(1+ By)] s (32a)
_n)? - O
Di:n?—Mm, n= ulca 0
4 KB 0
If =0, i.e., for a uniform shear plate, then
=sin—=v U
Su(y) smaly i
6 O
Sa(y)=cos "y (32b)
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A transfer matrix method is introduced herein to establish the equation of mode shapg-in the
axis and the frequency equation of a multi-step shear plate. The mode shape functjpy) of

displacement and the shear for€g(y) , can be expressed as a matrix
'Yi(y)Qi(y)]E[ ) S } M (33)
. KiySii(y) KiySi2(y) | |Di2

The relationship between the paramet¥:s,Q;; at the end 1 and,, Qo at the end 0 of thith

step (Fig. 3) can be expressed as
{Yi l =[T] {Y‘ 0} (34)
il QiO

in which

[TI=[S(¥)I[S(Wo)] ™

: - S1(Yio) S2(Yio)
S(¥o)]=

| Kiy(¥i0) Sia(Yio) Kiy(Yio) Siz(¥io) |
: - SHAZ) Sa(Yi1)
S(¥1)]=

Kiy (Vi) Sia(Yin) Kiy(Yi1) Sia(Yia) |

Yio=Yi(Yio) Yir=Yi(Yi1)
Qio=Qi(Yio) Qi1=Qi(Yi1)
[Ti] is called the transfer matrix, because it transfers the parameters at the end 0 to those at the

end 1 of a step.
The relationship between the parameters at the end 1 for the top step (Fig. 1) and those at the end
0 for the bottom step can be established by using Eqg. (34) repeatedly as:

{Y‘ﬂ =[T] M (35)
Qq1 Q1o
A y
Ya
1
i
Yio
TP
X
X -

Fig. 3 Thei-th step
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in which
[TI=[Tl[Tq-a]-..[T4] (36)
[T] is a matrix which can be expressed as
1= Pﬂ TH} (37)
T21 T22

For the case of fixed-free edges of a shear plate ig-#xés (Fig. 4), Eq. (35) becomes
O T21 T22 10

T2,Q10=0

From Eqg. (38),

Because of),o# 0, we have
T,,=0 (39)

This is the frequency equation of a multi-step shear plate with fixed-free edgesyiaxise
For the case of fixed-fixed edges of a shear plate iy-thas (Fig. 5), Eq. (35) becomes

qu T21 T22 10
The frequency equation for this case is

T.,=0 (41)

For the case of free-free edges of a shear plate ipdhes (Fig. 6), Eq. (35) becomes

Mz Tu T H “2)
0 Ty, Tyl | O

A v &y A v
WA W
-~ | |
1
q |! 4
f
i | i
H 4 H
2 ! la
1 .-.l.'l III]
7 > 7 Pl A *y >

Fig. 4 The case of fixed-free edgésg. 5 The case of fixed-fixed edges Fig. 6 The case of free-free edges
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The frequency equation for this case is
T,,=0 (43)

Solving the frequency equation obtaifs j=1( 2, ...), then substituting into Eq. (34) and
setting Y1=1 (if Y10#0) or Q=1 (if Q0% 0) give thej-th mode shape of the shear plate inyhe
axis.

The frequency equation and tih mode shape of an one-step orthotropic shear plate i the
axis for the case 1 can be obtained by setting g=1 in the above equations as follows

B=b B=b

2 . 0
‘J—(v—l)(yj)Jv—l%/je ? %Jv—l(yj)‘]—(v—l)g/je ’ E v=non mtegeH
—zV v 1(y) O
5ob b_(v ) e Ofor free-free edges (44)
|
Yy-1(¥)Jdv- 1%’3 D‘Jv (W)Yo 1%’8 V= integer E
—zV v l(y) E
YiN=E19(48) =3~ ( )Y( ¥$)] .
or
B p-b -
J-V(V;)Jv%’je ’ D‘JV()/J-)J_V%/je 2 E v=non integeH
_ Jy(%) u
Yi(y)=&"13 =370 o) J_(%é)] E
5o - . Ofor fixed-fixed edges (45)
Yv(yj)‘]l/%/je ’ %JV()/,-)YV%/J-e 2 E v= integer E
—zV _Jv(yl) E
Yi(¥)=¢"13.(y$) Y_V(yj)Yv(ij)] 5
or gob - :
J—v(yj)‘]v—lg/je ? D‘—Jv(yj)J_(v_l)%/je ? E v=non integer]
0
) 0
Y(y)=¢€"J U483 M (%81 E
5 - . Ofor fixed-fixed edges ~ (46)
2 50 a
YV(V,')Jv_l%/je 2 %Jv(yj)Yv_lglje 2 E v= integer E
g _30) .
Yi(y)=&13(y) YV(VI_)YV(VJE)] 5

where
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__B

V_ﬁ—b

_ 4mePH?

