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Abstract. The response of a reinforced concrete structure to loading is both immediate and time-
dependent. Under a sustained load, the deflections caused by creep and shrinkage may be several times
their instantaneous values. The paper describes a general finite element procedure, based on the so-
called layered model, to analyse reinforced concrete members, and shows in particular how the simple
Step by Step Method may be incorporated into this procedure. By invoking the Modified Newton
Raphson Method as a solution procedure, the accuracy of the finite element method is verified against
independent test results, and then applied to a variety of problems in order to demonstrate its efficacy.
The method forms a general method for analysing highly indeterminate concrete structures in the time
domain.
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1. Introduction

The response of a concrete structure subjected to service loading may be categorised into (i)
short-term deformation and (ii) long-term deformation. The short-term behaviour is the
instantaneous response of the structure under loading. This short-term relationship between the
stress and strain follows the constitutive law that represents the material properties when the
structure is considered over a short period of time. A number of researchers have considered only
the idealised situation where the concrete is linearly elastic, but where the concrete has cracked in
tension. In this situation, the short-term strain is usually called the elastic strain. If long-term
effects are taken into account, the relationship between the total strains and stresses can no longer
be considered as being described by a single constitutive law. This situation requires a nonlinear
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formulation in the time domain.

A very simple but important feature of this viscoelastic behaviour was introduced by Maslov
(1940) and McHenry (1943), who stated that the strain (or stress) due to the sum of previous
stress (or strain) histories is the sum of the individual responses. This statement implies that the
principle of supeiposition is also applicable to aging concrete, which cannot be overlooked in the
study of the long-term behaviour of concrete structures. As a result of this assumption, the so-
called Step by Step procedure proposed by Ghali et al. (1969), Bazant and Najjar (1973), Schade
(1977) and Neville et al. (1983) is used to predict the time-dependent behaviour as a result of the
stress and strain history. Since the method is quite general and accurate in predicting the long-
term strain for concrete members, it is the basic algorithm adopted for the time analysis described
in this paper.

Apart from the Step-by-Step Method, other methods available to predict the time-dependent
strain include the Effective Modulus Method (Faber 1927), the Age-Adjusted Effective Modulus
Method (Trost 1967, Bazant 1972), the Rate of Creep Method (Glanville 1930, Whitney 1932,
Dischinger 1937), the Rate of Flow Method (England and Iliston 1965) and the Improved
Dischinger Method (Nielsen 1970, Rusch et al. 1973). These methods are well-covered in the
texts of Neville et al. (1983) and Gilbert (1988), and so no further attempt will be made to
discuss them here as the present study is restricted to use of the Step-by-Step Method.

The ‘cross-sectional analysis technique assumes that the neutral axis of the stresses remains
unchanged throughout the entire time domain, while restraining forces are calculated using the
well-known relaxation procedure of Bresler and Selna (1964). This is not correct as the stress may
change because of long-term effects. The cross-sectional analysis recognises this fact only when
the restraining forces have been calculated. Therefore, the accuracy of calculating restraining
forces using the cross-sectional method to predict the long-term behaviour is in doubt. Gilbert
(1988) pointed out that a series of iterative numerical procedures are required to trace the
movement of the neutral axis. More recently, Krishna Mohan Rao et al. (1993) used an iterative
technique to update the ‘creep-transformed section in the time analysis, and this technique can
obtain the correct location of the neutral axis.

For the nonlinear analysis of indeterminate concrete structures, the 'layered finite element
analysis' (Bradford, Gilbert and Sun 1999) has been found to be more efficient than the so-called
cross-sectional analysis. The basic criterion in the layered analysis is equilibrium. When
equilibrium is established in the incremental and iterative process, the correct distribution of
stresses and stains at Gaussian quadrature stations along a concrete member is available
immediately. Therefore, in the layered finite element method, it is not necessary to re-calculate
cross-sectional properties or to relocate the neutral axis for a cracked section.

Based on a formulation of stress and strain, the layered finite element method is capable of
calculating the changes in strain and the changes in stress caused by long-term effects. The
relaxation procedure proposed by Bresler and Selna (1964) is a powerful tool for the time analysis
(as it is in the cross-sectional analysis), and is easily incorporated into the layered finite element
method. Because the layered finite element method is stiffness-based, the long-term behaviour of
concrete frames with many indeterminancies can be studied easily. Although Kang (1977) and
Aldstedt and Bergan (1978) used the layered method for concrete frames, the way in which the
stresses and strains were calculated were not alluded to in detail in their papers.

