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Abstract. An accurate and efficient shell element is presented. The stiffness of the shell element is
decomposed into two parts with one part corresponding to stretching and bending deformation and the
other part corresponding to shear deformation of the shell. Both parts of the stiffness are calculated
with reduced integration rules, thereby improving computational efficiency. Shear strains are averaged
on the reference surface such that neither locking phenomena nor any zero energy mode can occur.
The satisfactory behaviour of the element is demonstrated in several numerical examples.
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1. Introduction

Over the last two decades, extensive research work has been devoted to the developments of
shell element with great achievements (Belytschko 1981 to Zienkiewicz 1977). Despite that fact,
further developments on this area are still desirable. A common numerical deficiency encountered
in shell finite elements is the transverse shear locking phenomenon. The locking phenomenon
becomes more and more pronounced as the thickness of the element becomes smaller and smaller.
An efficient way to overcome the locking phenomenon is to use reduced integration rules to
calculate the element stiffness matrix as discussed in literatures (Zienkiewicz 1977, Hughes 1987,
Cook 1981, and Zienkiewicz 1971). Reduced integration rules are also used to improve
computational efficiency. While reduced integration rules do solve the locking problem and
improve computational efficiency, they may cause numerical disasters, i.e., zero-energy modes or
hourglass modes. To cope with zero-energy modes introduced by the reduced integration
technique, a lot of researches have been done. For instance, in earlier papers, Belytschko et al.
(1981, 1983, 1984) and Liu et al. (1985) have developed reduced integration shell elements by
embedding the hourglass control. The main process of hourglass control has been constructed by
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introducing parameters for artificial damping and artificial stiffness. Recently, Belytschko and co-
workers (1994) developed a 4-node quadrilateral reduced integration shell element. An assumed
strain method was used to stabilize the zero energy modes. Vu-Quoc (1989) developed a series of
rank one perturbations on the stiffness matrix to filter the spurious zero energy modes. In Vu-
Quoc (1990), this method was intended for dynamic analysis. The method consisted of a
perturbation of the under integrated stiffness matrix to fully compensate its rank and a projection
of the mass matrix to nullify the generalized mass of some spurious modes. In this paper, efforts
are made to introduce new reduced integration rules which solve the locking problem and
improve computational efficiency but does not introduce any zero-energy mode. This integration
technique is based on the cross reduced integration technique described by Zhong (1991). The
element integration carried out in this paper is, however, different from that in Zhong (1991). In
the following, the element stiffness will be decomposed into two parts. The first part is associated
with the stretching and bending deformation and is integrated along the central fiber of the
element. The second part is associated with the shear deformation and is integrated both on the
reference surface and the central fiber of the element. Shear strains on the reference surface are
averaged such that neither the locking phenomenon nor any zero energy mode can occur.

2. Shell element formulation

2.1. General formulation

The shell element formulation is based on the well-known definition of laminas and fibers, and
will basically follow the procedures as described by Hughes (1987). Only four-node bilinear shell
elements are considered. Small displacements and elastic materials are assumed for the elements.
Since the shell element formulation is standard and is well known, some details will be skipped in
the following. For further details of the shell formulation, readers are refered to Hughes (1987).

In this shell formulation, two local coordinate systems are used. These two coordinate systems
are the so-called fiber coordinate system and lamina coordinate system. The base vectors in a fiber
coordinate system are denoted by v, v, and v;. The base vectors in a lamina coordinate system are
denoted by e,, e, and e; as shown in Fig. 1.