" Ky(B-b)°
(B—b)y

f=e 2H

After y is found,6, can be determined from Eq. (47).
If B=b, the frequency equation and thtth mode shape are

I o

2yH
tan yH-—%
By Ofor fixed-free edges
Y,(y)=€”"'sinyy O
or
_im
) 0
By Ofor fixed-fixed edges
oH O
_ 2H_.
Y,(y)=€""sinyy [
or
j—1m O
yj:(J H) .
O
By Dfor free-free edges
B

Y (y)=¢€’ Bsosvy-msmvy

After y is found from Eq. (48) or Eq. (49) or Eq. (56), can be determined by

_ e B K
6= yJ+4H2J;

For a one-step orthotropic shear plate for the case 2, we have

J—(v—l)(nj)Jv—l(njw):‘]v—l(r]j)‘]—(v y(M;¢) v=non intege
V)= E g 2 D@ (8]

Yv—l(nj)Jv—l(nj Y)=d,_1(n)Y,_1(n;y) v= integer

— ‘Jv—l N
V)= 2 -3 A

| o

or

for free-free edges

(47)

(48)

(49)

(50)

(51)

(52)
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() Iy 1(Nj)==3,(1N;)I_(v-1)(N;) v=non intege%

_[e=P+2 J(m) O
Yi(¥)=g 2n S [3u(8)+ 3,(n) J(8)] O

Yo (M) Jy-1(mP)=3,(n)Y,_1(n;¢) v=integer

et RGeS TLA0)
J V I

Ofor fixed-free edges (53)

Ooodad

or

J—v(r’j)‘]v(r’j’-:U):‘]v(r’j)‘]—v(ni ) v=non intege

Y=F 2 O _”V((”J)) I8

Yv(’]j)Jv(njl.U):Jv(’]j)Y (@) v=integer

Vo)=L 10 YVEZ'J;Y(E)]

for fixed-fixed edges (54)

o o

where
__2n
e+ 2

N [T
S
Doo000000

W=(1+ BH) (53)

2_ M6}
J Klﬁz
After n; is found, 8, can be determined by

_ c—p+2 K,
g=pn, [cB*2 [ 56)

If p=c+2, then the frequency equation and jtile mode shape in theaxis are as follows

Diin(1+BH)=(j-1)m =
> pD Dgfor free-free edges (57)
Yi(y)=(1+By) ° feodDjin(1+ By)]—ESIn[D In(1+ By)l 0o
0 to
or
tan[D(1+,BH)]— 1 0
Ofor fixed-free edges (58)

1;p

0
Yi(y)=(1+ By) * sin[Djin(1+ By)] O
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or
D/In(1+ pH)=jm E
1-p Ofor fixed-fixed edges (59)
Yi(y)=(1+ By) * sin[Djin(1+ By)l 5
where

2
Df:nf—gﬂl>o

2 (60)

After D; is solved,8 can be determined by

2
6=p /|31.2+§-——-—L1_4IO J%l (61)

4. Numerical example

Fig. 7 shows a sketch of a narrow building that is treated as a cantilever shear plate for free

vibration analysis. The masses of columns are lumped to each floor. The masses in different storeys
are as follows

m=2.16<10° kg
m=ms=m,=2.00<10° kg
ms=me=m;=1.93<10° kg
mg=1.735¢10° kg

The stiffness of columns in different storeys is
El;=8.4x10° KN- m?

(b) Planc
Els 2Els [Els
Elr 2L |Eh
Els 2Els |Els
/
J X Els 2EL | Els
/ Els LEL gy,
El IEL |EL
‘ z
= EL: Bl |EDL
- a X
. . o 1
(a) Perspective drawing 225 ¥ Im

(¢) A transverse tframe

Fig. 7 A narrow building
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El,=El;=El,=8.0x10* KN- m?
Els=El=El,=7.5x10* KN- n?
Elg=6.74%10" KN- m?