The most important feature of the layered finite element method is that the analysis of concrete
structures under long-term loading can be simulated efficiently. The time-based analysis deploying
the layered model can predict the long-term behaviour of multi-storey concrete frames. This paper
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provides a comprehenswe and systematic algorithm for the tlme -analysis of concrete frames, and
when implemented in the layered finite element method developed by the authors (Bradford,
Gilbert and Sun 1999) produces rapid and accurate solutions. These solutions are first verified
against test results, and then illustrated by a series of examples.

2. The Step by Step Method (SSM) in finite element analysis
2.1. Material properties

The total strain & which depends on the time #, can be expressed as the sum of the
instantaneous strain, creep strain and shrinkage strain as shown in Fig. 1 as follows:

&) =& (o) + &r(t,20) + £4(2) ¢y

where ¢, is the time at first loading. Under a sustained stress o, the instantaneous or short-term
strain £())=0/E(t,), where the modulus of elasticity is obtained from (ACI 1971)

t 12
Ec(ty) =E, yo| — 22— 2
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in which A and B are coefficients which depend on the type of cement and curing conditions and
E. is the tangential elastic modulus of the concrete 28 days after curing. When the stress is
constant the creep strain is given by
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Fig. 1 Stress versus strain relationship in the time domain
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where the creep coefficient ¢ is given empirically by the ACI (1971) as

C(t—to)f

t,tg))=————— 4
e @

which according to Branson et al. (1969) and Meyers et al. (1970) has the empirical form

(t =)
tt)=——2—— u(t 5
o) =15 e 5)
where

$u(tg) = 125t5°18 ¢ (0, 7) (6)

Values of ¢(oo, f) are normally found in design codes. Eq. (6) introduces the concept of aging
(Bazant 1972), where the aging effect decreases the final creep coefficient ¢(oo, #,) as the time of
first loading #, increases. This effect, presented by Distefano (1965) is shown in Fig. 2.

Finally, the shrinkage strain g,(¢) is often expressed in terms of its long-term value €%, (Branson
et al. 1969, Meyers et al. 1970) as

t
d+t Y

where d is 35 for moist curing and 55 for steam curing. Most current standards provide values of
¥, for designers.

It should be noted that the empirical nature of Egs. (2) and (4) to (7) has a marked influence on
the numerical results, as these equations contain a number of parameters whose variation in
predicting solutions by the numerical method developed herein can affect the final time-dependent
response of the structure. The sensitivity of the calculated response of the structure to these
experimentally-determined parameters is important, but is not considered explicitly in this paper as
the focus is on the development of the numerical scheme.

Emn (t) = gsz

2.2. Prediction of creep strain in the SSM

>
>
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Fig. 2 Effect of age at first loading on the creep coefficient (after Distefano 1965)
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Under constant loading, the long-term local stresses within a concrete structure change with
time. These changes in local stresses may be thought of as being brought about by the internal
indeterminacy of the concrete cross-section. Therefore, the change in stress should be considered
when predicting the creep strain. The SSM is a convenient and efficient method that is used in
this paper to predict creep strain due to time-varying stresses. Fig. 3 shows a typical relaxation
time-dependent response of a concrete section subjected to an initial constant stress o, (Neville et
al. 1983).

The initial stress o is first applied at time #, and the stress normally reduces gradually due to
the influence of creep strain. In order to account for the varying stress history, the time domain is
subdivided into small segments. Bazant (1973) suggested that the selected times are best chosen
in the form of a geometric progression, in which time steps are constant in the log(t — #,) scale as
given by

tr =tg+(t1 1) - 10° @®

Bazant also indicated a high accuracy is usually achieved with the first time step set to Ar,=0.01
days and s in Eq. (8) normally ranges from 0.125 to 0.5. The larger the s value, the wider the
time step. Although Bazant (1973) suggested that s be set equal to 0.5, it was found more
convenient in this paper to set it equal to 0.3. It should be noted that care must be taken in the
selection of s in the time analysis if the layered finite element method is used. The selection
criteria is that the time step should not be too wide, in order to avoid the situation where no
restraining forces are found when the relaxation procedure (Bresler and Selna 1964) is used.
However, this situation was only found to occur if shrinkage strains are the major influence in the
long-term response.

