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General nonlocal solution of the elastic half space
loaded by a concentrated force P perpendicular to the
boundary

R. Artant

Institut fiir Statik und Dynamik, Ruhr Universitdt Bochum, D-44780 Bochum, Germany

Abstract . The main purpose of this paper is to devolop the results introduced in Artan (1996) and to
find a general nonlocal linear elastic solution for Boussinesq problem. The general nonlocal solution given
Artan (1996) is valid only when the distance to the boundary is greater than one atomic measure. The
nonlocal stress field presented in this paper is valid for the whole half plane.
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1. Introduction

The problem of an elastic half space loaded by a concentrated force, is known as Boussinesq
problem. The classical solution of this problem can be found in every reference book on the
mathematical theory of elasticity. (For instance, see Rekach 1979). According to the classical
elasticity solution of the Boussinesq problem the stresses at the application point of the force
become infinite. But this solution does not display the actual situation. In other words the local and
even polar continuum theories fail to apply to Boussinesq problem. To remedy this situation theories
of nonlocal continua may be introduced. In the nonlocal theory the constitutive relations are
nonlocal in character and the stress at a given point does not only depend on the strain at the same
point, but on the strains at all points of the body. The governing equations of the nonloclal elasticity
are given in Artan (1989) and Eringen (1976, 1974, 1987). Some of the early ideas for the nonlocal
elastic solids were explored by Eringen, Edelen and Kunin (For a brief introduction to the subject,
see Eringeret al. 1972 and Kunin 1968). The purpose of this paper is to present a nonlocal solution
for the Boussinesq problem, and to display the stress singularities disappear at the application point
of the force. The program Mathematica, Derive and Latex are used throughout.

2. The nonlocal solution of the Boussinesq problem

The classical elasticity solution of the Boussinesq problem in Cartesian coordinates are (see
Rekach 1979 and Fig. 1)
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Fig. 1 Elastic half plane under the singular force
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The nonlocal stress field can be obtained as

tXX(X’ Y, a):II a(|X' _X|)GXX(X" y')dX’ dy (2)
tyy(X’ Y, a):.[.[ a(|X' _X|)Uyy(X'! y')dX’ dy (3)
(X, ¥, A)=[] a(lx =X T(x', y)dxX dy (4)

where a(|x'-x|) is called kernel function and is the mesure of the effect of the strain at the point
X' on the stress at the point (See for full detail Artan 1996 & 1997). In this article, the kernel
function of the nonlocal medium will be chosen as

Do x=x1’m
Bl -—— x—x'|<a
a(x=x')=0 %l a® U

()

IXx—x'|=a

wherea is the atomic distance aglis a constant. In the Cartesian coordinates (5) becomes (see
Fig. 2)

alxy=BR - & ‘X)Z;’z(y' ‘y)zg X—x|<a ©)

The value ofa, andB are (see for full detail Artan 1996)

a=4x 10°cm, B=—2-—2 )
R

When the distance to the boundary is less than one atomic measure the nonlocal stress field in
they direction is calculated as (see Fig. 4)

(k)= axy) o, x y)dx dy ®)
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Fig. 2 Kernel function

where
a;=x—Aa’=(y' —y)?, a=x+a’=(y' —y)’ ©)

When the distance to the boundary is greater than one atomic measure the nonlocal stress field in
they direction is calculated as (see Fig. 3)

0= [ axy) 0,y )dX dy (10)

In the above equations the first integral oxeis calculated exactly, then the second integral over
y' is calculated approximately. The nonlocal stress field becomes

[V3a—2y[ [V3a—2yn
- +
3(a—2x)y arctany 2 — o D_3(a 2x)y arctan a2y [
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t (X!y!a)z_[i -
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Fig. 3 Integration domain for < -a Fig. 4 Integration domain for=> -a
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O =0
(5a° — 8ax+ 4(2x2—y2))|ogB(a2—ax+ X — [3ay+ yz)RE