The stiffness of each floor in thyeaxis is treated as infinitely rigid and the stiffness of that in the
X-axis is

GF,=8.4x10° KN

GF,=GF:=GF,=8.0x10° KN

GFs=GF¢=GF,=7.5¢1C° KN

GFg=7.0x1C° KN

whereGF is the shear stiffness of theh floor.
The storey height is a constaht3.0 m. The distance between the transverse frames is 6 m. The
procedure for determining the frequencies and mode shapes of this narrow building is as follows

4.1. Determination of the mass per unit area

Because the mass of a storey is distributed on the area that is equal to the product of the length,
9x6 m, of the building and the storey height, 3 m, thus, the mass per unit area of this building for
the first storey is determined by

o 22:16x 10
17 3x5x%x9

The mass per unit area of this building from the second storey to the fourth storey is
m,=1.5257x 106kg/ m’

=1.60x 10kg/m’

For the fifth storey to the seventh storey,

M,=1.43x 10kg/ m’
For the eighth storey,

(a) Mass (b) Stiffness Ky (c) Stiffness Ky

Fig. 8 The distribution of mass and stiffness
Note: The solid lines represent the real distributions and the dash lines represent the assumed
exponential distributions
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m,=1.285x 10kg/ m’

The four-step distribution of the mass per unit area is shown in Fig. 8a. In order to apply the
methods proposed in this paper to analyse free vibration of this narrow building, the four-step
distribution of m (Fig. 8a) is represented by a continuous curve and it can be seen that the mass
distribution can be described reasonably well by the exponential function as follows

—0.2192Y
m,,=1.60x 10e H

4.2. Evaluation of the shear stiffness Ky
K is the value of GF divided by the storey height.

For the first storey,

_8.4x 1¢
3

For the second storey to the fourth storey,
Ky,=2.67x 16N ™
For the fifth storey to the seventh storey,
Ks,=2.5% 10Nm™

Koy =2.80x 16Nm™

For the eighth storey,

K,=2.249x 16Nm™

The four-step distribution df, is shown in Fig. 8b. The steped distributiorkgf(Fig. 8b) is also
represented by a continuous curve. The distributiorkK,ois described reasonably well by the
following exponential function (Fig. 8b).

—0.219%

K.=2.8x 10e kN/m

4.3. Evaluation of shear stiffness K,

The total number of transverse frames is ten, thus, the first storey stiffness is
A1z
The stiffness for the second storey to the fourth storey is
D,,=1.42x 16N/m
The stiffness for the fifth storey to the seventh storey is
Ds,=1.33x 16N/m

Jx 10=1.49% 1GN/m

The eighth storey stiffness is
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D4y=1.197x 16N/m
Ky (i=1, 2, 3, 4) are the values Df,h divided by the distance between the transverse frames.

_1.49% 3

6
y x 10 =7.45x 10N/m

Ky

Koy=7.1x 10N/m
Ks,=6.67x 10N/m
Ka,=5.98% 10N/m

The four-step distribution oK, is shown in Fig. 8c. The distribution &f, is also described
reasonably well by the following exponential function (Fig. 8c)

-0.2192Y
K,=7.45x 10e H

4.4. Determination of natural frequencies

The frequency equation for this shear plate with four-step uniform cross-section is
T22=0
whereTyis the element ofT[] that is given by
[TI=[Ta [ T[Tl [Tal
and [fj] (i=1, 2, 3, 4) is
-1
sinﬁ - cosﬁ - sinﬁ . cosﬁ :
[T] _ lyl 1 alyl 1 aly|0 aly|0
ke Leosly i By |k Leosly k Leinf
Kiyalcosgl)’il - iyalsmalyil iyalcOSCTlYio - iyalsmalyio
Solving the frequency equation obtains
6,=5.64,6,=9.58,0,=12.51,6,=14.57

Because the two opposite edges of the cantilever shear platexiatiseare free edges, thug,
is found from Eq. (23) as

_173.447Tk=-1) 1
- 54 :

i.e., =0, Q,=10.0908,Q,=20.1816,Q2,=30.2724
Wk Is given by

W=+ 9,2 +Q;p

The values ofwy calculated based on the four-step uniformly distributed mass and stiffness are

