Structural Engineering and Mechanics, Vol. 8, No. 3 (1999) 285-297 285
DOI: http://dx.doi.org/10.12989/sem.1999.8.3.285

Identification of damage using natural
frequencies and system moments
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Abstract. A method is presented to find the location and magnitude of damage in a structure using
data from dynamic tests. The test data include a combination of natural frequency measurements, taken
before and after the occurrence of damage, and response measurements taken after damage. An
algorithm is developed to identify localized increases in the flexibility of the structural members.
Increases in flexibility are attributed to damage. The algorithm uses the sensitivity of the flexibility
matrix to changes in the natural frequencies of the structure to identify the damage. A set of under-
determined equations is solved using an objective function which is derived from measurements of the
system moments. Damage ranging from 10 to 60% increase in the flexibility of a member was
successfully identified in a 50 d.o.f. structure, using a small number of natural frequency and velocity
measurements.
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1. Introduction

Research into the area of structural identification has originated in the fields of aeronautical and
mechanical engineering. The demands in such fields are to identify the model of a system given
either response data or modal data, and to use the identified model to predict the full dynamic
response. An aspect of this area of research is the identification of a spatial model (the distribution
of stiffness, mass and damping in the system matrices). Solutions to this problem have been
obtained assuming that the identified system is a perturbation of the original spatial model
(Collins et al. 1974, Baruch 1978, Chen and Garba 1980, Kabe 1985, Kuo and Wada 1987). In
such work, dynamic-test data are used to update the structural parameters of a finite element
model such that the model reproduces measurements of modal parameters, or response. This
procedure has been adopted and developed to assess damage (or changes in the structural
parameters) using dynamic data (Cawley and Adams 1979, Hassiotis and Jeong 1995).

Natural frequencies depend on the global properties of a system and thus, can be used with
frequency-domain identification procedures to find the location and the magnitude of changes in
the stiffness or flexibility. However, used alone, these data cannot provide reliable results
especially because several combinations of damage in the structure can produce the same changes
in the natural frequencies. Cawley and Adams (1979) were among the first to use an incomplete
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set of measured natural frequencies to identify the location and provide a rough estimate of
structural damage. All possible elements of a structure were checked individually to obtain the
location of the damage, which makes its implementation to larger structures and multiple damages
difficult. Another drawback is that the magnitude of the stiffness change is given only in a
qualitative sense. Hassiotis and Jeong (1993, 1995) introduced an optimization algorithm to
identify both the location and the magnitude of single or multiple damage using changes in the
natural frequencies. The algorithm was used to detect damage in a 90 d.o.f frame, and was found
to give good results if the number of damaged members is kept below three. Pabst and Hagedom
(1993) used the changes in the frequencies to identify the location of a single crack on a
cantilever beam.

If a set of mode shapes is known in addition to the natural frequencies, the identification
problem becomes more robust. Most work in this area uses measurements of eigenvalues and
eigenvectors for off-line identification of stiffness (Stubbs et al. 1990, Smith and Beattie 1991,
Lindner et al. 1993, Sheinman 1993, Kaouk and Zimmerman 1994, Lim and Kashangaki 1994,
Liu 1995). An on-line identification procedure to find the severity and location of damage using
natural frequencies and mode shapes has been developed by Tsou and Shen (1994) using neural
networks. A principal disadvantage in these approaches is their dependence on a set of measured
mode shapes. Accurate measurements of mode shapes is practically impossible to obtain.

Several investigators approached the problem of damage identification in the time domain. In
most cases off-line techniques have been developed (Beck and Katafygiotis 1992, Koh et al.
1992). An algorithm for on-line identification of damage using time-response was introduced by
Lin et al. (1990). These methods can only give an approximate location of the damage. If a
possible function of the time-dependent stiffness in each member can be supplied by the
investigator, the degradation of the stiffness can also be found. However, it is impractical to
assume that such functions can be supplied for every member of the structure.

