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Design of sliding-type base isolators by the
concept of equivalent damping
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Abstract. One problem with base isolators of the sliding type is that their dynamic responses are
nonlinear, which cannot be solved in an easy manner, as distinction must be made between the sliding
and non-sliding phases. The lack of a simple method for analyzing structures installed with base
isolators is one of the obstacles encountered in application of these devices. As an initial effort toward
simplification of the analysis procedure for base-isolated structures, an approach will be proposed in
this paper for computing the equivalent damping for the resilient-friction base isolators (R-FBI), based
on the condition that the sum of the least squares of errors of the linearized response with reference to
the original nonlinear one is a minimum. With the aid of equivalent damping, the original nonlinear
system can be replaced by a linear one, which can then be solved by methods readily available. In this
paper, equivalent damping curves are established for all ranges of the parameters that characterize the
R-FBI for some design spectra.
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1. Introduction

Base isolators with sliding devices have become an effective tool for reducing the earthquake
forces transmitted to the superstructure, because they are rather insensitive to the frequency
contents and amplitudes of ground excitations, compared with base isolators of the other types,
such as the rubber bearings. However, to solve the dynamic response of structures installed with
sliding-type base isolators is not always easy, as distinction must be made between the sliding and
non-sliding phases in the time-history response, each of which is governed by a different set of
equations (Yang et al. 1990). It is the transition between the two phases that makes the problem a
nonlinear one, which cannot be solved by structural engineers using methods readily available,
such as the method of modal superposition. Partly because of this, the use of base isolators has
not evolved as a mature tool in the design of structures against earthquakes. As an initial effort
toward simplification of the analysis procedure for base-isolated structures, an approach will be
proposed in this paper for rendering the original nonlinear system involving sliding and non-
sliding phases to a linear one using the concept of equivalent damping, based on the condition
that the sum of the least squares of errors of the linearized response with reference to the original
nonlinear one is a minimum.
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Fig. 1 Resilient-friction base isolator

For the present purposes, the resilient-friction base isolator (R-FBI) is taken as the vehicle of
illustration. The R-FBI system, proposed by the University of Utah, is composed of a set of flat
rings which can slide on each other with a central rubber core and/or peripheral rubber cores (Fig.
1). When under the earthquake excitation, the interfacial friction force acts in parallel with the
elastic force in the rubber. This type of isolator combines the beneficial effect of friction damping
with that of the resiliency of rubber (Mostaghel and Khodaverdian 1987). In this paper, it will be
demonstrated that for a specific design spectrum, equivalent damping curves can be established
for all ranges of the parameters that characterize the isolator. With these curves made available, a
nonlinear base-isolated structure can be replaced by a linear one, which can then be analyzed by
structural engineers using methods that are readily available for linear problems.

2. Concept of fictitious spring

For a structure that is excited horizontally and allowed to slide on the ground, two phases can
be identified for its time-history response. In the non-sliding phase, the base shear of the system is
smaller than the frictional resistance, and the foundation raft of the structure moves with the
ground. Obviously, the structure can be treated as it were fixed on the ground in this phase.
Whenever the base shear of the structure exceeds the frictional resistance, the structure will switch
to the sliding phase. To describe the motion of the structure in sliding, the mass of the foundation
raft placed over the isolator should be considered in addition to that of the structure. This will
result in a system with one more degree of freedom (DOF) compared with that in the non-sliding
phase. Although the behavior of the structure in each individual phase is linear, the transition of
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the structure between the two phases is nonlinear, with different numbers of DOFs required for
each phase.

To overcome the numerical difficulties brought by phase transition, it was suggested that the
sliding mechanism be replaced by a fictitious spring, with its stiffness set to zero and a large
number for the sliding and non-sliding phases, respectively, in assembling the equations of motion
for the base-isolated structure. For the non-sliding phase, the static frictional force acting on the
contact surfaces is computed as if it were generated by the fictitious spring. However, when the
structure switches to the sliding phase, the dynamic frictional force acting on the sliding surfaces
is computed not as the fictitious spring force, but as the product of the coefficient of friction by
the total normal force of the structure, which remains constant throughout the process of sliding
(Yang et al. 1990). By so doing, a system that contains different numbers of DOFs for describing
the sliding and non-sliding phases can be treated by equations of the same form. Nevertheless,
decision must be made concerning the transition between the two phases.