The geometry of the element at any deformed state can be defined as follows:

=SNG M+ LEYNE e 0

where t, denotes the position vector of a point in the shell element, # the nodal value of ¢, (, 7,
{) the isoparametric coordinates of a point in the element, 4 the thickness at node k, Ni(&, ) the

shape function associated with node &, and #¥, an unit vector at node & in the fiber direction.
The displacement field within the shell element can then be obtained as follows:

W= INE M+ 2L N,(E it @)

where u* is the displacement of node k, and w* is the change of the base vector along the fiber.
Assuming small displacements, we can approximate w* as

wk =— @Fvk 4 gF vt 3)



An accurate and efficient shell element with improved reduced integration rules 593

Reference lamina

Fiber
Fig. 1 A shell element with lamina and fiber

where 6, and 8, are the rotations of the fiber around v,* and v,* respectively.
The geometry and the displacement in the lamina coordinate system can be obtained as

3
X! = ZQik Xk 4)
k=1
3
w' = ZQik Uy ©)
k=1

where u; denotes the displacement component in the lamina coordinate system, and Q, the
transformation matrix defined as follows:

Q=lejezes]” (6)
2.2. Strain-displacement matrix

Define two strain vectors €, and &, in the lamina coordinate system and displacement vector d
as follows:

& =&l &) )
&) =[2€}, 2&3, 2e3,]" ®)
d=[-uk, ub, u, 6f 05, - ©)

where &,' is omitted because its associated normal stress component is conventionally assumed
zero, and

. 1,0u! ou}

g = 5(5;1— + —éj) (10)

From Egs. (2) to (10), it can be found that
& =B.d (11)
g =B,d (12)

where B, and B, are strain - displacement matrices calculated as follows:
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Zy,
Be=\z,, | Hea
Zi,+Z,y,

Z3\+ 244

where

Zij = [Qilrjll, Qilr}z, Qilrjla, Qizrjlh Qi2ﬂ12a Qi2n13: Qi3rjll, Qiarjlza Qisrjl3]
Hy;
Hl,TI
Heg=1H,

H;,
Hl = [Nb 0’ 05 _O'SCNIhIVZD Oschh 1v]1> ]
H2 = [0, Nl’ 0, "O.SCNIh 1V22, O.SCNlhlvlz, ttt ]

H3 = [0, 0, Nl’ —0.5§N1h1V23, O.SCNlh 1V13, ]

(13)

(14)

(15)

(16)

17
(18)
(19)

where I," denotes an element in the inverse of the Jacobin matrix in the lamina coordinate system.

2.3. Element stiffness matrix and reduced integration rules

The element stiffness matrix is then given by the standard finite element formulation, i.e.,

K :ijgcsBedV +er BIC,B,dV =K, +K,
where
K.=[ BIC.B.dV
_(26

KyzijTc B,dv

r~ Py
1 v
cmE_
(1—v2) I:v 1}
(1—)2 0 0
C.,= 0 1-v)/2 0
I K1)

0 0 Kk(1-v)2

(20)

eay)

22)

(23)

(24)
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where K is a shear correction factor and x=5/6.

To improve computational efficiency, the first part of stiffness K, is now integrated with a
reduced integration rule 1X1X (2n+1), n>0, which means a reduced integration along the central
fiber with 2n+1 integration points. Thus, we have

2n+1
KE = 4 Z (B ZCSBSJ )é(] o gi ng (25)

i=1

where (*)g, n, ¢ indicates that the expression in the parenthesis is evaluated at (&, 1o, §) and &=
=0

To evaluate the second part of the stiffness K,, we use a cross reduced integration rule as
described in Zhong (1991). Thus, the strain-displacement matrix is partitioned as follows:

where

Zi,+2Z,;
B, =|Zy3+Zs,| HY, 27)
VATR AR

Zi,tZ,,
B,,=|Zy3+Z5,| HE, (28)
Zy1+2Zy5

Higy = |Hy, ¢ (29)

Héen = H19, ¢ (30)

where
H,, =[N4,0,0,0,0, -] (31)
H2u=[0’N1’070>0,”'] (32)
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H;, =[0,0,N,0,0, -] (33)
H.,=10,0,0,-0.5¢N hlv,, 0.50N vy, -] (34)
H,=10,0,0,-0.5{N h'v,,, 0.5{N 'y, -+ ] (39)
H34=10,0,0,-0.5{N h'v,5, 0.50N By 5, -+ ] (36)

By using the Gauss quadrature, Eq. (22) can be written as
Ky= Z(J.EJ-HB?T’ C,B,d &d Mg W, @37)
i=1

where m denotes the total number of Gauss points in the fiber direction and is chosen to be (2n+
1), i.e., m=2n+1, in our study.
Thus, Eq. (37) can be written as

K,=( j j BT C,JdEd ), Wy, + 22( j j BT C,BJddn), W, (38)

where W, denotes the weigh at { and {,=0.