In summary, a robust algorithm to identify damage with easily accessible measurements does
not exist. Traditionally, the time-domain and the frequency-domain identification procedures have
been seen or developed as rivals. However, neither procedure can be used alone to identify
damage. In this paper, time-domain and frequency-domain data will be used together to find the
changes in the flexibility of the structure.

1.1. Eigenvalue sensitivity analysis

The equation of motion of an undamped mechanical system is given by
Mg +Kq =F-u (1)

where M is an nXn mass matrix, K is an nXn stiffness matrix, g is an n-vector of nodal
displacements, F is an n X [ matrix which indicates the location of the force input, and & is an X1
vector of forcing functions.

The assumption of a harmonic solution for ¢ leads to the eigenvalue problem

(K = AM)p, =0 e)

where the eigenvalue 4, is the square of the circular natural frequency @, and the eigenvector ¢, is
the corresponding natural mode shape of the system.
In terms of the flexibility matrix, R=K ', the eigenvalue problem can be written as:
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Damage of the original structure is assumed to cause changes of the flexibility matrix by an
amount O6R. It is further assumed that the damage is not accompanied by a change in mass. The
eigenvalue problem of the damaged structure is given by

——IT-R+R 4
Gragir! ~ (R + 8RM)6, = @
where it is assumed that the eigenvalues change by 4. Although the eigenvectors also change
due to the damage by an amount 8¢, we will not use such change in the identification procedure.
We assume herein that data is available on the natural frequencies only (The errors introduced by
the changes in the eigenvectors have been used in the past to provide an optimality criterion
(Hassiotis and Jeong 1995).

Eq. (4) can be written as

oA
- RM ORM ¢, =0 5
0 Aoy M - M ®
and, by using Eq. (3), it can be simplified to
—0.
e 1p, - Mg, = ©

o + %) +5&)

The orthogonality condition of the eigenvectors can be used to find the sensitivity equations that
relate the changes of the natural frequencies to the parameters of the structure. First, Eq. (6) is
multiplied by ¢M

M ¢, g — oM RM ¢, =0 Q)
where the term that carries the natural frequency information is defined by
—8A.
8 = o 8)
A% + 6A;)
Then, the orthogonality condition
¢'M ¢; =§; ©)
is used to get
= ¢M GRM ¢, (10)

The change in the global flexibility matrix, R, can be expanded as a linear combination of the
changes in the flexibility matrices of each element, R/,

R =3 R; &, (11)
=1

where n, is the total number of elements in the structure. By substituting Eq. (11) into Eq. (10)
we get the sensitivity equations as
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g =Y OTMR;M 9,5, (12)
=
or
Doér=g (13)

where g is an m-vector of eigenvalue data, dr is an n.-vector of the unknown changes in the
flexibility, D is an m X n-matrix of elements D(i, j)=¢, MRM¢,.

The simultaneous equations relate the change of the flexibilities of each element to the changes
in the frequencies of the structure. If g is available through measurements, the solution of Eq. (13)
yields the changes in the element flexibilities. Only a small number of natural frequencies can
usually be measured, (m<n), which renders Eq. (13) underdetermined. Since an infinity of
solutions can satisfy them, they can be solved uniquely only by introducing an optimality criterion.

1.2. Moments of the impulse response as optimality criteria

The optimality criterion needed can be derived from several approaches. In general, least
squares formulations and error minimization lead to a minimization of a criterion in the form:

minimize —;— orT Q or +6r7c (14)

subjectto D or =g
and or 20

Here, ¢ is a given n,-vector, and @ is a given positive definite n, X n-matrix. The inequality
constraint is derived from physical reasoning. In general, damage does not produce a decrease in
flexibility. The problem is a quadratic programming problem with linear equality and inequality
constraints. If Q is positive definite, this problem is strictly convex and a unique solution for ér
can be found using efficient algorithms that have been developed in the field of linear and
nonlinear programming.