3. Equations of motion

The R-FBI device consists of only a single sliding surface. Referring to the schematic model for
the base-isolated system in Fig. 2, we let m, ¢, and k respectively denote the mass, damping, and
stiffness of the superstructure, M the mass of the foundation raft, K and C the stiffness and
damping of the isolator, and k; the stiffness of the fictitious spring replacing the sliding surface.
The equations of motion for the base-isolated system shown in Fig. 2 can be written as:

(a) non-sliding phase:
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Fig. 2 Mathematical model for R-FBI
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(b) sliding phase:
m 0 Ul c —C Ul
e + . +
0M| U, — c+C| |U,

where X, is the ground acceleration, g the acceleration of gravity, u, the coefficient of dynamic
friction, sgn(U,) the sign of U, and U, and U, respectively denote the displacement of the
superstructure and the foundation raft relative to the ground. As can be seen, it is the term with
sgn(U ,) that makes the entire system nonlinear.

The condition for the structure to remain in the non-sliding phase is: |[X, | <psg and U,=0,
where y; is the coefficient of static friction. By using a large stiffness ; for the fictitious spring,
the elongation of the fictitious spring will be negligibly small. The static frictional force F,
existing between the foundation raft and the ground during this phase is equal to the spring force,
which can be computed as the product of the stiffness by elongation of the fictitious spring.

On the other hand, the condition for the structure to remain in the sliding phase is: |X¢| > usg
or U, =+ 0. Regardless of the fact that the fictitious spring force is zero due to the use of zero
spring constant, k=0, the dynamic frictional force F, should be computed as the product of the
frictional coefficient by the total normal force of the structure according to Coulomb's law of
friction, and treated as if it were generated by the fictitious spring. The procedures for conducting
the step-by-step time-history analysis based on the system equations in Eqs. (1) and (2) using the
Newmark f8 method with constant average acceleration, along with the formulas for detecting the
transition time based on the extrapolation schemes, have been presented in Yang e al. (1990). It
is not the purpose herein to recapitulate all such procedures.

—*k k+ U,[ = —mg—sgn(Uz)udg(m +M) 2

k — | |U: -mX
K

4. Linearization by equivalent damping

As can be seen from Eq. (2), the nonhneanty of the base-isolated system originates mainly
from the term containing sgn(U ,)ug(m+M) in the equations of motion for the sliding phase. By
the method of stochastic equivalent linearization (Constantinou and Tadjbakhsh 1984), this term
can be replaced by a term defined as the product of an equivalent damping C, by the velocity U,

of the foundation raft relative to the ground. The solution of the original nonlinear system is then
reduced to that of an equivalent linearized system. Here, the error e brought by linearization is

e =CeU2—sgn(l22)udg(m +M) 3)

Theoretically, both U, and sgn(U,) are continuous functions of time ¢. However, in the step-by-
step time-history analysis, both U, and sgn(U ) appear in discrete form, that is,

U,=Uyt)=X,
sgn(U o(¢)) = sgn(U o(%;)) = sgn(X ;) 4)
Accordingly, Eq. (3) can be rewritten,
e =e(t)=C.X, —sgn(X g (m + M) 5)

The errors can be minimized by making the sum of their squares a minimum. Define the sum of



Design of sliding-type base isolators by the concept of equivalent damping 303

the squares of errors as

E =i(ei)2=i [CeXi —sgn(Xi)/,Ldg(m +M)P?

=" [C2X 2= 2%, Cesgn(X g (m + M) + pigm + M YY) ©)
i=1
Let the derivative of E with respect to C, equal zero,
oF
=0 7
dCe @
or
3 [CeX 2= 2K sgn(X g (m + M)] =0 ®
i=1

from which it can be solved
_ Zin:lXngn(Xi)”dg(m +M)

ZZLIX i
This is exactly the formula for computing the equivalent damping. By the concept of equivalent
damping, the original nonlinear equation in Eq. (2) can be approximately linearized as

c - m 0| |U, c — U, kK -k U, -mX
< c+C+C |0 M| U,[ T|= c+c+c | U, | k+k| U, = -mx,[ 1O

Since the system has been linearized, there is no need to consider the transition between the
sliding and non-sliding phases. For the present purposes, both the original nonlinear equations, i.e.,
Egs. (1) and (2), and the equivalent linearized equations, i.e., Eq. (10), will be solved by the
Newmark B method with constant average acceleration. These results can then be substituted into
Eq. (9) to yield the equivalent damping.

