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Evaluation of structural dynamic responses
by stochastic finite element method

Q.S. Lit, J.Q. Fangt and D.K. Liutt

Department of Building and Construction, City University of Hong Kong
Tat Chee Avenue, Kowloon, Hong Kong

Abstract. The uncertainties associated with structural parameters and dynamic loading are identified
and discussed. Structural parametric uncertainties are treated as random variables and dynamic wind
load is simulated as a random process. Dynamic wind-induced responses of structures with parametric
uncertainties are investigated by using stochastic finite element method. The formulas for structural
dynamic reliability analysis considering the randomness of structural resistance and loading are
proposed. Two numerical examples of high-rise structures are presented to illustrate the proposed
methodology. The calculated results demonstrate that the variation in structural parameters indeed
influences the dynamic response and the first passage probability evaluation of structures.
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1. Introduction

Most structures have complex geometrical and material properties and are subjected to complex
stochastic environment conditions. The uncertainties in the properties of material, structural
damping, geometric parameters and boundary conditions etc. may induce statistical variation in
the eigenvalues and eigenvectors and consequently the dynamic response may be affected.
Therefore, a realistic analysis and design of structural systems with parametric uncertainties and
subjected to stochastic dynamic excitations should take into account for the uncertainties arising
from both structural properties and dynamic excitation simultaneously in a consistent and rational
manner. However, the uncertainties associated with structural parameters are not usually
considered in evaluation of random dynamic response of structures. More work is thus required to
study dynamic response of structures with uncertain parameters.

As the name suggests, the stochastic finite element method (SFEM) combines the best features
of the finite element methods and the stochastic analysis. Stochastic finite element method has
recently become an active area of research. However, it is worth noting that the stochastic finite
element method has been mainly applied in structural static analysis and eigenproblems over the
last decade (e.g., Spanos and Ghanem 1989, Vanmarcke and Grigoriu 1983). The evaluation of
dynamic reliability of structures with parametric uncertainties subjected stochastic dynamic loads
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by SFEM has received relatively little, if any, attention in the literature in the past.

As discussed above, reliable structural design requires correct modelling of the structural
parametric uncertainties and considering these uncertainties in the structural analysis. In this paper,
the stochastic finite element method is applied for response analysis of structures under stochastic
dynamic load actions.

The objective of this paper is to investigate wind-induced vibrations of structures with
parametric uncertainties. A probability description of structural response is presented utilising the
stochastic finite element method. A reliability analysis procedure is proposed in terms of
upcrossing probabilities of wind-induced response. The structural lifetime reliability can be
obtained from the conditional reliability through convolution with the probability density function
of lifetime extreme wind speed. The probability that a particular response component of a
structure will be exceeded in a specified time period can be predicted. In this manner the inherent
random nature of the load, structural resistance, and the uncertainties in the description of the
wind speed are accounted for. Two numerical examples are presented to illustrate the proposed
methodology and the effect of the uncertainties on structural response and dynamic reliability.

2. Dynamic response of structures with parametric uncertainties

In this paper, the uncertainties associated with structural parameters are treated as random
variables and dynamic wind load is simulated as a random process, and wind-induced vibrations
of structures are evaluated by the stochastic finite element method. According to the probability
theory, a stochastic vector {Y} can be expressed as

N={N+{x} 1)

in which {Y}=E[{Y}] is the mean of the random vector {Y}, {0} is a random vector with zero
mean.

The stochastic finite element method based on the second order perturbation method has shown
its accuracy and efficiency (Kareem and Sun 1990, Kleiber and Hien 1992, Li et al. 1993a).
According to this method, a random variable or process, a random vector or field, Z, can be
expressed by the second order Taylor's series expansion at mean value of « as follows:
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where Z represents the mean value of Z, the superscripts (1) and (2) denote the first and second
derivatives of Z with respect to @, respectively, and N is the total number of the random variables
considered.

The vibration equation of a multi-degree of freedom system is

[MIX } +[CHX } +[KHX} ={F (1)} ©)

where [M], [C] and [K] are the mass, damping and stiffness matrix, respectively. {F(¢¥)} is the
vector of random dynamic excitations.

