Structural Engineering and Mechanics, Vol. 9, No. 1 (2000) 99-110 99
DOI: http://dx.doi.org/10.12989/sem.2000.9.1.099

Geometrically nonlinear analysis of laminated composites
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Abstract. The objective of this paper is to extend the use of the improved degenerated shell element to
the linear and the large displacement analysis of plates and shells with laminated composites. In the
formulation of the element stiffness, the combined use of three different techniques was made. This
element is free of serious shear/membrane locking problems and undesirable compatible/commutable
spurious kinematic deformation modes. The total Lagrangian approach has been utilized for the definition
of the deformation and the solution to the nonlinear equilibrium equations is obtained by the Newton-
Raphson method. The applicability and accuracy of this improved degenerated shell element in the
analysis of laminated composite plates and shells are demonstrated by solving several numerical examples.
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1. Introduction

The analysis of plate and shell structures has been one of the major research interests for many
structural engineers because of the technological importance of such structures. Quite often these
structures are constructed of laminated composites due to the high specific stiffness and strength of
composite structures. However, the analysis of such structures requires computational techniques
such as the finite element method because the large displacements and rotations constitute a major
part of the overall motion (Madenci and Barut 1994).

A number of different element types have been proposed for the finite element analysis of shell
structures in the past. As for the description of the geometry and kinematics of deformation, the
degenerated shell concept (Ahmad er al. 1970), among others, may be one of the most convenient.
This element adopts the basic assumptions of the shell theory which allow the transverse shear
deformation and the isoparametric representation in the finite element approximation. As such it can
be applied to the finite element modeling of arbitrary shell geometries, and geometrically and
materially nonlinear shell structures without resorting to a particular shell theory (Ramm and
Matzenmiller 1986).
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Although the degenerated shell element seemed to be promising when it was first introduced, the
performance of such elements was found to be rapidly deteriorating as the shell thickness becomes
thin. This problem, known as the shear or membrane locking phenomenon, may lead to unreliable
results in some cases. These phenomena are associated with the over-constraining of the zero
transverse shear strain and the zero membrane strain conditions for thin shells. Recently an
improved degenerated shell element that is free of serious shear/membrane locking and commutable
spurious kinematic mode has been proposed for analysis of isotropic shells undergoing small and
large deflection (Choi and Yoo 1991a, b). In the formulation of these shell elements, several
schemes are simultancously used in a complementary way. These schemes include a modified
version of the assumed transverse shear strain method to overcome the shear locking problems, the
reduced integration of the in-plane strains to alleviate the membrane locking problems, and the
addition of the nonconforming displacement modes to improve the general performance of the
element.

The main objective of this paper is to extend the use of the improved degenerated shell element to
the small and large displacement analyses of plates and shells with laminated composites. The total
Lagrangian approach has been utilized for the definition of the deformation, and the solution to the
nonlinear equilibrium equations is obtained by the Newton-Raphson method.

2. Nonlinear finite element formulation
2.1. Geometry and kinematic equations for shells

In this section, the underlying basic ideas in formulation of the degenerated curved shell element
are described briefly. The geometry of a shell can be represented by the coordinates and normal
vectors of its middle surface as shown in Fig. 1.

In degenerated isoparametric formulation, the displacement field can be expressed in terms of the
nodal unknowns defined at the mid-surface of the element as

u n Mk n
v[=Y NEmME |y, +Y N& mMEh ey
w k=1 W, k=1
mid
where
hy .
bk:E(V3'V3)k (2)

In Eq. (1), n is the number of nodes per element; N(&, n) are the element shape functions
corresponding to the surface §; Ay is the shell thickness at node k; and &, nand  are the curvilinear
coordinates of the point under consideration. The vector vs is constructed from the nodal
coordinates of the top and bottom surface at node k; thus, vy = x[P — xP*, where x; = [x; yi z]". The
unit vectors in the directions of v are represented by v, .

