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An asymptotic analysis on non-linear free
vibration of squarely-reticulated circular plates

G.H. Niet

Department of Engineering Mechanics, Tongji University, Shanghai 200092, China

Abstract. In this paper an asymptotic iteration method is adopted to analyze non-linear free vibration
of reticulated circular plates composed of beam members placed in two orthogonal directions. For the
resulting linear ordinary differential equations in the process of iteration, the power series with rapid
convergence has been applied to obtain an analytical solution for non-linear characteristic relation
between the amplitude and frequency of the structurc. Numcrical examples are given, and the
phenomena indicating hardening of such structures have been presented for the (immovable or movable)
simply-supported and clamped circular plates.
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1. Introduction

Recently applications of large-span space reticulated structures have been demonstrated in
numerous kinds of building structures, such as sport stadia, exhibition halls, aircraft hangars,
supermarkets, leisure centers and swimming pools, etc.

The understandings of vibrating behaviours of the reticulated structures are of great importance
to the design for such structures. Many concerns have focused on these problems. Ellington and
McCallion (1959) give an analysis on free vibration of grillages by the finite difference method.
Applying the exact representation of the stiffness, Anderson and Williams (1982, 1986)
investigate the vibration of periodic lattice structures. Cheung et al. (1988) adopt a double U-
transformation approach to solve the free vibration problem of rectangular networks. Yamada and
Takeuchi (1993) propose a method to estimate the free vibration frequency of latticed cylindrical
panels on the basis of the mode similarity to the static buckling mode.

However, so far there have been no much work on the non-linear vibration analyses of single-
layer reticulated structures with large-number beam members due to difficulties in mathematical
treatment or complexity in numerical computations. It is found that this kind of structures takes on
very strong nonlinearity, and it is thus necessary to pay much attention to them, especially
including exact analyses on non-linear natural frequencies.

Based on the analyses on the internal forces and deformations of single-layer reticulated
shallow shell structures with or without imperfections whose beam members are placed in two
orthogonal directions, Nie (1991, 1994a) and Liu ef al. (1991) choose a continuum (plate) shell
model to perform non-linear analyses of the structures. The model has been examined by
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numerical computations and experiment studies, and comparisons of results show that the use of
the proposed model is enough exact and effective (Nie and Cheung 1995, Nie and Liu 1995). The
model has also been applied to analysis of multi-mode vibration of the structures with a
rectangular boundary (Nie 1994b).

This paper aims to present an analytical solution for non-linear amplitude-frequency relation by
solving the axisymmetrical fundamental governing equations (coupled dynamic equilibrium
equation and compatibility equation) in terms of nondimensional transverse displacement (deflec-
tion) and radial membrane force with the help of an asymptotic method. For the resulting linear
ordinary differential equations in the process of iteration, the power series with rapid convergence
has been adopted to obtain an asymptotic solution for non-linear characteristic relation between
the amplitude and frequency of the structure. Numerical examples for four cases are given, and
the phenomena indicating hardening of such structures have been demonstrated.

2. The mathematical formulation for the problem

Let us consider a square reticulated circular plate with radius a, as shown in Fig. 1, each beam
member has the same material properties and sizes with length L, area of cross-section A,
transverse and lateral bending stiffness EI, El,, and twisting stiffness GJ. By analyzing the internal
forces and deformations of a typical element of such discrete structure, applying the principle of
energy, the mathematical expressions for equilibrium equation in the normal direction and
compatibility equation in terms of transverse (joint) displacement (deflection) w and a force
function ¢ can be written as follows (Nie and Cheung 1995).
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Fig. 1 The basic geometry of the reticulated circular plate
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in which the trem w due to the inertia force in the normal direction is included, and m, is mass
density. The above two equations are anisotropic Karmén-type equations. Introducing the
corresponding nondimensional variables and quantities, the above fundamental governing

equations can be transformed into the following nondimensional forms for an axisymmetrical case
(Nie and Cheung 1995).
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and the expressions for differential operators £, 7 are
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For the case of hinged structure, boundary conditions can be expressed by (Nie and Cheung 1995).
d*w dw dr
W =0, +m— =0, — —-nT =0, p=1 5
a7 "dp ip " p ®)
dw
=2 =0, T=0, p=0 6
dp p (©)
EI-GJ] _  \2

where m=

,h = . It is obvious that when n— oo in Eq. (5), then Egs. (5) and
3EI +GJ 8
44N2——
Vi1

(6) correspond to the case of movable simply-supported edge. Further, the two cases can be
transformed into immovable and movable clamped edges respectively when m — oo in Eq. (5).
Hence, in the following analysis only the case of hinged edge is considered, then the
corresponding results for the other three cases can also be derived.
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To solve the coupled Egs. (3) and (4), it is assumed that