In the following analysis, the structural stiffness matrix [K] and random displacement vector {X}
are represented by Eq. (2). If these expressions are introduced into the equation of motion (Eq. 3),
we obtain the following zeroth-, first- and second-order equations for the dynamic response of the
structural system.
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Zeroth-order
[MI{X}+[CHX}+[K X} = {F ()} )
First-order
[MIX O} + [CHX O} + [K XD} =- [KORX } )]
Second-order
[MUX @} +[CHX P} + [K (X P} = - [KPUX } - [KOUX O} - [KOHX D}
@ j=12,..,N) 6)

Because the dynamic load vector {F(¥)} is a random process vector, the response vectors, {X},
{X"} and {X,?} are random process vectors, too. In this paper, the stochastic behaviours of
structural stiffness matrix is propagated by means of the stochastic finite element method to
demonstrate the methodology, which can be further refined to consider the randomness of
structural damping and mass etc., if so desired.

Egs. (4), (5) and (6) may be solved by the mode superposition method. Let

X}=[¢1{r} ™

where [¢] is the mode shape matrix, {y} is the generalised co-ordinate vector which is a process
vector and can be also represented by Eq. (2).
Thus, we have

X} =[0l{7} )
X0} = [¢1{y.®} ©)
X} = [0l P} (10)
It is assumed that [C] is a uncoupled damping matrix, then,
[oF IM]Ig1=[1] 11
[#] [C1[¢] = [diag(2¢; ;)] = [C*] (12)
(41" [K ][9] = [K*] = [diag(e])] (13)

in which [/] is a identity matrix.
Then substituting Egs. (8)-(10) into Eqgs. (4)-(6) and using left-handed multiplication by [¢] yield

GH+IC* 1} +K* Wy} ={f (@)} (14)
OO+ [C* Ny O+ [K* 1y = {fv} (15)
) P+ [C* I ) + [K* P} = {f2} (16)
in which
{f@)} =[oI"{F @)} 17)

{fu}=—[o [KOIX] (18)
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{f2;} == [T (KPUX } - [KOUX O} - [KPHXD) (19)

The covariance matrix of displacement response (only considering the first two orders) can be
expressed as

N N 1 N N — —
R. = Rf + 2 2 E (0(, aj )Rxm(’Yi(l)’ Xj(l)) + E 2 z E (OC,- ai )[R;—c,xa)(X ’ "Yi§2)) + Rx(l),f ()(552)’ X )] (20)

i=1 j=1 i=1 j=1
in which

R, =E[{XHX}'] eay)

R, (X0, X) =E ({X;OHXV}] 22)

R, o X, XP)=E[{XHXP}] (23)

R, K@, X)=E[{XPHX}"] 24

If spectral analysis in the frequency domain is applied, Eq. (20) can be rewritten as

[S@]=[5: @1+ 3 E@a)IS. &, X, 0]+ 1 3 3 E(@a)(is, & X, o)

i=1 j=1 i=1 j=1
+[5,0,; K X, )]} (25)
Using the matrix form, the spectral density of y can be expressed as

S5 ()] = [H* (0)][S; ()][H ()] (26)

in which H{®) is the mechanical admittance function, it can be determined by use of Eq. (14),
[H (@) = diag{H;(®)}] 27)

Similarly, it can be derived from Eq. (17) that '

' [Si(@)] = [¢]" [Sr ()][4] (28)

From Eq. (8), we can obtain
[Sx ()] = [911S; (][] = [GI[EH* (@)][9) [Sr(D][IIIH (@)][¢]" (29)

The second term, S, (X, XY, @) in Eq. (25) can be similarly derived from Eq. (18) as

? P xo
[Sx XD, X0, @)] = [9IIS,, 0V, y/©, @)l¢]" = [Q)IH* ()[S; (1> f1;> @H (@][9]
= [@[H* (D][¢]" [K)[Sz (DK VT [GILH ()] 6] (30)