Now the first integration in Eq. (38) is calculated by using a 2X2 Gauss quadrature and the
second by using a 1 X1 Gauss quadrature, i.e.,

4 2n
Ky: Z(B ;CYBYJ)I' WC() + 42(3 ;CYB},J)% M & WCi (39)
i=1 i=1

where (*), indicates that the quantity * is evaluated at integration point i on the reference lamina
as shown in Fig. 2.

In the cross reduced integration technique, the partition of the B, matrix in Egs. (26) to (36) is
made use of and Eq. (39) is replaced by the following equation:

K,= 2(1? €, B W g+ 4§(B C,B egno s W (40)
where i B
(B)r=10(B )1 + B sl (1+ 0)+[(B)1 +(B o)) 2 (41)
By =[aB 1), + B y1)a)/ (L + D) +[(B )y + (B 2]/ 2 (42)
1N

Fig. 2 Gauss points on the reference lamina
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4 3 4 3
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Fig. 3 Two possible zero energy modes of the shell element

B);=[aB ,1)s + B )1 /(1+ ) +[(B.2)s +(B ,0),)/2 (43)
(_B )a=[0(B 1), + (B e/ (1+0)+[(B et (B 2)]/2 (44)

In Egs. (41) to (44), the parameter o may be considered as a weigh and the shear strains due to
the translational degrees of freedom at integration points 1 and 3 and integration points 2 and 4
are thus averaged with the weight o. If a=1, K, calculated in Eq. (40) will have rank deficiency,
producing two possible zero energy modes as shown in Fig. 3. By setting o> 1, these two zero
energy modes can be removed. Numerical experiences show that it is sufficient to set & > 1.01 to
climinate those two zero energy modes. If ¢ is too big, the element may be too stiff. Suggested
values for & are between 1.05 and 1.20.

Another important consequence of the operations in Egs. (41) to (44) is that the spurious shear
strains due to the rotational degrees of freedom at point 1 and point 3 are averaged and so are the
spurious shear strains at point 2 and point 4. By averaging the spurious shear strains at integration
points 1 and 3 and integration points 2 and 4, the shear strains at these points due to pure bending
cancels each other, thus solving the locking problem. At the same time, no zero energy mode
associated with rotational degrees of freedom is possible. Furthermore, no zero energy mode
associated with translational degrees of freedom is possible. Due to the fact that {=0 on the
reference lamina, the computation work increased by integration on the reference lamina is not so
significant as it would seemingly be the case. Since the total integration points in this reduced
integration technique is in general more than that in the uniform reduced integration along the
central fiber, stresses can be calculated at more locations, requiring more computation work and
more storage space for stress calculation. On the other hand, however, no special zero energy
control algorithm is required. Furthermore, using more integration points (without increasing too
much computational work) can be an advantage from an accuracy point of view, especially for
material nonlinearity analysis.

3. Numerical examples

To demonstrate the behavior of the shell element, some numerical examples are presented in the
following. There are two main purposes in selecting these examples. First of all, the accuracy of
the shell element is to be examined. Secondly, the capability of the element to resist zero energy
modes is to be demonstrated.