With £, At and s given, Eq. (8) provides an automatic process to obtain the next time step
from the current time. The creep strain at any particular time ,,; is expressed by
L Adt(t;)
Lo, Eo) +
415 £0) }Z{ E( )
The first term on the right hand side of Eq. (9) is the creep strain due to the initial instantaneous
strain. The summation on the right hand side of Eq. (9) accounts for the creep strain due to the
changes in stress. This equation demonstrates that the SSM always uses the previous stress history
to predict the current creep strain. It is assumed that the stress variation in each time step acts at
the beginning of the next time step, as shown in Fig. 3.
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Fig. 3 Step-by-step method (after Neville er al. 1983)
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Eq. (9) is suitable for a concrete section which does not crack. In the presence of cracking, it is
more convenient to express Eq. (9) in terms of strains as

Eer (t41) = & (E )Pl 115 1o) + 2 A5 (t; )¢(tr+1’ 1) (10)

where €(t,) and Ag(t) represent the initial instantaneous strain and the changes in instantaneous
strain respectively. This formulation allows for material nonlinearity to be included, in particular
cracking.

The SSM method has been criticised by Bazant (1973) because it is very difficult to store all
the values of the stress (or strain) increments for all the previous time steps and to calculate the
summations in Eqgs. (9) and (10). A very crude estimate of about 100 time steps was advocated.
In normal situations, there are about 25 time steps required to apply Eq. (9) when s is set equal to
0.4. If numerical difficulties are encountered, the solution is cut down to the preceding time step
by reducing the s values. A similar method was used in the arc-length method of iterative analysis
set out by the authors (Bradford, Gilbert and Sun 1999). The writers have encountered no
numerical difficulties in the time analysis when s is set equal to 0.3.

With modern computer hardware, it is not difficult to store the stress (or strain) history for 25
time steps, although if out-of-core memory is used the computing speed is slowed a little to
perform the summations in Eq. (10). However, the undoubted advantage of the SSM is that the
change in position of the neutral axis in a cracked concrete section due to long-term effects is
included in the time analysis. Another advantage of the SSM is that it is especially suitable for
structures built or loaded in several stages, such as a precast segmental box girder bridge.

2.3. Incorporation into the finite element method

In the description of incorporating the time-dependent analysis into the finite element
framework, the familiar mechanical strains will be defined as those strains which generate stresses,
while non-mechanical strains refer to purely time-dependent strains that are not directly related to
stress. Therefore, the total strains during a period of time are the sum of the mechanical and non-
mechanical strains. In the treatment of viscoelastic problems, a nonlinear relationship will
generally exist between the total strains and stresses, even if the instantaneous stress-strain
relationship is assumed to be linear. Because of this, in the calculation of internal stresses, the non-
mechanical strains must be separated from those mechanical strains which still have a linear
relationship with the internal stresses during each time step.

The variations of stress and strain within a particular time step ¢, —¢, as shown in Fig. 3, is
analysed herein by invoking the relaxation method (Gilbert 1988). The cross-sections are assumed
to be frozen, so that the total strain is held initially constant. If the cross-sections are totally free
of any restraint, then the non-mechanical strains at time f,, will include creep and shrinkage
strains. The shrinkage strain can be computed from Eq. (7), giving

Ly—1ly
d+ (tr+1 - tO)

The creep strain at the end of this time step is computed from Eq. (10), provided the previous
stress (or strain) history is known. The creep coefficient ¢(t..;, £) in Eq. (10) is given by Eq. (5),
with the time interval set equal to f,,—¢. Obviously the effect of aging on concrete creep is

(11)

8sh (tr+17 tO) = 8;;1
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included by using the SSM. The total non-mechanical strain at the end of the current time step is
equal to

Enm (tr+l) =& (tr+1a tO) + &y (tr+1a tO) (12)
noting that ¢, is the time at which the loading is first applied. If there are other loads applied at
time t,<t,,,, the creep strain at time ¢,,; is

r

Eor(trs) =Y, | &(tr) @ (trans er) + z Ag;(t;) ¢ (6015 17) (13)

J=k-1

Eq. (13) is only valid if the principle of superposition is applied.
The incremental non-mechanical strains Ag,,(#,) at time ¢,,, are clearly obtained from

AEnum (tr) = Enm (tr+1) — Enm (tr) (14)

The non-mechanical strains at each time step must be stored. Since the structure is still frozen at
this stage, an equal and opposite incremental non-mechanical strain — Ag,,(¢,) must be applied to
the concrete only to restore compatibility. The current mechanical strain &,(z,,,) is given by

En(ty11) = En (tr) — Abum (t) (15)

With the current mechanical strain &,(f..,), the current state of stress oft,,,) is calculated according
to the constitutive law as