3
a

O 10
(5a+8ax + 4(2x° —yz))|ogE(a2+ax+ X — [3ay+ yz)lﬁg

3
a

O 0
(5a° —8ax + 4(2x2—y2))|ogE(a2—ax+ X+ .[3ay + yz)lﬁg

+ 3
a

0 00
(5a°+8ax + 4(2x° —y2))logE(a2+ax +xX+./3ay + y2)1655

+ 3 g ys-a (11)
a ]
]
O
and
4PA1
by, y, 8)==75, -asys<0 (12)
7t
where

Al=(a—y)((-a+y)(8./3J 5" —2ay—3y*(2a’ + 2’ —3ay + Y’
—x/7a° - 6ay— yz) (2<';12+2x2—3ay+y2+xA/7a2 —6ay— yz)
X (4a4+4x4—4a3y+5x2y2+y4+2ay( X + y2)—a12(7x2 + 3y2))
-18,7a° - 6ay— y2 (2a2+2x2—ay—y2 +./3x4/5a8" — 2ay— 3y2)
X (—2a2—2x2+ay+y2+ J3xA/5a" — 2ay— 3y2)
x (4a*+4x"-12a°y+5x°y*+y —6ay( ¥ +y?)+a’ (X’ + 13y°))
—8(7&12 —8x°— 2ay— 5y2)(2a2 +2x° — ay— y2 +./3x4/5a8" — 2ay— 3y2)
X (—2a2—2x2+ay+y2+ J3x/5a’ — 2ay— 3y2)
X (—2{:12—2x2+3ay—y2+x47{:12 —b6ay— y2) X (2{:12+2x2—3ay+y2+xv7a2 —6ay— yz)
X arctafg_ beo asfzy_ 2= 3yZ%LS( 7a°-8

X (2a2+2x2—ay— y2 +./3x./5a° — 2ay— 3y2)
X (—2a2—2x2+ay+y2+ ﬁ%xA/Saz —2ay-— 3y2) X (—2{:12—2x2+3ay—y2+x47{:12 —b6ay— y2)
X (2{:12+2x2—3ay+y2+xA/7a2 - 6ay—y2)
+ 2 a2
X arcta r%{lx /353" —2ay— 3y
a-y

X — 2ay— 5y2)
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X (2a2+2x2—ay—y2+ J3x./5a% - 2ay— 3y2) X (—2a2—2x2+ay+y2+ J3xA/5a° - 2ay— 3y2)
X (—2a2—2x2+:’>ay—y2+xA/7a2 —6ay— y2) X (2a2+2x2—3ay+y2+xA/7a2 —6ay— y2)

+ 5.2 _ 2
X arctarg_ Ax+ 7a —bay-y %6(a2+8x2—6ay+5y2)

3(a-y)
X (2a2+2x2—ay—y2+ J3x4/5a° - 2ay— 3y2) X (—2a2—2x2+ay+y2+ J3x/5a° — 2ay— 3y2)
X (—2{:12—2x2+3{:1y—y2+xA/7{:12 —b6ay— y2)

2.2 2 2 2 fx+ 7a2—6ay—yZD
x (2a”+2x°—3ay+y +x./7a” —6ay—y°) X arctang 3a_3y 0 (13)

A2=256a"(2a%+2x°—ay-y*+./3x/5a" — 2ay — 3y’) x (—2a°-2x"+ay+y’+./3x./5a° — 2ay — 3y°")
X (—2{:12—2x2+3ay—y2+xA/7{:12 —b6ay— y2) X (2a2+2x2—3ay+y2+xA/7a2 —6ay— yz) (14)

The nonlocal stress field in the direction and the nonlocal shear stress field are calculated
approximately by using (2), (4). Far=0 the nonlocal stress field reverts to the classical stress
field. That is

3 2
t(x,y, 0020982 —Y . t (xy, 0)=1.0120 2
yy TT 1.2 2.2 TT 1,2 2,2
(X" +Yy) (X" +Yy)
2P Xy
(X, ¥, 0=1.017-—=— (15)
(X" +Yy)

The above stress fields are valid for all half space but the stress field in Artan (1996) is valid only
when the distance to the boundary is greater than one atomic measure.

3. Conclusions

The main results are listed below
a) The nonlocal stresses are finite even at the points where local stresses are infinite (See Figs. 6-10).

(a/P)stress
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Fig. 5 The stress diagrams are given on this linesFig. 6 Stresses in the directigraxis on the line@DA
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b) The maximum stress does not occur at the boundary but further down. Similar results had
already been obtained in some other problems (see Artan 1996 & 1997, Eringen 1979).
¢) Fora =0 the nonlocal solution reverts to the classical solution.
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