Qk (k=11 21 31 4
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Table 1 The circular natural frequencies of the narrow building

W W21 W12 W31 W22 Way W32 Wa2
5.64 9.58 115 12.5 13.9 14.6 16.1 17.7
(5.65) (9.60) (11.6) (12.4) (12.9) (14.6) (16.0) (17.8)
W3 Wo3 W33 3 W4 Wo4 W34 Waq
21.0 22.3 23.7 24.9 30.8 31.8 32.8 33.6

Note: The data in parentheses are the values calculated based on the assumed exponential functions for the
distributions of mass and stiffness.

listed in Table 1. It is necessary to point out taatis corresponding to theth mode shape in the
y-axis and thé&-th mode shape in the x-axis.

As shown in Fig. 8, the narrow building has variably distributed mass and stiffness along the
building height. The stiffness and mass of the building are described reasonably well by the
exponential functions that are the special cfisb, of the Case 1 discussed previously. Thus, this
building can be treated as a one-step cantilever shear plate for free vibration analysis. The values of
wx computed based on a one-step cantilever shear plate with variably distributed mass and stiffness
are also presented in Table 1 for comparison purposes. It can be seen that results calculated in terms
of the two methods are almost identical.

4.5. Determination of mode shape

For the first step, we have,

{YM} Ty {o
Qll 1_

For the second, third and fourth step, we have

H#Tzl[m 0}
Q 1

M =[T[TA[T] {0 =[T,] H
Q 1]

31 21

H [T [T (T[T ‘j =[T,] {Yﬂ

41 31

Substitutingg and the expressions ¢ff;] , Eqg. (62), into the above equations obtaipththe
(=1, 2, 3, 4) mode shapes of displacement which are shown in Fig. 9.
The k-th mode shape function in theaxis can be written as

Xk(x)=cos£k;52m
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Fig. 9 (a) The first four mode shapes in thdirection, (b) The first four mode shapes in xhdirection
Note: The solid lines represent the calculated mode shapes and the circle symbols represent the
measured results by Wang (1978)

Fig. 9 shows the mode shapes in yhaxis, Yj(y), and in thex-axis, X«(X), (=1, 2, 3, 4k=1, 2, 3,
4), respectively. Wang (1978) had measured structural dynamic characteristics of many multi-storey
and tall buildings. He found that narrow buildings that can be treated as a cantilever shear plate
have the same or almost the same mode shapesxrati® The averages of the experimental data
obtained by Wang (1978) are also plotted in Fig. 9 for comparison purposes. It is clear that the
calculated results are in good agreement with the measured field data.

The mode shape functiorg(x, y), of this building can be found as

Z(X, Y=Yi(Y)XdX)

Fig. 10 shows the obtained mode sha@gesx, V), ZoAX, V), Zz3(X, Y) andZs4(X, y).

If K; - o, thena; (j >1) is found to be less thamy (k>1), i.e., onlyQ, will occur. In this
case, Xy(X) may not appear in the vibration of the building, thus, this narrow building can be
simplified as a shear bar in the analysis of free vibration.

5. Conclusions

In fact, there are very few equations of vibrating plates with variable cross-section where exact
solutions can be obtained. In this paper, an approach to determine the natural frequencies and mode
shapes of orthotropic shear plates with variably distributed mass and stiffness corresponding to
several boundary conditions is proposed. It has been shown that a one-step shear plate and a multi-
step shear plate can be divided into two independent one-step shear bars and multi-step shear bars
with the same boundary conditions as those of the shear plates in analysing their free vibrations.
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Fig. 10 The mode shapes of the narrow building

The jk-th natural frequency of a shear plate is equal to the square root of the square sujthof the
natural frequency of a shear bar and itk natural frequency of another shear bar. jkKith mode

shape of the shear plate is the product ofjitile mode shape of a shear bar and kitk mode

shape of another shear bar. The exact solutions that are expressed in terms of Bessel and
trigonometric functions are derived by selecting suitable expressions, such as power functions and
exponential functions, for the distributions of stiffness and mass along the height of the plates.
These closed form expressions presented herein can be also used as benchmarks for checking the
results obtained from numerical or approximate methods. The numerical example demonstrates that
the present methods are easy to implement and efficient. It is also shown through the numerical
example that the selected expressions are suitable for describing the distributions of stiffness and
mass of typical multi-storey buildings.
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