O(t,41) = O(Em (t,41)) (16)

which can simply be written for the constitutive law adopted here as
0.(tr-kl) =E (tr+1)8"' (tr+1) (17)

By integrating the current state of stress o{t.;) throughout the entire element, the current
internal force vector {F(t,..,;)} for use in the finite element formulation is given by

{Ft)} = <B>"0(t.)dV (18)

where V is the volume of the element, and <B> is a strain matrix that may include geometric
nonlinearity (Bradford, Gilbert and Sun 1999). The out-of-balance load vector {P,(t.,)} is
calculated by subtracting the current internal force vector from the current external loading vector
{P(t,,)}, and this gives

{P" (tr+l)} = {F (tr+1)} - {P (tr+1)} (19)

Since the long-term effects are now being considered, the current external service load vector {P,
(t.1)} varies with time. Using the principle of superposition, the structure is released and
equilibrium is restored by applying the current unbalanced load vector {P(t..)} to the structure.
From this point, the standard Modified Newton Raphson method can be used, and the current
incremental displacement vector {Ar(t,)} caused by {P,(t,..)} is

{Ar (&)} = [KIF{Pu(t )} (20)

where [I?]T is the time-varying structural tangent stiffness matrix given by Bradford, Gilbert and
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Sun (1999). It is important to recognise that the stresses and strains created after the structure is
released are mechanical. With this current incremental displacement {Ar(t)}, the current
incremental strain after the structure is released is

Aen(ty) = <B >{Ar ()} 1)

Using Eq. (15), the current mechanical strain, updated from the previous mechanical strain and the
incremental strain after the structure is released is

Em(t,41) = Em(tr) — AEum (t:) + Al (L) (22)

The constitutive relationship allows the current state of stress to be expressed in terms on the
current mechanical strain, and is calculated from Eq. (16). The current displacement vector {r(t..,)}
is also updated using the previous displacement vector {r(z)} and the incremental displacement
after the structure is released. The current displacement vector is therefore

{r@. )} ={r@)} +{ar @)} 23)

3. Experimental verification
3.1. Goyal and Jackson's Columns

Goyal and Jackson (1971) performed a comprehensive experimental investigation into the
behaviour of reinforced concrete columns under sustained loads. The columns were of uniform
square cross-section with 76 mm sides, and reinforced symmetrically with four bars with a cover
of 13 mm. Other details of the tests can be found in Goyal and Jackson's paper.

Columns ‘G, ‘'H and R’ (Goyal and Jackson 1971) were subjected to differing sustained loads
at differing eccentricities and also different areas of reinforcement. The rheological modelling of
the concrete in the time domain was based on the material model presented in this paper as well
as the SSM, and assumed that the final creep coefficient and shrinkage strains were 2.0 and -200 X
107° respectively. The comparison in Fig. 4 between the experimental results and those
determined by the finite element model are very good, particularly so for Column R" whose time-
dependent behaviour is markedly nonlinear.

3.2. Furlong and Ferguson's Frames

The major advantage of the numerical technique is in the modelling of frame structures.
Furlong and Ferguson (1966) tested rectangular frames of the type shown in Fig. 5. Details of the
geometry and material properties can be found in Furlong and Ferguson's paper. Frame 7 is of
particular interest, as it was loaded to about 60% of its calculated ultimate strength, and this load
was maintained for 102 days, and the frame then loaded to failure.

Fig. 6 shows the finite element and layer modelling for the frames. Frame 7 was analysed by
the numerical model described herein, and the comparison of test and theory is shown in Fig. 7.
A final creep coefficient of 2.0 but no shrinkage strain (Furlong and Ferguson 1966) was used in
the modelling of the sustained portion of the loading regime. The figure shows that the agreement
between test and theory is very good, both for the short-term response and for the time-dependent
deflections when the load was held constant for 102 days. The accuracy of the finite element
strength model (Bradford, Gilbert and Sun 1999), which is used as the shell for the time-
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Fig. 4 Deflection-time curves for Goyal's columns G, H and R
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Fig. 6 Finite element and layer modelling of Furlong and Furguson's frames

dependent analysis developed in this paper, is also evident in Fig. 7 at loads above that which
was sustained where both short-term material and geometric nonlinearities are dominant.
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Fig. 7 Load-deflection response of Furlong and Furguson's Frame 7 with a sustained load

The close agreement between the SSM finite element-based method (with its empirical
treatment of the ‘material aspects of creep and shrinkage) and the isolated column and frame tests
demonstrates that the numerical model can be used with confidence to analyse a myriad of
reinforced concrete members and frames subjected to creep and shrinkage.