3.1. Patch tests

The mesh layout which is used in the patch test is shown in Fig. 4. Two loading cases have
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Fig. 4 Mesh layout for patch test: (a) regular mesh; (b) the first distorted mesh; (c) the last distorted mesh
Young's modulus E=10"" psi and Poisson's ratio v=0.0

Table 1 Stresses along the central fibre in the patch test for 0=1.0

x= 0.100 0.100 0.105 0.110 0.120
y= 0.100 0.1500 0.105 0.110 0.120
Element 1
5 0.6462E+06 0.6462E+06 0.6466E+06 0.6478E+06 0.6478E+06
6 -0.6462E+06 -0.6462E+06 -0.6466E+06 -0.6478E+06 -0.6478E+06
7 0.1087E+07 0.1087E+07 0.1088E+07 0.1090E+07 0.1090E+07
8 -0.1087E+07 -0.1087E+07 -0.1088E+07 -0.1090E+07 -0.1090E+07
Element 2
5 0.6462E+06 0.6462E+06 0.6466E+06 0.6426E+06 0.6274E+06
6 -0.6462E+06 -0.6462E+06 -0.6466E+06 -0.6426E+06 -0.6274E+06
7 0.1087E+07 0.1087E+07 0.1088E+07 0.1081E+07 0.1056E+07
8 -0.1087E+07 -0.1087E+07 -0.1088E+07 -0.1081E+07 -0.1056E+07
Element 3
5 0.6462E+06 0.6462E+06 0.6466E+06 0.6401E+06 0.6162E+06
6 -0.6462E+06 -0.6462E+06 -0.6466E+06 -0.6401E+06 -0.6162E+06
7 0.1087E+07 0.1087E+07 0.1087E+07 0.1077E+07 0.1037E+07
8 -0.1087E+07 -0.1087E+07 -0.1087E+07 -0.1077E+07 -0.1037E+07
Element 4
5 0.6462E+06 0.6462E+06 0.6462E+06 0.6512E+06 0.6664E+06
6 -0.6462E+06 -0.6462E+06 -0.6462E+06 -0.6512E+06 -0.6664E+06
7 0.1087E+07 0.1087E+07 0.1087E+07 0.1096E+07 0.1118E+07
8 -0.1087E+07 -0.1087E+07 -0.1087E+07 -0.1096E+07 -0.1118E+07

been considered. First, a uniformly line-distributed moment is applied along line BD. Different
coordinates have been assigned to the middle node to get different distortion of the mesh as
shown in Fig. 4. Furthermore, the parameter o is varied to check its effects on patch test. The
results of the tests are shown in Table 1 for a=1.0 and Table 2 for a=1.1. In Table 1 and Table 2,
number 5, 6, 7, 8 refer to Gauss points along the central fiber with { equal to &, +,, -G, +&,,
respectively, where {,<{,. We can see that the stress distribution corresponds exactly to a
constant bending deformation for the regular mesh and the first distorted mesh. The coordinates of
the central node in the first distorted mesh are (0.1, 0.15). For other distorted meshes. The stress
distribution deviates slightly (from 0.4 to 7 percent) from that due to a constant bending
deformation. The parameter ¢ has little effect on the results. In all the cases, the nodal forces
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Table 2 Stresses along the central fibre in the patch test for a=1.1