Similarly, S_ . .(X, X, ) can be also derived as ~

[S¢ 3o X > X2, O] =[BIIS; o7,y DN = [BIH* (@[S (f f2j> DUH (@] (31)
Using Eqs. (17) and (19) leads to,
[S5.0(f> faj> @] =—[S;.x @UKPV[9] - [S, of(f> X (DIKPT[9]
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~ IS, yulf- X9, DNKOT 9] | (32)
in which
[,z (D] =[Sy,5 (OS] =[S (@]H (@)][P]" = [¢] [Se(D[SIH (][] (33)
IS, 3ulF- X0, @) =[S, (X, O =[S;1.(F> fu, DIH(@)[PF
~ S5, % (DK T [GIH (@)[9]" =~ [9] [Sr ([IH (@9 [KOT [G)[H (d][¢]"  (34)
The characteristic equation is given by

(K1-AM]){¢} =0 35)

Solving the characteristic equation yields the natural frequencies and the corresponding mode
shapes. As discussed above, the stiffness of structures is represented by a random variable field in
this paper, the natural frequencies and mode shapes of the structures are also random variables.
Let

2T oS aa 15 S @
and
1 N N
{9} = {¢}+2{¢}ﬂ>a, +5 22 0P aa 37)

Substituting Eq. (36) and Eq. (37) into Eq. (35) leads to,

R 1+ 5 KOl + 5 3 S K] a0y~ (M]3 M ok~

i=1 i=1

i[M]a,-s-2>oz,~a,-)({¢}+z{¢,~<1>}a,-+ S {69} a0) = {0} (38)

i=1 i=1 i=1 i=1

M=

1
2 4

-
|

N

~

The above equation can be rewritten as

(K1-2 IM]){¢}=0 (39)
(K1-2 MD{¢®} =~ (KO- 4D [M]{$} (40)

(K1=2 MD{¢P} =~ (KL - AP MD{$ } - (K] - AOM]D{¢f}
- (K1 - APIMD{e} 1)

Because Eq. (39) is a deterministic equation, the eigenvalue A ; and the corresponding eigenvector
{¢ }; can be determined directly by using conventional eigensolution procedure (e.g., Wang 1978,
Li et al. 1994, 1996). The solutions of Eq. (40) and Eq. (41) can be found in the Appendix of
this paper.

Inptlrl)e following analysis, for the sake of illustration, the formulation is restricted to dynamic
wind loading.

If the dynamic load is wind action, and the fluctuating drag is

{F@O)}=[BHp®)} “42)
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where [B]=[diag(C, A))] is the product of the drag coefficient of the structure, C,, and windward
area of the structure A,. {p(¢)} can be expressed as follows

P} =plVI{v®)} (43)
where [V]=[diag(V ;)], V; and v(f) are the mean wind velocity and the fluctuating components

of wind velocity, respectively, at the lumped mass point i. p is density of air.
The following equation can be derived from Eqs. (42) and (43)

[Sr(@]=PBUVIS (IV][BY (44)
It is assumed that each term of the matrix, [S, (@)], can be expressed as
S (@) =P 2, ) (@) (45)

where s() is the gust spectrum, and p(z, z, @) is the coherence of gust, as suggested by
Davenport (1962); it can be taken as,

2, @)= ——_ Tl 46
In this paper, the Davenport spectrum of wind speed is adopted,

4KV x2
(W) = 47
(@) o (1+x)% “7)

in which
x = 8000 48)
v oy

where K is the coefficient of ground roughness, V ,, is the mean wind speed at 10m height.

The variances of displacement and velocity responses can be determined by the following
equations

o= : Sy(@)do (49)

ot = : @Sy (0)d o (50)

3. Dynamic reliability analysis of structures

The structural dynamic reliability is the probability that the structure under the action of random
dynamic loads will fulfil its design purpose during a specified period.

If it is assumed that the lifetime of a structure is n years, in general, n is taken as 50, and the
probability density function of maximum wind velocity in the n years is fiv) which can be
derived from a statistical analysis of successive years of climatological data, then, the reliability of
the structure in its lifetime can be expressed as

Ps=j;°1>(s <R|V =v) f@)dv (51)
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in which S is the structural response quality of interest, R is the corresponding structural resistance.
P(S <R |V =v) is called the conditional reliability of the structure given V =v .
Eq. (51) can be written in a discrete form so that it is convenient to be calculated.

Ps=Y PSSR|V=V)IF(F,)-F{F ;)] (52)
P

where F (v) is probability distribution function of the maximum wind speed in the n years.