4, lllustrative examples

4.1. General

In order to illustrate the efficacy of the layered finite element method using the SSM, a number
of illustrative examples were chosen. These are for an isolated cross-section, a statically
determinate beam, a statically indeterminate beam, and finally a frame structure. The problems
were solved on a contemporary personal computer, and the solution of the Modified Newton
Raphson iterative procedure was rapid.

4.2. Reinforced concrete cross-section

The long-term behaviour of a reinforced concrete cross-section was considered using the
layered finite element model, and compared with the solutions derived using the so-called cross-
sectional method (Sun 1996). The cross-section is shown in Fig. 8, which is subjected to an in-
service bending moment of 60 kNm. The final creep coefficient was assumed to be ¢*=2.5 and
the long-term shrinkage strain was assumed to be €%=-400Xx10"° In the numerical analysis
reported herein, the cross-section was divided into 20 equal concrete layers and the steel



Time-dependent analysis of reinforced concrete structures 571

300 J
"l Fescsssnnccrsunna 13
i _| B, - N L
, e : :
Ay =2480 mm’ . .
° ° o — . ® o e
Cross-section 2 Layered model of Layered model of
concrete steel

Fig. 8 Reinforced concrete cross-section

reinforcement into one layer.

The initial and final stress and strain distributions predicted by the two methods are shown in
Fig. 9. The values in brackets are the long-term tensile stresses in the steel. It can be seen that the
short-term stresses and strains are very close if the values at the midheight of layer 1 and layer 20
are extrapolated to the extreme fibres of the section. Fig. 9(a) shows that the Age-Adjusted
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(a) Analysis using the cross-sectional method combined with the AEMM
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(b) Analysis using the layered finite element model

Fig. 9 Time analysis of a reinforced concrete section
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Effective Modulus Method approach uses the same location of the neutral axis of the section in
the short and long-term. The short-term neutral axis depth obtained from the cross-sectional
method was 179 mm from the top fibre, but that extrapolated from the SSM was 231 mm. This
difference leads to different internal stress and strain distributions in both the concrete and
reinforcement. If the correct location of the neutral axis is required from the cross-sectional
method, an iterative procedure must be undertaken.

4.3. Statically determinate beam

Since long-term effects increase the internal strains in concrete sections significantly, they also
increase the deformations of concrete members. As an example, a simply supported reinforced
concrete beam spanning 6 m shown in Fig. 10 was analysed. This beam was analysed in Warner
et al. (1989). The singly reinforced beam was divided into ten layers of equal thickness, with a
single layer adopted for the steel 170 mm from the reference line. The constitutive stress-strain
curve was adopted from Bradford, Gilbert and Sun (1999), with a concrete compressive strength
of 24 MPa, a concrete tensile strength of 1.2 MPa, a steel yield stress of 400 MPa and an initial
elastic modulus of the concrete of 21,800 MPa. The long-term behaviour of this beam was
investigated by varying the arrangement of both the tensile and compressive reinforcement.

The beam was subjected to a uniformly distributed sustained load of w=15 kN/m, with the final
creep coefficient and shrinkage strain being 2.5 and — 300 10~ ° respectively.

The short-term and long-term central deflections of the beam were calculated using the layered
approach coupled with the SSM, and the results are presented in Tables 1 and 2. In Table 1, the
tensile reinforcement was kept constant and the compressive reinforcement varied, while the
opposite situation occurred in Table 2. It can be seen from both tables that the short-term and
long-term deformations decrease - significantly as the amount of reinforcement increases. As
expected, though, increasing the quantity of tensile reinforcement has less of an effect on the
reducing the long-term deflections.

Table 1 Long-term behaviour of determinate beam with A,,=2480 mm’

Central Deflection (mm) A,=0 A=0.54,, A=A, A,=2A,
Short-term (1) 9.74 7.65 6.50 5.63
Long-term (2) 27.07 12.58 9.17 6.92

Q@ - Q) 17.33 493 2.67 1.29
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Table 2 Long-term behaviour of determinate beam with A,=1240 mm’

Central Deflection (mm) Ay,=0.5A, Ag=A,, Ay=1.5A, Au=24,,
Short-term (1) 20.74 12.14 9.27 7.95
Long-term (2) 25.68 16.99 14.09 12.58