In this paper, an optimality criterion is developed using the response of the system after damage,

. . q ’
as this is represented by the moments of the system. By defining a state vector x = [ ‘J, Eq. (1)

can be written as

x =Ax +Bu
y=Cx (15)

where
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Here H is an sXn-matrix of zeroes and ones to indicate the location of the s measurements in
displacement, J is a s X n-matrix of zeroes and ones to indicate the location of the s measurements
in velocity.

The moments of the impulse response at the measurement points are defined by

M =[ tW()dt i=0,1,2,-
0
where
W(t)=Cer'B

is the impulse response matrix of the system at the measurement points (that is, W, is the
response at output i due to an impulse excitation at input j). Therefore, measurements of the
impulse-response taken at several points in the structure can be used to obtain the system-moment

data.
In theory, the system moments are related to the state-space matrices of the system as follows

M, =CA®B i=0,1,2,- (16)
For i=0 we obtain the first parameter as
M, =JM'F 17)

This parameter does not contain the flexibility matrix R and will not be used in the derivation of
the optimality criterion. The second moment, for i=1, is given by

M,=CA'B (18)
Since A "' can be evaluated as
0 KM
A_l = I 0 (19)
moment M, can be written as
M,=-HRF (20)

The assumption herein is that M, for a lightly damped structure can be measured after the
occurrence of damage. In such cases, a possible optimality criterion can be derived to minimize
the difference between the moment measured after damage, M,, and the one obtained from the
model of the damaged structure, — H(R+6R)F:

minimize 6R || M,+H(R+OR)F || * (21)
where || - || denotes the Frobenius norm of the expression. The optimization problem becomes
minimize &, || M,+HRF + HR{orF | (22)
k=1

By defining U=HRF (s X[ matrix) and V,=HR/F (s X[ matrix) the Frobenius norm can be rewritten
as

S S MG, UG )+ S Vi, 1) 0¥ 23)
k=1

i=1 j=1
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or

> Y M2, j)+ U, j)+ (3 Vi, ) 8 P+ 2M G, UG, )
k=1

!
i=1 j=1

£2M\(0, )Y, VG, §) 8 +2U G, ) Y, Ve, ) e 24)
k=1 k=1
By dropping the constant term, this can be simplified to
s 1L ne n s I n
YIS Y Vi, ) Ve, ) G+ Y S 2{M G, VG, )
i=1 j=1 p=1 k=1 i=1 j=1 k=1
+U@GE Ve (G, )) ) o (25)
Eq. (25) is equivalent to:
5rTc + % 57Q & (26)

Where’ Cr =Zis2]l' Ml(i’ ]) Vk(i7 J)+U(l7 ]) Vk(i’ ]) and Q(pak)zzlszjl Vk(i’ ]) VP(i’ ])
This optimization criterion can be used for the solution of the optimization problem 14. It can be
shown that Q is a positive definite matrix, hence, the optimization problem is a convex quadratic
optimization.

2. Assessment of damage in frame

To assess the damage in a structure, we first assume that an analytical model exists that
describes the system before the damage. Using this model, we calculate a set of natural
frequencies. Then, a known decrease in stiffness is induced, referred here as the “actual” damage,
and the natural frequencies and the moments of the structure are calculated. These are input as
data into the optimization algorithm, and the “predicted’” damage is calculated. The International
Mathematical and Statistical Libraries (IMSL 1987) were used to solve the eigenvalue and the
optimization problems. '

The proposed algorithm was used to assess damage in a 50 d.o.f. mass-spring system, shown in
Fig. 1. A variable stiffness is assumed through the system, and the value of the stiffness of each
element is given in Table 1. The mass is taken as unity. This system produces a set of
eigenvalues, as shown in Table 2. If the stiffness in any of the elements changes, the eigenvalues
also change. A set of eigenvalues of a damaged state is also given in Table 2.