W (p, 1)=V(p)cos wt (7
T (p, 7)=S(p)cos’ wtr ®)

in which V(p) and S(p) are undetermined functions. Owing to the equilibrium Eq. (3), the
corresponding equation in the form of variation can be written as follows

1 d (pdW
p dp

J? J.:) |:L(W) — PV coswT— — —— dp ﬂ W pdpdt=0 9)

in which W=coswtdV. Integrating with repect to 7 in the above equation, the following equation
concerning V(p) can be deduced considering that 6V can take arbitrary value

LIVl -V (p) = — — { (P)—} (10)

On the other hand, inserting Eqs. (7) and (8) into Eq. (4) yields

i (pS) = - [dV(P)} M, {MT{MT W Ms d [dZV(p)T_{dV(p)T

dp dp? pdp 2 Tdp || dp? pdp
(11)
The corresponding boundary conditions are rewritten by
dv _dv ds
V =0, +m— =0, — -nS =0 p=1 12
a7 ™ ap dp p (12)
dav
=0, =0, 0 13
dp p= (13)
The following analysis will focus on the solution for V and S.
3. The asymtotic solution
3.1. The first iteration
From Eq. (10), a linear boundary-value problem only concerning V(p) is expressed by
L[V - gV =0 (14)
2y m
yo—g, 4V2 7 o, p=1 (15)
dp? dp
@
VT o, p=0 (16)
dp

and denote
Vo (P) |p:0 =W (17)
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in which V® corresponds to the solution for the first iteration, W, is the amplitude of the structure
and @, is the corresponding linear frequency. Meanwhile, S directly satisfy Eq. (11) with
condition Egs. (12) and (13) related to the unknown variable V), i.e.,

2 2 2 2 2
) 2y M M 2y (M) @)
h[psm]:_%[dv }+M5 [dV }_{dv } o Ms ) d [dV }_[dv } (1)

dp ap pdp 2 "dp || dp? pdp
@
d;p —aSW=0, p=1 (19)
SO=0, p=0 (20)

The general solution for Eq. (14) is expressed by using two power series as follows
Vi(p)=A, Z b p* +A4, chp4k 2 (21)
k=0 k=0

where A,, A, are unknown constants, the coefficients b,, ¢, (k=1, 2, ...) depend on @, and (see
also Appendix)
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Using Egs. (15) and (16), the following equation is obtained

M

k=t

L
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j=0

namely
S 3 Qk +1)2(4k —4j ~2) 4k +4j +1+m) e, =0 (23)
=070

It follows that the linear frequency @, can be obtained by solving the following non-linear equation

3 F, @ =0 24)
k=0

in which
F,=1
F,=-6fHs
Fy=0ff -70fpH,
Fy=Q2ff,-238f3)H 3
Fy=(~102f1f3+25f3 ~558 f)H 15
Fs=26f,f3—342f,f,—1078fs)H 5,
Fs:(49f32 —766ffs—118f3f4— 1846 f )H »s
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and
k+m
H, = 25
T 1m 5
Accordingly, V™" can be rewritten by
Vo) S -0 @
k=0 k=0

in which Eq. (17) has been applied, and

= b = (2k +1)*c
ay= Zk:ﬂ k _ Zk:()( ) k (27)

Zk 0%k de) Ck

Substituting Eq. (26) into Eq. (18), S“ can be solved by applying the corresponding condition Eqs.
(19), (20), the result is
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3.2. The second iteration

Adopting the solutions resulting from the first iteration as reference variables, the corresponding
differential equation for V® which is the solution for the second iteration is formulated as follows

3 d dv®
LIVO(p)] - *VO(p) = — — | SO(p)—— 30
V-V ep)= dp{ ®) dp} (30)
in which @ is the non-linear frequency. The boundary conditions are
2y @
yo—g AV2 A7 g p 31)
d dp
dv®
=0, p=0 32
5 p (32)
and
VO(p) | pop=We (33)

The solution of the above equation has the following form
V@ :A3z bk’ p4k +A4 Z ck’ p4k 24 yO*
k=0 k=0

in which A,;, A, are also two unknown constants, the coefficients b, ¢,’ have the following
expressions

bO :CO' =1, bk’:a)2kgk7 Ck’ =w2kfk (k:17 27)
and V@ is the particular solution for the Eq. (30), its expression is (see also Appendix)
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Utilizing the condition Egs. (31)~(33), a nonlinear equation for ® is resulted in
Z (o + 0 WA =0 35)
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Solving the above non-linear equation, the non-linear frequency @ can be determined for a given
value of W..
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4. Numerical examples and analyses

Here two reticulated circular plates are considered, i.e., the radius of reticulated circular plate a=
1m, each beam member has the same circular cross-section with 5.8 mm diameter, its length L=
0.1 m and L=0.2 m respectively. The Poisson's ratio v=0.3.