x= 0.100 0.100 0.105 0.110 0.120

y= 0.100 0.1500 0.105 0.110 0.120
Element 1

5 0.6462E+06 0.6461E+06 0.6464E+06 0.6472E+06 0.6460E+06

6 -0.6462E+06 -0.6461E+06 -0.6464E+06 -0.6472E+06 -0.6460E+06

7 0.1087E+07 0.1087E+07 0.1088E+07 0.1089E+07 0.1087E+07

8 -0.1087E+07 -0.1087E+07 -0.1088E+07 -0.1089E+07 -0.1087E+07
Element 2

5 0.6462E+06 0.6461E+06 0.6451E+06 0.6419E+06 0.6256E+06

6 -0.6462E+06 -0.6461E+06 -0.6451E+06 -0.6419E+06 -0.6256E+06

7 0.1087E+07 0.1087E+07 0.1087E+07 0.1080E+07 0.1053E+07

8 -0.1087E+07 -0.1087E+07 -0.1087E+07 -0.1080E+07 -0.1053E+07
Element 3

5 0.6462E+06 0.6461E+06 0.6446E+06 0.6398E+06 0.6157E+06

6 -0.6462E+06 -0.6461E+06 -0.6446E+06 -0.6398E+06 -0.6157E+06

7 0.1087E+07 0.1087E+07 0.1085E+07 0.1077E+07 0.1036E+07

8 -0.1087E+07 -0.1087E+07 -0.1085E+07 -0.1077E+07 -0.1036E+07
Element 4

5 0.6462E+06 0.6461E+06 0.6471E+06 0.6502E+06 0.6611E+06

6 -0.6462E+06 -0.6461E+06 -0.6471E+06 -0.6502E+06 -0.6611E+06

7 0.1087E+07 0.1087E+07 0.1089E+07 0.1094E+07 0.1113E+07

8 -0.1087E+07 -0.1087E+07 -0.1089E+07 -0.1094E+07 -0.1113E+07

(moments) of the internal node are zero. Note that the distortion of the element is quite large in
the first and the last distorted mesh layouts.

Next, a uniform line-distributed force is applied along BD in the x,-direction. The stress field
calculated is constant and the same for all mesh layouts. The results are independent of the value
of a.

3.2. Deformation of a simply supported beam

In this example, we consider the deformation of a simply supported beam. The geometry and
material data of the beam are shown in Fig. 5a. Various mesh layouts shown in Fig. 6 are used to
test the behavior of the element. With these mesh layouts, the ratio between the element size and
its thickness ranges from 25 to 5. Two load cases are considered. In the first case, a line
distributed force is applied at the middle of the beam, see Fig. 5a. In the second case, a line
distributed moment is applied at the middle of the beam, see Fig. Sb. The results are plotted in
Fig. 7 and Fig. 8, which show good performance of the element. From the figures, it can be seen
that even the 2X4 mesh gives good approximations of the deflection of the beam. The results
suggest also that the shear locking phenomena are effectively eliminated.

To examine the ability of the element to resist zero energy modes, the beam is now supported
and loaded as shown in Fig. 9. The boundary condition and load condition are designed such that
zero energy mode associated with translational degrees of freedom may be easily occurred. The
beam is modeled by using 2X 10 mesh. With a uniformly reduced integration, a typical zero
energy mode of the beam is shown in Fig. 10. With the cross reduced integration technique, the
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Fig. 5 Deformation of a simply supported beam (Beam length L=1m, width H=0.1m, thickness 4=0.01m,
Young's modulus £=200Gpa and Poisson's ratio v=0.3)

2x4 mesh

2 x 10 mesh

2 x 20 mesh

Fig. 6 Deformation of a simply supported beam (Various mesh layouts)

0.006 T T T T T T T T T 0.0025 - T T T T T T T T T -

i 1 0.0020 |- 3

0005 F- e — - ]

G 0.0015 |- =

0. ] - ]

0.0010 |~ -

0.004 |- . - 3

5 J 0.0050 {~ -

0.003 |- N - 0.0000 - 3

i ] -0.0050 -

oo . . — - 3

' B -0.0010 |- —

i O... 2x4 mesh ) | s o... %X 4 mesh E

4 A - . 2x10 mesh ) oooisk. B 2% 10 mesh 3

9001 b /' A. .. 2x20 mesh A\ - I &. .. 2x20 mesh ]

L ——_  analytical N 00020 [ analytical 3

0.000 1 ! X 1 i I I I 0.0025 C L i 1 ] 1 ) ! ! ! ~
0c 0s 10 0.0 05 10

Fig. 7 Deformation of a simply supported beam Fig. 8 Deformation of a simply supported beam
(Deflection of the beam loaded by the line (Deflection of the beam loaded by the
distributed force) line distributed moment)
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Fig. 9 A simply supported beam loaded by uniformly distributed load

Fig. 10 A typical zero energy mode of the beam

Fig. 11 The correction deformation (scaled) of the beam
£ V
v /

/‘ H
[ ——

Fig. 12 A simply supported square plate loaded with a concentrate force (Dimension of the plate H=1,
thickness #=0.01, Young's modulus E=2x 10" and Poisson's ratio v=0.3)

deformation of the beam is as shown in Fig. 11, which shows that the zero energy mode has been
effectively removed.