The correct identification of damage depends on (1) the number of damaged members, and
degree of damage; (2) the amount and type of data available through measurements; and (3) the
location of the measurements. Figs. 2 to 11, summarize the general trend of the solution to the
damage identification problem, using the algorithm described herein. Although a stiffness decrease
of up to 60% is used in this example, the algorithm is capable of predicting a stiffness decrease of
up to 90%. If such damage exists in just a few elements, the assumption that the damaged
structure is within a small perturbation of the undamaged structure is not violated and the
algorithm arrives at the correct identification. However, if such a high degree-of-damage exists in
most of the elements, the small-perturbation assumption is violated and the algorithm might not
arrive at acceptable answers.
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Fig. 1 50-story, 50 d.o.f. frame

Table 1 Stiffness-distribution of 50 d.o.f. system

Elements Stiffness
1-5 50
6-10 45
11-15 40
16-25 35
36-45 30
46-50 20
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Fig. 2 shows the prediction of damage if the stiffness of every element in the 50 d.o.f. structure
is reduced anywhere from 10 to 60%. Successful identification of such extended damage requires
that the response of the structure is measured at every element.

Less data is needed if the reduction of the stiffness occurs in a few elements only. In what
follows, the structure is damaged at six locations by a given percent decrease in the element
stiffness: Elements 2 (30%), 8(10%), 15(40%), 22(50%), 34(20%), and 50(60%). A combination
of data that includes measurements of the natural frequencies before and after damage plus
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Table 2 Eigenvalues of 50 d.o.f. spring-mass structure

Mode Undamaged FEigenvalues Damaged Eigenvalues
1 0.366E-01 0.343E-01
2 0.285E+00 0.276E+00
3 0.774E+00 0.733E+00
4 0.150E+01 0.142E+01
5 0.243E+01 0.230E+01
6 0.365E+01 0.339E+01
7 0.506E+01 0.482E+01
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Fig. 2 Identification of damage using: 1 nat. frequency, 1 force input at d.o.f 50, 50 displacement
measurements (d.o.f. 1, 2, ..., 50)

100

Predicted damage
80 Actual damage T

60—

40

% Decrease in Stiffness

20
|] II (1T III"III.IJLI II
1111 ]|25| I I 1

O UURLUULLL AN T
5 10 15 20 30 35 40 45 50

Element Number

Fig. 3 Identification of damage using: 1 nat. frequency, 15 displacement measurements (d.o.f. 1, 2, 7, §,
10, 11, 20, 21, 30, 31, 40, 41, 50)

displacement records taken at several locations of the structure after damage are needed to identify
the stiffness reductions. The eigenvalues of this state of damage are shown in Table 2.

Fig. 3 shows that 15 displacement records and the change in the first natural frequency do not
constitute enough data to find the damage of the six elements. If the change in three natural
frequencies is known in addition to the system moments, the damage in most elements can be
found, as seen in Fig. 4, in which, damage in Element 34 was erroneously attributed to element
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Fig. 4 Identification of damage using: 3 nat. frequencies, 15 displacement measurements (d.o.f. 1, 2, 7, 8,
10, 11, 20, 21, 30, 31, 40, 41, 50)
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Fig. 5 Identification of damage using: 7 nat. frequencies, 15 displacement measurements (d.o.f. 1, 2, 7, 8,
10, 11, 20, 21, 30, 31, 40, 41, 50)
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Fig. 6 Identification of damage using: 7 nat. frequencies, 10 displacement measurements (d.o.f. 1, 2, 10,
11, 20, 21, 30, 31, 40, 41)

32. If data on seven natural frequencies is available, damage in all elements is found successfully,
as shown in Fig. 5. The increase in the data was not enough to eliminate any spurious damage
that is part of the optimal solution.

Keeping the number of natural frequencies to seven and reducing the number of displacement
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Fig. 7 Identification of damage using: 7 nat. frequencies, no displacement measurements
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Fig. 8 Identification of damage using: 7 nat. frequencies, 15 displacement measurements (d.o.f. 1, 2, 3, ..,
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Fig. 9 Identification of damage using: 7 nat. frequencies, 15 displacement measurements (d.o.f. 36, 37, ...,
50)

measurements to 10, also hurts the identification, as shown in Fig. 6 where the damage of
Element 8 is erroneously attributed to Element 10. The use of natural frequencies alone fails to
identify the damage of the six elements, as seen in Fig. 7.

