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Abstract. An optimization procedure has been prescribed for the minimum weight design of symmetrical
parabolic arches subjected to arbitrary loading. The cross section is assumed to be a symmetrical box section
with variable depth and flange areas. The webs are unstiffened and have constant thickness. The proposed
sequential, iterative search technique determines the optimum geometrical configuration of the parabolic arch
which includes the optimum depth profile and the optimum lengths and areas of the required flange plates
corresponding to the prescribed number of curtailments. The study shows that the optimum value of rise
to span ratio (h/L) of a parabolic arch is maximum at 0.41 for uniformly distributed loading over the
entire span. For any other loading, the optimum value of h/L is less than 0.41.
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1. Introduction

As the geometrical shape of an arch has a great influence on its strength, the congruent shape for
a design must be searched for to obtain an economical design. Parabolic arches are frequently used
in practice due to their superior aesthetic appeal and better geometrical configuration. A strong
support for a parabolic shape also arises from the fact that a parabolic shape is indeed the optimal
or near optimal geometrical shape of an arch for a variety of imposed loadings. For further saving
in materials, and hence cost, the cross section of the arch can be varied along its length by varying
the arch depth as well as the flange areas, wherever possible, to account for the variable internal
forces. For aesthetic and practical reasons, the variation in depth must obviously be achieved by
furnishing a smooth curved profile as depicted in Fig. 1a.

The widespread use of arches has drawn a great deal of interest of researches in seeking an
optimal design through different analytical and numerical approaches, fundamentals of some of
which are well covered in numerous books, such as for example, Gallagher and Zienkiewicz (1973),
Kirsch (1981) and Rozvany and Karihaloo (1988). The earlier works (Budiansky et al. 1969,
Farshad 1976 and Prager and Rozvany 1979) dealt with the optimal shape of arches using classical
variational procedures but because of their inherent complexity, solutions were obtained only for
simpler cases. An optimality condition for fully stressed, flexureless arches using Prager-Shield
criteria is prescribed by Hill et al. (1979). A treatment of arches subject to axial compression and
bending is given by Rozvany et al. (1980) and it is further followed up later by Ang et al. (1988)
using plastic design. A numerical study of optimal design of arches of uniform depth and width but
of variable plate thickness is conducted by Lipson and Haque (1980) by using complex method.
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The optimal rise of an arch is the subject of study by Ermopoulos and Ioannidis (1985). The works
of Yao and Choi (1989) and Zhu et al. (1992) can be cited as the representative sample of works in
the area of optimization of arch dams. The past research, however, does not deal with the design of
parabolic arches having both nonuniform depth and variable flange areas.

In this paper, an iterative procedure for optimization of a symmetrical parabolic steel box girder
arch with variable depth and flange areas has been presented. The cross section is assumed to be
symmetrical with uniform web thickness and identical top and bottom flange plates. The proposed
method is design-oriented and is applicable to any imposed loading and support conditions. Sample
results are presented to show some interesting observations pertaining to design.

2. Problem formulation

2.1. Geometrical configuration

For a typical parabolic arch shown in Fig. 1, the equation of the profile along the middepth of
web is given as

(1)

when h is the rise to the centreline of the arch, L is the span and x, y are the coordinates of a
point on the arch.

y=
4hx

L
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Fig. 1 A parabolic arch and its cross section
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The cross section of the arch is considered as a symmetrical box section as depicted in Fig. 1b,
for which the depth d of arch can vary. The web is assumed to be unstiffened, having an unchanged
thickness tw throughout the arch length. The area of flange plates Af can discretely vary stepwise, for
which the maximum number of cut-off points are prescribed apriori. The arch is considered to be
symmetrical about the midspan, x = L/2. 

2.2. Objective function

The parabolic arch is discretized into n-number of small, linear segments of equal length l with
(n+1) nodal points. The weight of a typical segment of a steel box arch shown in Fig. 1c is

(2)

where ρ = unit weight of steel, di = depth of web at node i, Afi = area of each flange plate for the
segment i and l = length of each segment.

For the entire n-segmented, symmetrical arch, the total weight is expressed as

(3)

The objective is to minimize Eq. (3) by finding the optimum values of the design variables (h, di,
tw and Afi) within the design space bounded by the applicable geometrical and design constraints. 

2.3. Geometrical constraints

The geometrical constraints of the arch are specified simply by prescribing a minimum and a
maximum value of the arch rise h, respectively as hL and hu, and an acceptable minimum
dimensions of d, tw and Af for a design. Thus, hLúhúhu, d−dminû0, tw−tminû0 and Af −Af minû0. In
order to provide a minimum amount of flange areas for the box section, the minimum value of Af is
taken in this study as 10% of the cross sectional area in those segments where the required value of
Af is either nonexistent or falls below this minimum. As the value of tw must correspond to available
plate thickness, tw is not a continuous design variable and it varies only in steps conforming to those
commercially available.