In Eq. (2) v denotes ¥, in the deformed configuration. If the deformation of v5to V;is

described as rotation o around ¥, and B around v, , b, can be rewritten as (Surana 1983)
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Fig. 1 Coordinate systems in degenerated shell element
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The Green-Lagrangian strain vector can be determined from the displacement field using the

strain-displacement relations as

e=¢"+ ¢t

“)

where €% and €” are, respectively, the linear and nonlinear parts of the Green-Lagrangian strain

vector, and defined as

®)
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Then, £° and £ can be represented in matrix form as
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where H is a constant matrix and

CE. 0 0]

0 E; 0
L 1 T T 1
== , . =_A
£=5| E; E; 0 |E=3AE

EL 0 E.

| 0 El E; |

in which A is dependent on the nodal degrees of freedom vector u.
Using above Eq. (4), the variations of linear and nonlinear strains can be written as

de=de’+ de= HJE + AdE

where
dE = Gdu

Therefore
de=Bdu

where

(6)

(7)

8)

©)
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B=B"+B"=[H+A]G (14)
2.2. Discretized equilibrium equation

The discretized equilibrium equations for the structure are derived via the virtual work expression
which, in its finite element total Lagrangian form, can be written as

¥=R-| B'oc dV=R-P (15)

v
The residual ¥ can be visualized as the nodal forces required to bring the assumed displacement
pattern into nodal equilibrium. R is the equivalent nodal force vector due to exterior loads. Since
Eq. (15) cannot be solved directly for deflection u, we derive an incremental equation of

equilibrium from Eq. (15) and set up an iterative procedure for its solution.
Taking variation of Eq. (15)

d¥=dR-| B'do dV-| dB"c dV (16)
14 14

=dR~| B'do dV-| G'dA"o dV-| dG'[H +A) o dV
14

where
| B'do dv=| B'DB dVdu=Kdu (17a)
v v
| G'dA'o dv=| G'SG dVdu=K,,du (17b)
Vv v
_[VdGT[H +A 0 dV=K,du (17¢)
where
Gx'I Tx'y'I Tx':'I 1 0 0
S=|1..] od 7,1, I=|0 10 (18)
T, T 0 001

Thus the incremental form of the equilibrium equation given by Eq. (15) can be written as
dW=dR—-|K,+ K, + K ,|du=dR—K du (19)

where K7 is the symmetric tangent stiffness matrix.
2.3. Material modeling

The shell structures under consideration may have laminated material construction, whereby each
layer can be an orthotropic material with a given orientation as shown in Fig. 2. Each lamina or ply
of the laminate may have different material properties and different ply angles. The stress-strain
relationship of the i-th layer with respect to the local coordinate system is expressed as

do=D*de (20)
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Fig. 2 Geometry of laminated shell element

where D* is elastic constant matrix. Since the shell is assumed to be relatively thin, the stress
component normal to the middle surface can be ignored (Panda and Natarajan 1981, Kim and Lee
1992). Tt is obvious that the elasticity matrix is dependent on fiber orientation and in general is
different for each lamina.

In this paper, the term “composite” is used to denote a material system made up of one or more
than one material in the form of layers stacked on top of each other. Each material may possess
either isotropic or orhtotropic properties, which are assumed to be uniform throughout the
continuum of the material. The bonding of layers is assumed to be perfect and no slippage is
considered.

The objective of this paper is to extend the use of an improved degenerated shell element
presented by author (Choi and Yoo 1991a) to the small and large deflection analysis of laminated
composites. In this analysis, a simple numerical integration of thickness is adopted for the treatment
of layer stacking effect. The integration of the stiffness matrix is performed for each layer to capture
its material property. This is achieved by modifying the variable { to ; in any i-th layer such that ¢
varies from —1 to 1 in that layer. The integration over the shell thickness direction is achieved by
summing up the contribution of each layer (Panda and Natarajan 1981), such that

k=¥ JIf 1/ ouids anag @
i=1

and n/ is the total number of layers in the shell numbered from the bottom § = —1; | J | is Jacobian
determinant; £ is total thickness of shell; and 7 is i-th layer thickness.
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3. Improved degenerated shell element formulation

The reduction in the order of integration in computing the stiffness matrix of an isoparametric
element may eliminate some of the extraneous shear and membrane strains imposed by the
displacement constraints and results in obtaining some improvement in the element behavior
(Zienkiewicz et al. 1971). It is observed, however, that some of the reduced integrated elements
have deficiencies. An 8-node reduced integrated element may produce the shear locking phenomena
in plate bending problems below a certain thickness-length ratio, and the 4-node and 9-node
elements of the Lagrangian family display the undesirable compatible/commutable spurious zero (or
low) energy modes (Parisch 1979).