For all cases of (immovable or movable) simply-supported and clamped edge conditions, from
Egs. (24) and (27) the exact values of the nondimensional linear frequency @, and constant a, can
be solved and computed. It is observed that the two quantities do not depend on the geometrical
ElI-GJ
3EI +GJ
former case. The values of coefficients b, c, (here k is taken up to 6) are listed in Table 1. It can
be noted that the coefficients rapidly decrease with the increase of value of k, this leads to fast
convergence for all undetermined variables and quantities expressed in series.

When L=0.2 m, the change of nondimensional non-linear frequencies with the amplitude is
displayed in Fig. 2. It is obvious that the linear frequency corresponding to W,=0 for the clamped
plate is larger than that for the simply-supported plate, and the non-linear frequency increases with
the amplitude, i.e., there is always hardening non-linear behaviour for the plates. This is similar to
nonlinearity of solid plate (Chia 1980). Further, immovable edge condition can result in a faster
increase in non-linear frequency for the simply-supported or clamped structure. The characteristic
relation between nondimensional ratio of non-linear frequency to linear frequency, w/ay, and the
amplitude W, for L=0.1 m is illustrated in Fig. 3. Similarly, for immovable simply-supported or
clamped plate, the corresponding hardening non-linear behaviour is stronger, and especially for
the hinged reticulated circular plate, the nonlinearity is strongest.

sizes of the reticulated plate, and are decided by the material constant m = only for the

5. Conclusions
In this paper an analytical solution of non-linear natural frequency of reticulated circular plate is

given with the aid of an asymptotic iteration method. The application of power series with rapid
convergence results in good accuracy for the solution of this problem.

Table 1 Coefficients b, and ¢, (k=1-6)

b, b, b, b,
Hinged 0.3239 2.9137x 107 4.1940x 10°® 1.7325% 107
Clamped 1.6336 7.4124% 107 5.3816x 10" 1.1213x 10°®
bs by C &)
Hinged 2.7710x 10" 2.0602x 107" 3.5986 x 102 1.1655 % 10™
Clamped 9.0455x 10 3.3922x 10" 1.8151%x 10" 2.9650% 107
Cy Cy Cs Ce
Hinged 8.5592x 10* 2.1389x 10" 2.2901x 10" 1.2191x 10"
Clamped 1.0983 % 107 1.3843x 10* 7.4756x 10 2.0072x 107"
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Fig. 2 The change of non-linear frequency with the amplitude of the structure
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Fig. 3 The characteristic relation between the ratio of non-linear frequency to linear frequency
and the amplitude

The computation results show that non-linear vibrations of reticulated circular plates have
hardening nonlinearity behaviours. The nonlinearity for the hinged reticulated circular plate is
strongest for the four cases of edge conditions.

It can be also concluded that the proposed and used method in this paper can be extended to
non-linear free vibration analysis of reticulated shallow spherical shells.
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Appendix

The Particular Solution for the Equation £[V(p)] — aV(p)=p"
(a) Two Independent Solutions for the Equation £[V(p)] - oV(p)=0

Let infinitc power series iﬂk pF be the form of solution for the following equation

k=0
LIV(p)]-aV(p)=0
in which
1 d d1d _d
L )=— — p— — —— _(
) pdppdppdppdp )

Substituting it into the equation, a recursion formula can be obtained as follows
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(04

A=y

Bis

Note that £(,)=0 and £(B, P)=0, —two independent serics solutions can be expressed respectively in

the following

V(p) =Y bcp*
k=0

and
Vip)= 2 e p™?
k=0
where
by=cy=1

by =By =0*g, ¢ =By=a* fo (k=1,2, -

b=k +12, (k=1,2, )
1 1

= g =———— (k=1, 2, -
=g [k + D B 7 Ten)p (
(b) The Particular Solution for the Equation L[V(p)]- oV(p)=p"
Case(i): m=0
The particular solution V'(p) is
« 1
Vi(p)=——
P ==
Case(ii): m=2
* 1
Vi(p)=——
©=-1p
Case(iii): m=4n (n=1, 2, ---)
. 13
V()= Y by ot
Case(iv): m=4n+2 (n=1, 2, ---)
" 1 &
Vi) =———3 cpth
2 2
Notations
L = length of each beam member
A = area of cross-section of each beam member
a =radius of the plate
my =mass density
EI = transverse bending stiffness
El, = lateral bending stiffness
GJ = twisting stiffness

t =time

)
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. . . 3EI +GJ
=nondimensional time — ¢
4Lmya*

T

w = transverse (joint) displacement (deflection)

w =nondimensional transverse (joint) displacement (deflection)
W, = nondimensional amplitude of the plate

Wy =nondimensional linear frequency

w = nondimensional non-linear frequency

by, ¢ = coefficients in power series