2.4. Strength constraints

The stress or strength constraints ensure that the strength of an arch at all nodal points is adequate
to withstand the design forces. An arch section, in general, is subjected to the combined action of
axial force, N, in-plane bending moment M and shearing force V. In a design, the adequacy of a
section is verified by satisfying the requirements of a building code, either using allowable stress
design method (ASD), load-resistance-factor design method or plastic design method. The ASD
method as prescribed in the AISC specification (1989) is used in this study. The proposed
methodology can, however, be pursued to adopt any other specification.

The AISC’s interaction equation for the combined stress due to N and M stipulates that

Wi=2ρ
di di 1++

2
-------------------- 

  tw Afi+ l

W=2ρ
n

i 1=
∑ ditw Afi+( )l
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(4)

must be satisfied at all sections. In Eq. (4), fa = N/A and fb = M/S are respectively the computed
normal stress due to N and M, Fa and Fb are respectively the allowable stresses under the action
of axial force and bending moment (when each force is acting alone), A is the cross sectional
area and S is the elastic sectional modulus of the section. The value of Fa and Fb which are to be
determined from a rational analysis taking into consideration the lateral supports to the arch, if
any, are assumed to be specified as input data.

The average value of the computed shear stress, fV = V/(2dtw), at each node must not exceed the
allowable value FV given by AISC (1989) as

(5)

when Fy = yield stress of web steel and CV , a parameter, is prescribed as

(6)

Thus, the shear requirement is satisfied by

(7)

Eqs. (4) and (7) must be satisfied at all nodes for a safe design.
As the web is considered unstiffened, the web height to thickness ratio, d/tw, must be restricted to

prevent the web from local buckling under the interaction of axial compression and bending, i.e., at
each node i,

(8)

where α is a numerical constant which is a function of the yield stress of web. Most building
codes prescribe the maximum limit on the width-thickness ratio to prevent local buckling.

The design values of the internal forces (N, M and V ) at each node i under the given loading and
load combinations are calculated by a linear elastic analysis of the arch, idealizing it as an assembly
of short, linear segments.

3. Optimum box section

For a typical box section, the total cross sectional area A is

(9)

Following the same procedure of Azad (1978) for finding the optimum depth of a symmetrical I-
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beam for a given area A and a prescribed tw which maximizes S, it can be shown that for a box
section, the optimum depth  for maximum s is

(10)

and the corresponding values of Af and S are

(11a)

(11b)

Thus, for a given area A and web thickness tw, the value of elastic section modulus S of a
symmetrical box section reaches its maximum when the total flange area equals 25% of the total
area A.

For a chosen web thickness tw, the interaction equation, Eq. (4), can be written for a fully stressed
case as

(12)

Multiplying both sides by Ad and using the values of Af and S from Eq. (11), the following
quadratic equation in optimum depth  is obtained.

(13)

The required value of  from Eq. (13) is then

(14)

when a = 8tw/3, b = P/Fa and c = 4M/Fb. The value of  at each node i can be determined from
Eq. (14) for a chosen value of tw using the absolute values of N and M computed at the section.

4. Method of solution

The optimization procedure begins with an initial admissible design by using the maximum
permitted value of h and the minimum acceptable web thickness tw. The arch is idealized as an
assembly of n straight segments of equal length and the maximum design values of N, M and V at
each node are calculated from a linear structural analysis of the discretized arch, using applicable
load combinations.

At each nodal point i, two values of web depth di are calculated: one from Eq. (14) to account for
the interaction of N and M and the other value which satisfies the shear requirement of Eq. (7). The
larger of the two values constitutes the required minimum value of di. The web profile thus obtained
varies linearly from node to node, a shape which is unsuitable for a practical design. The irregular
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web must be altered to yield a smooth curved profile, both at the top and bottom of the web. For a
smoothened profile, a parabolic curve has been adopted to provide a harmonious match with the
mid-surface parabolic geometry of the arch.

The smoothening of web profile is achieved by a least-square curve fitting of data points at the
top (+di/2) and at the bottom (−di/2) (Mohdaly 1997), using different parabolic forms and ensuring
that di satisfies the constraint of Eq. (7). For this smooth web, the required flange areas for each
segment are then calculated by satisfying Eq. (4), considering the critical node of the segment. In
those segments where the depth of web dictates a small or no flange area, the minimum flange area,
assumed 10% of the cross sectional area in this study, is provided.