Another way to improve the basic accuracy of the isoparametric element is by substituting
assumed transverse shear strain fields (Dvorkin and Bathe 1984). In this paper, the modification of
the technique for a quadratic element has been suggested. The basic form of displacement field is
modified by the addition of nonconforming displacement mode bar Ns to translational d.o.f. in the
8-node serendipity element whereas the previous studies were based on either 8-node, or 9-node
Lagrangian formulation (Huang and Hinton 1986). Therefore, the substitutional transverse shear
strains should be taken as polynomials of at least the same degrees (Choi and Yoo 1991a) as those
of a 9-node Lagrangian element.

One of the main causes of inaccuracies in the solutions obtained by the isoparametric elements is
their inability to represent certain simple stress gradients. The technique improves the basic
accuracy of the isoparametric element by eliminating the excessive strain through the addition of

N,

Fig. 3 Nonconforming displacement modes
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nonconforming displacement modes (Choi and Schnobrich 1975, Choi et al. 1998).
The possible nonconforming displacement modes to be added to the quadratic serendipity element
are suggested by Choi and Schnobrich (1975) (see Fig. 3).

Ni=E(1-8), No=n(1-n) (22)
Ni=én(1-&), Ne=n(l-n), Ns=(1-&)(1-1)

The additional modes are so selected that they have zero values at each node and eliminate the
undesirable constraints present in the original isoparametric shapes.

The general form of the displacement field in the degenerated shell element of a previous work
(Choi and Schnobrich 1975) was formed by adding nonconforming modes in Eq. (22) selectively to
the original displacement of the element. With five nonconforming modes added selectively to mid-
surface displacement components (u, v, w), the displacement field can be compactly expressed as

8 5
U=Y Nu+ N, (23)
i=1 i=1

Note that the additional degrees of freedom #; are interpreted as the amplitudes of the added
displacement modes rather than physical displacements at nodes. The resulting stiffness matrix has
been enlarged over the original shell element because of the unknowns corresponding to the
additional modes. The augmented stiffness matrix can be condensed back to the same order as the
original element stiffness matrix.

The above concepts were extended to develop a new shell element (Choi and Yoo 1991a, Choi et
al. 1998) that is further improved by the combined use of above techniques in complementary way,
i.e., overcoming the shear locking problem by substituting the shear strain fields, avoiding the
membrane locking behavior by reduced integration, and improving the element performance by
adding nonconforming displacement modes. In this paper, the application of this shell element was
extended to the small and large displacement analysis of shells constructed with laminated composites.

Separating the overall element stiffness into the in-plane stiffness (i.e., the combined membrane
and bending effects) and the transverse shear stiffness, the shear strains are interpolated from the
values at certain sampling points to eliminate the shear locking problems and the in-plane stiffness
is computed with reduced integration in order to avoid the membrane locking problems. All five
nonconforming displacement modes are then added to the element stiffness components to improve
the overall performance of the element. In the evaluation of shear stiffness of an element, the 2x3/
3x2 integration is used while the in-plane stiffness is computed with the reduced integration order
(2x2 integration).

The relationship between the displacement derivatives and displacements is expressed in the
following form.

G s [ Gy
f}zmz F’}du (24)
G, =1 |Gy

8
dE=Gdu,= 2 {
i=1
where the vectors du and dii are defined as du = [du dv dw da dB", du=[du dv dw 0 0]". In
Eq. (24), the matrix G; contains the incremental in-plane displacement derivatives, G, the
incremental substituted shear displacement derivatives, Gf, G, the incremental displacement
derivatives related to nonconforming displacement modes, and u is additional degrees of freedom
corresponding to the nonconforming displacement modes.
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4. Numerical Examples

The results obtained for several sample problems are compared with other elements such as QSR
(Zienkiewicz et al. 1971) which is an 8-node isoparametric element with fully reduced integration.
The resulting non-linear equilibrium equations are solved by the Newton-Raphson method. The
iteration was terminated when the Euclidian norms of incremental degrees of freedom vectors
became less than 10~ times the Euclidian norms of total degrees of freedom vectors.

4.1. Cross-ply laminated plate under uniform loading

In the analysis of laminated composite plates, cross-ply laminates have been given considerable
attention. The cross-ply lay-up is a special case of the general angle-ply layer arrangement. If each
layer of a laminate is orthotropic, the laminate exhibits orthotropic property as an whole.