Analysis of data at various locations with well-behaved wind climates has suggested that the
extreme value Type I distribution in general provides a good fit to the extreme yearly wind speed
(Simiu 1976, Li 1986, 1988, 1990). A maximum probability plot correlation coefficient criterion
has been employed in a study (Kareem and Hseih 1986) for modelling annual extreme winds and
also confirm Simiu's conclusion.

Assuming that yearly maximum wind speeds over a period of n years are independent, the PDF
of the n years extreme wind speed can be expressed as

f(@)=na exp{—(V —a)b —n exp[-(V —a)b]} (53)

in which parameters a and b can be determined from a large sample of annual extreme mean
wind speed data by the method of moments.

A typical upcrossing problem for dynamic reliability is illustrated in Fig. 1. If the deterioration
of structural resistance with time is considered, then, the reliability bound is a function of time ¢
The upcrossing rate per unit time, v(z) can be expressed as

vO)=[" v @) falr) dr (54)
where (Rice 1944)
v,(t)=j:° G —7)fy (r,8)ds (55)

in which v,(¢) is the upcrossing rate per unit time for the barrier R=r with slope r, fz(r) is the

‘S

realization

-
t

Fig. 1 Typical upcrossing problem for dynamic reliability analysis
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probability density function of structural resistance. § is a state variable of S(#) which is the
derivative process of S(¢) with respect to ¢.

If it is assumed that S(¢) is a Normal stationary process with zero mean, then, S(¢) and S(¢) are
independent Normal stationary process and can be estimated by the procedure presented in the
preceding section, the joint probability density function of S(¢) and S(z) is

Substituting Eq. (56) into Eq. (55) gives
v,(t)=% Z exp[— 2’;2] (57)
in which
A =exp[‘2;22]-«/ﬁ ; ¢[‘G’ ] (58)

and ¢(.)=the standardised Normal distribution function.
If structural resistance obeys the Normal distribution, that is

__1 _eTy 59
ety -2Y -
then
_ . F2
P <R|V =v )=exp ——Aws—exp - (60)
2m\ o2 + o2 2(0? + of)

in which 7 is the duration of dynamic response considered; in general, for wind loading, 7=10 min.
If the upper and lower bounds of structures for dynamic reliability analysis are considered, then,

_ A 10, 72 A 10, 72
P(S<R|V=v)=exp {- ————=exp|- —————| - —— exp| - ———— (61)
21\ o? + 0f, 205+ 0k) | 2m\o?+ 0}, 2(0?+ 03,)

where 7,,7, and Og,, Oz, are the mean values and standard deviations of R, (the upper bound)

and R, (the lower bound), respectively.
If-R=R,=R (symmetric bound), Eq. (61) becomes

_ . 72
PS SR|V =v )=exp —-—A&-exp[—r—} (62)

m™No? + o} 2(0? + o)
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If the deterioration of structural resistance is not considered, that is =0, it can be obtained
from Eq. (58) that A=1.

4. Numerical Example 1

Wauhan T.V. Tower located in Wuhan City, P.R. China is analysed here as a numerical example
for the present study. As shown in Fig. 2, this tower consists of tower base, tower body, tower
building and a wireless mast. The main structure of the T.V. Tower is a reinforced concrete cone
shell with the diameter of the cone varying linearly along the height. Its external base section
diameter section is 16m and that of the top section is 3.9m. In the analysis of wind-induced
vibration of the tower, the structure is treated as an 18 lumped mass system. Li (1995)
investigated free vibration of the tower. The geometric dimension, mass and stiffness distributions
of the Wuhan T.V. tower are listed in Table 1.

Li et al. (1993b) conducted a detailed statistical analysis of successive years of climatological
data for the region of Wuhan, P.R. China. They obtained the probability distribution function

150.207

121.323

111273
Ty 101.173

11.80m

e

Fig. 2 Wuahn T.V. Tower
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(PFD) of the maximum local wind speed (the averaging time is ten minutes) in the n years [F(¥)],
which can be adopted for the present dynamic reliability analysis for this T.V. tower. They also
found that strong wind in Wuhan City usually occurs in NNE-NE direction, and the
corresponding F(v) in NNE-NE direction was obtained by Li ez al. (1993b).