As the flange areas would, in general, vary from segment to segment of an arch, the flange plate
cut-off points must be reduced to minimize cost. The optimum locations of a prescribed number of
flange cut-offs are determined by minimizing the flange weight which is expressed as

(15)

In Eq. (15), Afk is the area of flange plate of length Sk and m is the preassigned number of
different flange plates (number of cut-offs plus one). This minimization of Wf is achieved by a
dynamic programming to determine the optimum values of Sk (Taha 1976). 

The furnished design thus achieved represents the optimum solution for the chosen h, tw and a
preselected number of cut-off points. By incrementally reducing the value of h for each tw and then
repeating the search with the next higher available tw, the global minimum weight design is
achieved in the manner described below.

4.1. Iterative steps

The step-by-step procedure to find the optimal design is given below.
1. The sequential search of the optimum design begins with the specified maximum value of h and

the minimum acceptable value of tw. The initial design values of N, M and V are computed at
each node of the discretized parabolic arch for the prescribed loading, assuming a hypothetical
uniform cross sectional area for the entire arch.

2. For the computed design forces, the depth of web at each nodal point is determined from Eq. (7)
or (14) whichever yields the larger value. The web profile at top and bottom is then smoothened
by the best-fitting parabolic shapes, ensuring the requirement of Eq. (7).

3. For the smoothened web profile, the required flange area for each segment is then calculated by
satisfying Eq. (4). Through a dynamic programming, the required flange areas are then reduced
to the number corresponding to the specified number of curtailments.

4. Using the properties of the designed arch in step 3, the structure is reanalyzed and steps 2-3 are
repeated to seek a convergence in calculation of forces. As the convergence is rapid, only two or
three cycles of structural reanalysis and redesign are needed. The total weight of the arch for the
final design is calculated.

5. The optimum rise is then searched iteratively by gradually decreasing the value of h in small
steps and repeating steps (1-4), until the minimum weight of arch is attained. This least weight
design corresponds to the chosen value of tw.

6. For the global minimum design, the web thickness tw is then increased to the next available plate

Wf =ρ
m

k 1=
∑ Afk Sk⋅
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thickness and steps 1-5 are repeated to obtain a new design corresponding to the new web thick-
ness. If this design yields lower weight than the previous design, the iteration is continued with
increased tw until the least weight is reached. The final design produces the optimum value of h,
tw, the web profile and the length and area of the flange corresponding to the prescribed number
of curtailment.

A generalized computer program POPSAR (Mohdaly 1997) is written based on the proposed
algorithm to readily obtain the optimal design of a symmetrical parabolic arch in accordance with
the ASD method of the AISC (1989) specification. The algorithm yields practical design and as the
search follows a unidirectional path, the minimum weight design for a chosen tw is reached in a
descending path without a local minimum.

5. Results

Mohdaly (1997) has presented solutions of several arch problems using uniformly distributed and
concentrated loadings for both fixed and pin-ended arches. Three hypothetical cases of arch design
are presented here to demonstrate the applicability of the proposed method and to highlight some
interesting observations pertaining to design.

Case 1: A hinged arch subjected to uniformly distributed loading of full length (Fig. 2)
The following data is assumed: span L = 100 m, h is limited by 10ú hú 80 m; w = 100 kN/m;

web thickness, 15ú twú 25 mm; modulus of elasticity of steel = 200 GPa, yield stress = 248 MPa,
allowable compressive stress Fa = 100 MPa, allowable bending stress Fb = 150 MPa and the
maximum width-thickness ratio, d/tw = 100.

The weight of the arch, nondimensionalized as Wi/Wo where Wi is the weight of arch at hi and Wo

is the weight corresponding to the optimum ratio of h/L for the least weight design, is plotted
against h/L in Fig. 3 for tw = 15 mm to show the variation in the arch weight. The plot shows that
the minimum weight for this case is attained at a ratio of h/L = 0.41 for tw = 15 mm. 

The arch in this example is subjected to pure compression only and, for this case, Prager and

Fig. 2 A hinged arch subjected to uniformly distributed loading
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Rozvany (1979) have mathematically derived an optimum ratio of h/L = 0.433. The proposed
numerical technique for the optimum design yields almost the exact value of h/L. The plot also
reveals that a parabolic arch having h/L ratios in the range of 0.35-0.45 is acceptable for an
economical design, as the weight is insensitive in this region. 

The required depth profile from Eqs. (7) and (14) in this case automatically yields a smooth curve
(Fig. 3), as the arch is acted upon by only axial compression which is given as H/cos θ where H is
the horizontal thrust and θ is the angle between the tangent of the arch and the horizontal x-axis.
However, if a parabolic depth profile is chosen instead of the exact trigonometric shape of Fig. 3,
the resulting weight increases only by about 4%.