In this study, the equivalent damping curves will be established for some specific design spectra
for all ranges of the parameters that characterize the R-FBI. With these curves made available for
a specific design spectrum, structural engineers can pick up from these curves a proper value of
equivalent damping for the R-FBI to be installed on the base of the structure, and then proceed
with analysis of the base-isolated structure using methods that are suitable for linear systems. One
advantage with this approach is that there is virtually no need to solve the original nonlinear
problems involving the transition of non-sliding and sliding phases, while the analysis of base-
isolated structures can basically be conducted using methods that are readily available.

C. )

5. Artificial earthquakes

As was stated previously, the objective of this paper is to establish the equivalent damping
curves for the R-FBI devices with respect to a specific (acceleration) design spectrum. To this end,
the time-history ground acceleration X, or the so-called artificial earthquake, corresponding to



304 Yeong-Bin Yang and Yi-Chang Chen

the specified spectrum should first be created, which serves as the input to the original system
equations given in Eqgs. (1) and (2), and the linearized ones in Eq. (10). The following is a
summary of the procedure, following basically that of Kaul (1978), for creating the ground
acceleration X ; () from the design spectrum.

The equation of motion for a single DOF system under the excitation X ;(7) is

X (6)+ 200X () + PX () =- X4 () (11)
where X(¢) is the time-history response, @ the natural frequency of vibration, and { the damping

ratio of the single-DOF system. Let Xa(t) denote the absolute acceleration of the system, i.e.,
X.(t)=X (t)+X 4(¢). Also, let 1, denote the time at which | X.(2)| reaches its maximum, that is,

F(@)=X u(tn) (12)

For a specific damping ratio {, the occurrence time #, for the peak response will depend on the
frequency @, and so will F(w). The absolute acceleration spectrum S(w) is then

S(w)= |F(o)| (13)

For the single-DOF system subject to the ground excitation X ,(¢), the absolute acceleration X . (¢)
can be written as

Xa(t)=j: X (Dht -1dt (14)

where A(t) is the impulse response function for the absolute acceleration of the system.

Now, let the acceleration spectrum be changed by an amount OF(w), which may also be
interpreted as the difference between the target spectrum and the computed spectrum to be
discussed later on. Then for an acceleration spectrum F(w) + 6F(w), the ground acceleration X ()
should be replaced by X ,(z)+ 8X,(¢), the absolute acceleration X,.(t) by X, (t)+ 8X . (¢), and
the occurrence time ¢, for the peak response by ¢,+6t,. With reference to Fig. 3, the change OF(w)
in F(w) can be written as

SF (@) =X o(tm + 8tn) + X a (b + &) — X u(tw) (15)
By the use of Eq. (14), the preceding equation can be approximated as
SF(@)=Xaltn) Ot + [ 8K y(Dh(tn —DdT (16)
0
X, 4
X 1. ty+ Oty y X, (t,+6t,)

+6X,(t,,+6t)

@ (b)
Fig. 3 Occurrence of peak response for acceleration spectrum: (a) F(w); (b) F(w)+6F(w)
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Since the absolute acceleration X «(t) attains its extremum at ¢t =1, its first derivative must vanish
at r=t,.. Thus, the preceding equation reduces to

SF(@)=[ " & () hitn ~Dd7 (17)

Here, it can be seen that assuming the occurrence time ¢, for the peak response to remain
unaltered, the change 6F(w) in response spectrum can be computed as a result of a small change
in ground acceleration X ¢ (¢).

Conversely, if the occurrence time ¢, for the peak response is known and a small change
5F(a)) in response spectrum is desired, the corresponding change in X ,(¢) can be obtained by
inversion of the integral in Eq. (17). This forms the basis for creating the artificial earthquake,
consistent with the given spectrum. In general, it is assumed that the target spectrum S(w) is to be
matched at » discrete points @, i=1, 2, 3, ..., n, i.e.,

6F(a>,.)=j°° & o (D) byt - D dT; i=1,2,.0m (18)

in which it should be noted that the impulse function is evaluated when the frequency @, takes the
value @, Further, it is assumed that the change &X 4 (r) in ground acceleration can be expressed as
a linear combination of » known linearly independent functions f(f),