3.3. Deformation of a simply supported square plate

In this example, a simple supported square plate subjected to a concentrated force at its center
is considered. The problem is depicted in Fig. 12. Three different mesh layouts, i.e., 4 x4, 10X 10
and 20X 20 meshes, are used. Again, the ratio between the element size and its thickness ranges
from 25 to 5. The maximum deflection of the plate calculated by using these meshes are plotted
in Fig. 13, where the analytical solution is also presented.

To study the effect of the parameter ¢, the maximum deflection of the plate, simply supported
or corner supported, is calculated with a 10X 10 mesh and various values for . The results are
shown in Table 3. It can be seen that the solution is not so sensitive to « when o is within the
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Fig. 13 Maximum deflection of the plate with various mesh layouts
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Fig. 14 A corner supported square plate loaded by a uniformly distributed load

Table 3 Deflection of the square plate with different boundary
conditions and different values for parameter o

Simply supported Corner supported

o Winax o Wnax
0.00001 -0.61662E-02
0.00010 -0.61654E-02 0000.05 -0.16543E-02
0.00100 -0.61679E-02 0000.10 -0.16533E-02
0.01000 -0.61681E-02 0000.50 -0.16236E-02
0.10000 -0.61156E-02 0001.00 -0.15998E-02
0.20000 -0.59766E-02 0010.00 -0.15581E-02
0.50000 -0.53547E-02 0100.00 -0.15567E-02
1.00000 -0.43534E-02 1000.00 -0.15574E-02

Analytical -0.63333E-02 -0.15900E-02

Zienkiewicz (1977)
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Fig. 15 A comer supported square plate loaded by a uniformly distributed load (Zero energy modes due
to a uniformly reduced integration rule)

Fig. 16 A comer supported square plate loaded by a uniformly distributed load (Deformation of the plate
with the cross reduced integration technique; Displacements are scaled)

X150 g =0.09 k/f?

Fig. 17 A curved shell supported by two rigid diaphragms
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Fig. 18 The vertical displacement of the middle Fig. 19 The displacement in the x,-direction of
section of the shell the shell at the support

range of 1.02 to 1.20 with both boundary conditions.

Let the plate now be supported at its corners loaded by a uniformly distributed load as shown
in Fig. 14. A 10X 10 mesh is used to model the plate. With a uniformly reduced integration rule,
the deformation mode of the plate is as shown in Fig. 15. The correct deformation mode as
shown in Fig. 16 is obtained when the current element is used. The maximum deflection at the
central point of the plate is calculated to be 0.00162 with the present element. The analytical
maximum deflection of the plate is 0.00159, which is calculated according to w,,,=0.0265qL*/D
Zienkiewicz (1977). Again, we sec that zero energy modes are removed and the locking
phenomena are eliminated by using the new reduced integration technique.

3.4. A curved shell supported by rigid diaphragms

Finally, we consider the problem shown in Fig. 17, where a curved shell is supported by two
rigid diaphragms and loaded by its own weight. This has been a popular example used to examine
the performance of shell elements. Due to double symmetry, only one quarter of the shell needs to
be modeled. Three different meshes are used. The vertical displacement in the x;-direction of the
middle section of the shell and the displacement in the x,-direction at the support are shown in
Fig. 18 and Fig. 19, respectively, where the exact solution is obtained by digitizing the curve in
Zienkiewicz (1977). The figures show that the shell element with the cross reduced integration
technique produces quite good results, even with a relatively coarse mesh (4 X 5).

4. Conclusions

By decomposing the stiffness of the shell element into two parts and integrating each part with
different reduced integration rules, the shell element neither locks nor present any zero energy
mode. This same idea can also be implemented in other shell formulations and should also give
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similar results. Further research work on this topic is under way and results will be presented in
forthcoming papers.
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