A nine layers cross-ply symmetrically laminated square plate is considered here. The detail lay-up
is (0/90/0/90/0/90/0/90/0), where the numbers indicate the fibre orientation for each layer and they
are in degrees. The thicknesses of 0° and 90° layers arc the same. The simply supported and
clamped square plate subjected to a uniformly distributed pressure ¢ is analyzed to test the
performance of the present improved degenerated shell element for laminated composite analysis.
The following geometric and material parameters are used: 5 =10 in, h=0.021n, E, = 3.0x10 psi,
E,=0.75x10° psi, Gy, =0.45x10° psi, Gy3= Ga3 = 0.375x10° psi, and v =0.25. Owing to symmetrical
conditions that the problem has, one quarter of the laminated plate is modeled. Results are
compared with a solution adopted by Wang (1995). A rapid convergence of the solutions by the
present element is apparent for this problem as shown in Fig. 4.

4.2. Angle-ply (+6) laminated plate under uniform loading

The next example problem considered is a 2 layer laminated plate lay up (+6). The simply
supported square plate is subjected to a uniformly distributed pressure g and analyzed to test the
performance of the present improved degenerated shell element for laminated composite analysis.
Entire plate is modeled by NxN mesh because of the existence of the fiber-orientation-induced
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Fig. 4 (a) Convergence characteristics for central deflection of layered plate (simply supported),
(b) Convergence characteristics for central deflection of layered plate (clamped)
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Fig. 5 Convergence characteristics for central Fig. 6 Load-deflection for 4 layer (0/90/0/90)
deflection of layered plate (+0) clamped plate in large deformation

bending and stretching coupling which eliminates the usual x-y plane symmetries. The following
geometric and material parameters are used; b=10in, h=0.02in, £, = 40%10° psi, E,= 1.0x10° psi,
Gy = Gy = 0.5x10° psi, v=0.25. The convergence was studied by modeling the whole square plate
with the varying angie of 6. Results will be compared with a series solution adopted by Spilker
(1982). A rapid convergence of the solutions by the present element is apparent for this problem as
shown in Fig. 5.

4.3. 4 layer (0/90/0/90) clamped plate for large deformation

The problem under consideration in this example is the large deformation of a 4 layer (0/90/0/90)
clamped plate under uniformly distributed load. The following geometric and material parameters
are used: L=12 in, h=0.096 in, E;=1.828x10° psi, E,= 1.832x10° psi, Gj»= Gi3= Gy = 0.3125x10°
psi, and v=0.23949. Because of the symmetry of the structure, only a quarter of the plate is
modeled with 44 mesh. Fig. 6 shows the vertical deflections at the center of the plate under
increasing uniformly distributed load and the comparison with those obtained by Reddy (1986).

4.4. 3 layer (0/90/0) hinged cylindrical shell for large deformation

The last example problem is a 3 layer cross-ply (0/90/0) hinged cylindrical shell under point load
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Fig. 7 Load-deflection for 3 layer (0/90/0) hinged cylindrical shell in large deformation
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for large deformation analysis. The boundary conditions are such that the curved edges are free
while the straight edges are hinged. The cylindrical shell geometry is shown in Fig. 7. The length of
cylindrical shell is 508 mm and the radius of curvature is 2540 mm. The total angle specifying the
width is 0.2 radian and the thickness of shell is 12.6 mm. Each lamina has the properties
E =3.3GPa, E;=1.1 GPa, G, = 0.66 GPa, G,; =0.44 GPa and v=0.25. A quarter of the shell is
modeled with a 4x4 mesh because of the symmetry of the structure. In Fig. 7, the numerical results
obtained for the deflection at the center of shell are compared with those obtained by Madenci
(1994) and Yang (1986). Good agreements between the results are observed for this problem.

5. Conclusions

This paper is concerned with the linear and geometrically nonlinear analysis of laminated composite
shell structures using an improved degenerated shell clement. The present shell elements are based
on the degenerated shell element which has been improved by the combined use of three different
techniques in complementary way. These schemes include a modified version of the assumed
transverse shear strain method to overcome the shear locking problems, the reduced integration of
the in-plane strains to alleviate the membrane locking problems, and thc addition of the
nonconforming displacement modes to improve the general performance of the element.

The results of numerical examples demonstrate the applicability of the present approach in modeling
the linear and large deformation behavior of laminated composite plates and shells. The element
derived for nonlinear analysis of laminated composite shells is based on a total Lagrangian
formulations for arbitrarily large displacements and rotations. Numerical examples show that the
present approach is capable of modeling composite thin plates and shells of arbitrary geometry and
give good results for laminates.
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