As suggested by Li et al. (1993b), the wind velocity at the location of the tower is taken as

V@)=V (10)(%) | (63)

in which V (z) is the mean wind speed at height z.

In the dynamic reliability analysis for the T.V. tower, the top displacement response of this
tower is taken as the critical index; Davenport's wind speed spectrum is adopted and the
coefficient of ground roughness, K, is taken as 0.003. The calculated results of the dynamic
reliability analysis are shown in Fig. 3, in which curve 1 represents the results computed by the
Monte Carlo simulation; curve 2 and curve 3 correspond to the dynamic reliability results
calculated based on the PDF of the maximum local wind speed for all the wind directions and for
NNE-NE direction only, respectively. It can be seen that the calculated results by the proposed
procedure are in good agreement with the simulated data by the Monte Carlo method. In
particular, when n<10 years, the three sets of data are almost identical, when n=100 years, the
difference between them is less than 10 per cent, demonstrating the good applicability of the
proposed procedure for the evaluation of structural dynamic reliability.

Table 1. The geometric dimension, mass and stiffness distributions of the T.V. Tower

Lumped Mass Height Diameter Mass Stiffness
No. m m Kg EJ; X 10" KN.m*

0 0 16

1 4.975 15 72,571 28,440
2 17.412 12.5 66,739 26,320
3 22.387 11.5 60,849 24,157
4 27.377 10.875 54,192 17,064
5 29.876 10.75 59,317 22,388
6 32.375 10.625 41,658 9,582
7. 34.874 10.5 57,256 24,844
8 104.853 7.0 37,208 8,622
9 108.853 7.0 20,735 1,426
10 110.803 7.6 20,735 1,428
11 114.253 7.0 37,935 2,847
12 133.653 7.0 20,735 : 1,428
13 138.622 5.88 20,735 1,428
14 139.864 5.6 20,281 837
15 142.303 45 14,314 374
16 164.203 4.5 14,324 374
17 156.685 39 9,759 196

j—
oo

187 3.9 9,759 196




Evaluation of structural dynamic responses by stochastic finite element method 487

Iy

IS

2

0.8¢

_ 1—Monte Carlo Simulation
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Dynamic Reliability
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Fig. 3 Dynamic reliability of Wuhan T.V. Tower

5. Numerical Example 2

In the last numerical example, an overall good agreement between the results calculated by the
proposed procedure and those simulated by the Monte Carlo method has provided confidence on
the proposed computational method and computer programme. Another numerical example
utilising a chimney 60m high modelled as a lumped-mass system is analysed here to study the
effect of the variation in structural parameters on the structural dynamic reliability. This stack is
divided into 8 sections for computation purpose. The Young's modulus of the chimney is 3000
MPa (the coefficient of variation,V=0.01). The structural parameters are listed in Table 2. The top
displacement response of this chimney is taken as the critical index in dynamic reliability analysis.
The dynamic response of this chimney, considering the randomness of structural stiffness and
wind loading, is evaluated according to the procedures proposed in the preceding sections. The
results of dynamic reliability analysis of this high-rise structure under wind action computed by
the present method are given in Table 3. The effects of structural critical damping ratio £ and
resistance represepted by the permissible displacement which is a random variable on dynamic
reliability of this structure can be clearly seen through the calculated results presented in Table 3.
It is clear that the dynamic reliability of this structure becomes larger as the structural damping
and resistance increase.

Table 4 presents the effect of the variation of the structural resistance on the dynamic reliability
of this stack. It is clear that the larger the structural resistance variation is, the lower its dynamic
reliability is. In particular, this effect becomes more pronounced at large value of V. It should be
noted that the variation of structural resistance is inevitable during a long period (e.g., 50 or 100
years) and it is random in nature. The calculated results of this chimney show that the variation in

Table 2 Structural parameters

Section length (meter) 5.0 8.0 7.0 75 7.5 75 75 10.0
Outside diameter (meter) 5.03 4.61 431 4.02 3.72 3.42 3.12 277
Section weight (KN) 1112 1307 944 899 815 623 577 520
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Table 3 The effects of damping ratio £ and structural resistance (coefficient of variation V=0) on
structural dynamic reliability

7 £ 10 (year) 20 (year) 30 (year) 40 (year) 50 (year)
H/100 0.02 0.9976 0.9967 0.9954 0.9937 0.9926
H/100 0.03 0.9984 0.9978 0.9971 0.9968 0.9963
H/200 0.02 0.8872 0.7880 0.7700 0.6216 0.5522
H/200 0.03 0.9443 0.8928 0.8442 0.7981 0.7543

Note: H is the chimney height (60m).