In order to verify the independency of the optimum h/L ratio on the span L, several designs were
performed varying spans from 50 m to 200 m. The variations of the total weight of the arch shown
in Fig. 4 show that the optimum ratio h/L is indeed a constant at around 0.41. Fig. 4 also shows that
the total arch weight is relatively insensitive to h/L values within the range of 0.3-0.5 for short span
arches. As the span increases, the weight function depicts a more well defined minimum weight and
hence the optimum h/L.

Case 2: A hinged arch subjected to uniformly distributed loading on the middle third span (Fig. 5)
Using the same structural data of Case 1 and four flange plate cut-offs for this example, the plot

of total weight versus h/L ratio is shown in Fig. 6. The optimum ratio of h/L in this case is 0.207
for tw = 18 mm. The reason for this sharp decrease in optimum h/L from Case 1 is that the arch is

Fig. 4 Arch weight for different spans for Case 1

Fig. 3 Plot of arch weight versus h/L ratio for Case 1
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now subjected to bending moment in addition to axial compression. To show the variation of the
optimum weight with the web thickness tw, Fig. 7 is plotted for tw = 8 to 30 mm. Results show that
the thickness of the unstiffened web has a profound impact on the total weight and it must be
searched carefully to find the optimum design.

Fig. 7 Variation of arch weight for different values of tw (tw in mm)

Fig. 5 A hinged arch subjected to uniformly distributed loading over the middle-third span

Fig. 6 Plot of arch weight versus h/L ratio for Case 2
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For Case 2, different spans and different local intensities other than w = 100 kN/m were
investigated to observe their influence on optimum h/L ratio. The results (Mohdaly 1997) show that
the optimum h/L ratio remains almost unchanged, making it practically invariant with the span and
the load intensity.

Case 3: A fixed arch subjected to uniformly distributed loading on the middle third span (Fig. 8)
Using the same data of Case 2, the nondimensionalized total weight Wi/Wo of arch is plotted as a

function of h/L in Fig. 9. The optimum h/L ratio in this case equals 0.215 with tw = 18 mm. Fig. 10
shows the variation of the arch weight with h/L ratio for three different span lengths, L = 50 m, 100 m
and 150 m to show the influence of L on the optimum h/L value. Results show that unlike Case 2,
the optimum h/L marginally varies and lies within the range of 0.17 to 0.215. 

The optimum web depth profile captured in Fig. 11 by plotting di/dc, when di is the depth at node
i and dc is the depth at the midspan, shows that the web has a much flatter profile. As the bending
moment diagram for this case has multiple inflection points, fluctuating from positive to negative,
the required depth di becomes highly irregular. The smoothening of the profile results in a much
flatter shape than those encountered in arches with both ends hinged.

Fig. 9 Plot of arch weight versus h/L ratio for Case 3

Fig. 8 A fixed arch subjected to uniformly distributed loading over the middle-third span
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The study reveals two interesting observations which are of great interest:
(a) The weight of a parabolic arch is relatively insensitive in the vicinity of the optimum h/L, which

permits the use of a broader range of h/L for an economical design;
(b) As the loading on a parabolic arch departs from the case of a uniformly distributed load over

the entire length L, it produces bending of the arch and consequently the optimum h/L is always
less than 0.41. It can therefore be concluded that the case of uniformly distributed loading over
L which produces uniform compression in the arch represents the extreme case of the optimum
value of h/L which is largest at 0.41. Any other loading on the arch (partially distributed or
concentrated loading) would yield the optimum h/L value less than 0.41. In other words, the
optimum value of h/L decreases as the arch is subjected to bending moment.

6. Conclusions

An optimization procedure has been prescribed for the minimum weight design of symmetrical
parabolic steel box arches subjected to arbitrary loading. The sequential search method determines
the optimal geometrical configuration of the arch within the feasible design space by seeking a
smooth parabolic, unstiffened web of variable depth and the optimum lengths and the area of flange
plates corresponding to the prescribed number of flange curtailments. Based on this study, the

Fig. 10 Arch weight for different spans for Case 3

Fig. 11 Plot of optimum depth profile



180 Abul K. Azad and Hani M.M. Mohdaly

following conclusions are drawn with regard to symmetrical box-shaped parabolic arches:
1. The design variables which significantly affect the arch weight are the ratio h/L and the web

plate thickness.
2. For a parabolic arch subjected to uniformly distributed loading over the full length L (the case of

pure compression in arch), the optimal h/L ratio is in the vicinity of 0.41. The weight of arch is
insensitive to h/L in the neighbourhood of this optimum, and this permits the use of a broader
range of h/L, say 0.35 to .50, for an economical design.

3. For any loading other than the uniformly distributed load over the whole span, the optimum h/L
is less than 0.41.

4. For an arch with both ends pinned subjected to a uniformly distributed loading over a central
length εL (εú 1), the optimum h/L is invariant to the load intensity and span L. However, for a
fixed-end arch, the same is not true.
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