The location of the displacement measurements affects the identification process significantly.
Figs. 5, 8, and 9 can be compared to show that, in this particular problem, the best identification
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Fig. 10 Identification of damage using: 1 nat. frequency, 22 displacement measurements (d.o.f. 1, 2, ..,
220R 20,21, ..,42,0R 1, 2, 3, 10, 11, 12, ..., 50)
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Fig. 11 Identification of damage using: 3 nat. frequencies, 2 displacement measurements (d.o.f. 1, 2)

was obtained when the 15 displacement measurements were known at degrees-of-freedom one to
15. It can be seen that the identification fails if the 15 measurements are assumed to be at degrees-
of-freedom 36 to 50.

The advantage of using both, natural frequencies and displacement measurements, is
accentuated in the results shown in Figs. 10 and 11. To identify the single damage of Element 22,
it requires either (1) 1 natural frequency plus 20 displacement measurements or (2) 3 natural
frequencies plus 2 displacement measurements.

In summary, the quality of the damage identification is a function of the amount of data that
can be included in the solution. The identification process arrives at excellent results when a
dynamic measurement exists for every element. In such cases, the number of unknown & is equal
to the number of measurements, and the optimal solution is very close to the exact solution (for
either single or multiple damage sites). However, such a large number of measurements cannot be
expected to be taken from a real structure. Fortunately, a much smaller amount of data is needed
for the exact identification of damage in one element. To find damage when it occurs in more
than one element, we must increase the amount of information in the problem. Erroneous
solutions or spurious damage can be eliminated with the inclusion of more and more data. The
amount of data that is needed is problem-specific and depends mainly on (1) the number of
damaged sites that are expected to exist in the structure, and (2) the accuracy of identification that
is needed.
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3. Conclusions

An identification algorithm has been developed to find the location and the magnitude of
damage in multi-degree-of-freedom structures. The algorithm is a quadratic optimization problem
that depends on the relationship of the parameters of the structure to (1) the natural frequencies of
the structure, and (2) the moments of the impulse response of the structure.

The identification algorithm was tested for its ability to predict the damage in a 50 d.o.f. spring-
mass structure. Parametric studies on such structure lead to the following conclusions:

+ The combination of two types of measurements, natural frequencies and response measurements,
has contributed in the development of an improved algorithm for the identification of damage.

« If damage occurs in a single location, a very limited amount of data can locate and quantify it.

*» The number of measurements needed to find the damage depends on the number of elements
that are damaged. If damage occurs in namy locations, the amount of data needed for correct
identification increases. At the limit, if damage is so widespread as to affect every element in
the structure, it can be identified only with a complete number of measurements taken at every
node of the structure.

» The location of the displacement measurements plays a significant role in the correct
identification of the damage. For the structure that was presented herein, measurements that
were taken close to the base delivered more information into the problem than measurements
taken towards the free end.

Current work to improve this algorithm is being conducted in three areas: (1) the proper
inclusion of data noise; (2) the optimal location of measurements; and (3) the optimal combination
of measurements.
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Notations

The following symbols are used in this paper:

A, B, C  =matrix coefficients of state vector equations
= matrix relating changes in stiffness to changes in eigenvalues
= matrix of force-input locations

= third Markov parameter

= optimality criterion

= stiffness matrix

= element stiffness matrix in global coordinates
= mass matrix

= weighting matrix in quadratic optimization

= vector in linear term of quadratic optimization
=vector of nodal displacements

= vector of residuals

= vector of forcing functions

= state vector

= change of the stiffness matrix

= change of the mass matrix

= vector of element stiffness changes

=vector of the changes in the eigenvalues

= change of an eigenvector

=vector of the eigenvalues of the structure
=an eigenvector of the structure

=natural frequency of the structure
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