Table 4 The effects of structural resistance variation on the structural dynamic reliability

7 4 P (50 Years)
H/100, V=0 0.02 0.9926
H/100, V=0.11 0.02 0.9912
H/100, V=0.25 0.02 0.9322

structural parameters indeed influence the first passage probability of this structure. These
parameters such as the structural resistance should be treated as random variables in the evaluation
of structural dynamic reliability. '

6. Conclusions

In this paper, structural parametric uncertainties and structural resistance were treated as random
variables, and dynamic wind load was considered as a random process. Structural dynamic
responses under the action of stochastic wind loads are evaluated by the stochastic finite element
method. The formulas for structural dynamic reliability analysis considering the randomness of
structural resistance and external dynamic loading are proposed. Two numerical examples of high-
rise structures are presented to illustrate the proposed methodology. The calculated results
demonstrate the good applicability of the proposed procedure and that the variation in structural
parameters indeed influences the structural responses and dynamic reliability.

oy
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Appendix

When a structural stiffness matrix is a stochastic matrix, the natural frequency and mode shape of the
structure are thus random variables. In this case, the characteristic equations can be expressed as

(K]1-A[M]{6}=0 (A1)
(K1-AMD{s} =- (KD - APIMD{¢} (A2)
(K1-ZMD{$D} =~ (KP1 - APIM D9} — (K1 - ADMD{o"} — (K] - APM (oD} (A3)

Because Eq. (A.1) is a deterministic equation, the eigenvalues A; and the corresponding eigenvectors
{¢};, (=1, 2, ..) can be determined by conventional eigensolution procedures. According to the
orthogonality properties of mode shapes we assume

5 (oY Mg} =1 (A4)
Using the symmetry behaviour of matrix yields the transposition of Eq. (A.1) as follows
{6} (K1-A[M]D={0}" (A5)
Letting the left-hand of Eq. (A.2) multiplication by {¢}T and according to Eq. (A.5) lead to
{0} =— {6} (K1 - M D{9} (A.6)
then
A0 ={¢} KON} (A7)

Because the coefficient determinant of {¢{V} is equal to zero, we can not directly find {¢V} in Eq.
(A.2). Thus, it is necessary to make the following assumption.

{#} MoV} =0 (A-8)
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Then, Eq. (A.2) and Eq. (A.8) can be unified as

{[IZ] -7 [M]] o)

i =

0 (A9)

kO - 20|
By M] - &

or
[C1{6} =[D,){6} (A.10)
in which
(K]~ ZM) (K]~ H0M ]
Ca=l Gy | PI="] o

The matrix ([C,]'[C.]) is a non-singular matrix. Letting the left-hand of Eq. (A.10) multiplication by
[C.]", we can obtain

{6M}y =(C I [C.DC D1 ){¢} (A1)

The procedure of solving the eigenvalues A,” and eigenvectors ¢, of Eq. (A.3) is similar to that of
Eq. (A.2). Letting left-hand multiplication by {¢}? for Eq. (A.3) yields,

(Y IKPHPY - AP + {8} (KPP} + [KPN9PH =0 (A12)

The assumption given in Eq. (A.8) is adopted in the derivation for the above equation. From the
above equation, we obtain

MP = {8} (KUY + KOO} + KOO (A.13)
Similar to Eq. (A.8), the following assumption is made, that is
{8} MK} + {oM} M)V} =0 (A.14)
Eq. (A.14) and Eq. (A.3) can be unified as
[C1 8P} =~ [D1{9} + [E o} + [E; oD} (A.15)
where
{[K,-?)]—&s?)w]} (KD - 2{0[M]
Dy]=- 0 = 3 (k=i or j) (A.16)
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From Eq. (A.15) we can obtain the following equation
{67} = (CJICDCI -ID I} + [E; Ko} + [E; {6} (A.17)