&)=Y a,£,0) (19)
=1

where ag; are the coefficients to be determined. Substituting Eq. (19) into Eq. (18) yields the
following simultaneous equations:

ZA a;,=b;; i=1,2,..,n (20)

ije

where

Ay =[" F;@hty -Ddr
b; = OF (a) (21)

Here, the terms b; should be interpreted as the deviations of the computed spectrum from the
target spectrum evaluated at the discrete points. Since A; and b; are known, Eq. (20) can be solved
to yield a;, and the change 8X 4 (¢) in earthquake acceleratlon can be computed accordingly using
Eq. (19). It follows that the earthquake excitation X ;(¢) can be iteratively updated until the target
spectrum is matched by the computed spectrum within a prescribed degree of tolerance. It should
be noted that using the above procedure, one needs to start from an initial estimate of the
earthquake excitation X 4(¢) and the corresponding spectrum S(); the latter can be computed
using conventional integration procedures, say, by the Newmark B method. In this study, the
number of matching points is taken as n=50.

For the present purposes, the design spectra shown in Figs. 4 and 5 for the hard and soft soils,
respectively, in Taiwan with 2 and 5 percent damping are considered (Chen 1997). Corresponding
to these spectra, the artificial earthquakes generated using the scheme described above have been
plotted in Figs. 6 and 7, which will be used as the ground excitations in the numerical studies to
follow.
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Fig. 4 Design spectra for hard soil: (a) 2% damping: (b) 5% damping
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Fig. 5 Design spectra for soft soil: (a) 2% damping: (b) 5% damping
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Fig. 6 Artificial earthquakes for hard soil: (a) 2% damping; (b) 5% damping

6. Numerical applications

Consider a single-DOF base-isolated system with the frequency of vibration specified as ®=10
rad/s for the superstructure, and with the following properties for the isolator: @=5 rad/s, {=5%,
static and dynamic coefficients of friction p=u,=0.04. In addition, the followings are used in the
time-history analysis: Ar=0.001 s, k,=1,000 k. For the present purposes, the mass ratio is defined as
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Fig. 7 Artificial earthquakes for soft soil: (a) 2% damping; (b) 5% damping
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m
n= m+M @2)
and throughout the analysis, a value of 1=1/3 is selected.

As an illustration, for the case of hard soils with 5% of damping, the responses computed for
the displacement, velocity, and acceleration of the superstructure relative to the ground using the
present linearized procedure have been compared with those of the original nonlinear system in
Figs. 8-10. From these figures, it is seen that although the displacements calculated from the
linearized theory shows certain deviations from that of the original nonlinear system, good
agreement has been achieved for the velocity and acceleration calculated from the two theories.
From an engineer's point of view, it is believed that the great simplification in method of analysis
brought by the concept of equivalent damping can outweigh the slight loss in accuracy. The
equivalent damping curves constructed for both the hard and soft soils, with 2% and 5% of
damping, and for various mass ratios 7 have been plotted in Figs. 11-14, which appear to be
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Fig. 13 Equivalent damping for F-RBI (soft soil, {=2%)
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Fig. 14 Equivalent damping for F-RBI (soft soil, {=5%)
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more or less linear within the practical range of application.

As the equivalent damping curves have been made for the R-FBI for some specific design
spectra, given the properties of the structure and the F-RBI, structural engineers can interpolate
from these curves the equivalent damping for the particular isolation device considered, and
proceed with calculation of the structural responses using methods that are suitable for linear
problems. Such an approach has the advantage that there is no need to deal with the original
nonlinear dynamic problem using the time-history integration technique, which may not be readily
available to structural engineers.

7. Conclusions

By the concept of equivalent damping, the original nonlinear dynamic problem of a base-
isolated system involving non-sliding and sliding phases can be approximated by a linear one. In
this paper, equivalent damping curves have been constructed for structures installed with resilient-
friction base isolators (R-FBI) for some specific design spectra. As the equivalent damping can be
found from the curves established specifically for the R-FBI devices with respect to a design
spectrum, structural engineers can proceed with analysis of the base-isolated structures using the
equivalent linear systems, with methods that are readily available. Although the replacement of the
original nonlinear system by a linear one may result in some approximation for the displacement
of the superstructure, it is believed that, from an engineer's point of view, the great simplification
in method of analysis can outweigh the slight loss in accuracy, which is beneficial concerning
promotion of the R-FBI devices in aseismic engineering.
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