2 -Q 4.94 4.85 4.82 493

4.4. Statically indeterminate beam

Long-term effects do not change the internal forces in a statically determinate member, such as
the beam considered above, but they do change the internal forces of a statically indeterminate
member. To demonstrate this, the propped cantilever shown in Fig. 11 was analysed. The material
properties were the same as those considered in the analysis of a plain cross-section, with half of
the beam reinforced by both top and bottom reinforcement each of area 2480 mm’, and the other
half of the beam reinforced by a single layer of reinforcement of area 2480 mm’. The beam was
discretised into eight equal length elements, each containing three Gauss points. The concrete
section was further subdivided into 10 layers of equal thickness.

y . 300 4
P ¥ ' ) 72 " 07 s
-~ t
A
= 6000 mm | Aw
i

Cross-section
Fig. 11 Propped cantilever

X-coordinate (mm)
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Deflection (mm)
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~&— Long-term

181

214
Fig. 12 Short and long-term deflections of propped cantilever
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Fig. 13 Short and long-term bending moments in propped cantilever
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Fig. 14 Two-storey reinforced concrete frame

The computed deflections are shown in Fig. 12. It can be seen from this figure that the
deflections are roughly doubled in the long-term.

In a statically indeterminate member, releasing the redundancy violates geometric compatibility,
in the sense that the incompatibility of deflections at the release point increases with time. In
order to restore compatibility, a time-varying redundant action must be applied at the release point.
Fig. 13 plots the bending moment diagram and shows that in the time domain the positive
moments are reduced, while the negative moments at the cantilever root are increased. If the end
B of the member shown in Fig. 11 was released, the effects of creep and particularly shrinkage
would cause this free' end to move upward as there is more tensile than compressive
reinforcement in this region. Equilibrium must therefore be ensured by application of a downward
reaction, and this time-dependent secondary force produces a secondary moment that is 24% of
the original moment at the fixed end. A similar problem was analysed by Gilbert (1988) using the
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flexibility method of structural analysis coupled with the Age-Adjusted Effective Modulus Method.
4.5. Reinforced concrete frame

The demonstrations of the applicaiion of the present SSM in a layered finite element shell have
only been for simple structures. The power of this method is that it can handle structures with
many indeterminancies, such as reinforced concrete frames. The writers have found very few
published results on the long-term analysis and behaviour of highly indeterminate frames, so the
present method was used to analyse a two storey reinforced concrete frame shown in Fig. 14. The
material properties for the steel and concrete are the same as those considered earlier for the
simple cross-section, with ¢*=2.5 and €%=—-300x10° Five elements were used for each
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Fig. 15 Short and long-term bending moments in two-storey frame
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Fig. 16 Central deflection of beam at first floor level in two-storey frame
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member.

The short-term and long-term bending moment diagrams for this frame are shown in Fig. 15.
Horizontal loading was not considered, as this would be due to wind (or earthquake) loading and
is not sustained for a long-term analysis. The moments are drawn on the tension side of the
members, with those given in brackets being the long-term moments. It can be seen that the
moment redistribution is quite substantial, with part of the end moments of the beam being
redistributed to their mid-section. It is also worth noting that compared with the propped
cantilever considered earlier, the long-term effects on the internal actions in this symmetric
concrete frame are small.

The central deflection of the midspan of the beam at the first floor level is shown in Fig. 16
over a period of ten years. The final long-term deflection is more than twice its short-term
deflection, but since the whole beam moves vertically by 3.383 mm due to shortening of the
columns, the net long-term relative deflection is 6.247 mm or about span/800. This deflection
would be deemed to be satisfactory.

5. Conclusions

A method for including the SSM of time-dependent analysis into a finite element computer
package has been described. This algorithm was especially designed for the nonlinear finite
element procedure developed by the authors (Bradford, Gilbert and Sun 1999). The solutions
converge rapidly using the Modified Newton Raphson Method, and recourse is not required to
more complex arc-length procedures that are necessary to trace the full load-deflection history for
the strength limit state.

The accuracy of the method was established by comparisons with independent test results, and
its efficacy was demonstrated by considering a simple cross-section, a determinate beam, an
indeterminate beam and finally a two storey frame. The solutions were obtained with ease from
the numerical method. The numerical approach developed in the paper provides a useful means of
evaluating the provisions of the simplified methods presented in code rules.

While the numerical modelling is based on accurate principles of structural mechanics, the
precision with which the creep and shrinkage data can be specified must not be lost sight of. The
empirical nature of these parameters undoubtedly affects the final solution, and the finite element
modelling is an ideal means for assessing the sensitivity of the final results to the empirical time-
dependent data. This aspect of the material modelling has not been considered explicitly in this

paper.
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