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Mode localization and frequency loci veering in
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Abstract. This paper presents an investigation of the mode localization and frequency loci veering
phenomena in an aircraft with disordered external stores. Two theoretical analyses are carried out to
study the occurring mechanism of the two phenomena: condensation technique in the subspace spanned
by modes of interest and geometric mapping theory in the complex plane. Two simple criteria for
predicting the occurrence of the mode localization and frequency loci veering are put forward. The
prediction of the phenomena by our theoretically proposed criteria is in good agreement with that
obtained through numerical calculations of characteristic solutions of the disordered system.
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1. Introduction

Idealized regularities such as perfect periodicity, complete symmetry and substructural identity
are a convenient and frequent assumption in structural analysis. The actual structures, however,
possess irregularities or disorders to a certain extent owing to tolerances in manufacturing,
assemblage and material property. It is well known that the presence of small disorder may
localize the vibration modes, inhibit the propagation of vibration within the structure and confine
the vibrational energy to regions close to the excitation source. This phenomenon, referred to as
mode localization, was first discovered by Anderson (1958) in his study of crystals and excited
considerable interest in the field of solid state physics (e.g., Rosenstock and McGill 1968, Mott
and Davis 1971). A conclusion was drawn that the electron eigenstates may become localized in a
disordered solid.

In recent years there has been tremendous interest amongst the researchers on structural
dynamics in the phenomenon of mode localization, where it has been encountered in assemblies
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of weakly coupled components, such as chains of coupled pendulums (Hodges 1982, Pierre and
Dowell 1987), blade/disc systems (Valero and Bendiksen 1987), space structures (Bendiksen
1987), multispan beams (Bouzit and Pierre 1992, 1995a, Lust, Friedmann and Bendiksen 1990),
and nearly periodic structures (Cai, Cheung and Chan 1995, Cai and Lin 1991, Kissel 1988,
Pierre and Cha 1989). Moreover, strikingly few experiments were carried out to verify the
existence of localized modes predicted analytically and numerically (Bouzit and Pierre 1995b,
Hodges and Woodhouse 1983, Levine-west and Salama 1992, Pierre, Tang and Dowell 1987).
These studies led to some general conclusions regarding the influences of disorders. For example,
localization was found to be most significant in periodic structures under the joint of small
disorder and weak internal coupling. On the other hand, much attention has also been paid to the
behaviour of the frequency loci of the system when mode localization occurs. In a pioneer paper,
Leissa first discovered a fascinating characteristic: when two frequency loci approach each other
and do not cross but rather veer away from each other with high local curvatures (Leissa 1974).
This phenomenon, referred to as frequency loci veering, has aroused interest in some novel
studies on structural dynamics (Kuttler and Sigillito 1981, Perkins and Mote 1986). Hereafter,
investigations have been made on the correlation that the occurrence of frequency loci veering is
associated with the occurrence of mode localization (Chen and Ginsberg 1992, Happawana, Bajaj
and Nwokah 1993, Natsiavas 1993, Pierre 1988). A conclusion is reached that both mode
localization and frequency loci veering are catastrophic type phenomena (Pierre 1988). It is
obvious that these researchers focus their studies on nearly periodic or circular structures, e.g.,
chains of disordered pendulums, mistuned bladed disk assemblies, disordered multispan beams,
irregular space structures, and so on.

Generally speaking, aircraft structures are commonly assumed to be symmetrical and only one
half is needed to be analyzed theoretically. However, it is frequently not the case in reality
because of various non-symmetrical factors. Liu and Zhao studied the mode localization and
frequency loci veering of a simplified horizontal tail system (Liu and Zhao 1994). In fact, such
system is no more than a model of two coupled beams with a few lumped masses. Up to now,
however, few have tried to study the behaviour of an aircraft structure with disorders from
external stores. To this end, a more complicated aircraft model with external stores is established
in the present paper. This model is carefully chosen until it gives main results that agree with
experimental data of the aircraft. The emphasis is on analysing the mechanism of mode
localization and frequency loci veering when disordered parameters are introduced into the
structure. We cope with such theoretical analysis by two methodologies: one is subspace
condensation technique once applied to derivation of perturbation formulas (Chen, Liu and Zhao
1995), the other is geometric method originally put forward (Traintafyllou and Traintafyllou 1991),
but in this paper the later method is improved and widely extended to demonstrate the existence
of mode localization and frequency loci veering, thus allowing one to gain an insight into the two
phenomena with less difficulties. From the proposed procedures, two simple criteria are obtained
which can be used to find the conditions that mode localization and frequency loci veering occur
when disorder of mass or stiffness of the model exists. Numerical calculation results are given to
verify the theoretical predictions and excellent agreement is observed. As a result, the
effectiveness of the derived criteria and the existence of the localized modes and veered frequency
loci in the aircraft have been confirmed. The results obtained are valuable in the analysis of some
non-symmetric effects in aircraft design.
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Fig. 1 Analytical model of an aircraft with external stores

2. Analytical model

Based upon the designed data, a simplified model of an aircraft with external stores having 8
degrees of freedom (hy, h,, oy, &, By, B,, H, 7) is established as shown in Fig. 1. The absolute
displacements of the left and right representative wing sections (their positions relative to the
fuselage are denoted by d) are h, and h, respectively. The elastic torsional angles of the two
wing sections are «; and «, respectively. The relative vertical displacements of the two wing
sections are e, and e, respectively. The pitching angles relative to wing sections of the left and
right external stores are [, and S, respectively. The vertical displacement, rolling angle and
pitching angle of the fuselage are H, v and 6 respectively. It is obvious h,=H + dy+ e,. According
to Lagrange's equations and relationships of the relevant design parameters, the non-dimensional
equations of free vibrations have been derived by Liu (1993) in his study of asymmetric store
flutter. The non-dimensional mass and stiffness matrices are M=[m;], K=[k;] respectively, where
my, k; are given in Appendix A.

When a disorder exists, the left and right structures are asymmetric. Let ug 5 denote the
mass asymmetry of the left and right external stores, and ws+ ws, the stiffness asymmetry.
Without loss of generality, we appoint

Mg =1 +e) g, 5 =(1+&)w, @

where & and g are mass and stiffness disorders respectively. In the following analysis, the
variations of M and K for g, or/and &, are all expressed by eM, and €K, respectively, where € is a
first order parameter.

3. Analysis by condensation technique

The original eigenvalue problem and corresponding normalized condition are expressed by
(Chen, Liu and Zhao 1995)
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Ko=My¢p )
gMo=1 ©)

where the eigenvalues can be written as A,<A,<---<A,=A<:::<A,, n is the order of M or K. This
notation indicates the system has j—i+1 repeated or nearly equal (closely spaced) eigen
frequencies. The corresponding eigen modes are ¢, @, -, @,

The perturbed eigenvalue problem is

K +eK)y=nM +eM)y )

First, we choose several modes to span an eigensubspace ¢, for practical use, the modes
corresponding to the equal or nearly equal frequencies are used. Here, without loss of generality,
the first and second eigenpairs are chosen, ie., A, @ and A, @, ¢=[¢@, @], in which the
perturbed eigensolutions are to be found.

Performing condensation to Eq. (4), we have

'K +eK,) oq = u¢" (M + M) ¢q (&)

where g is two dimensional generalized vector, 1 is the approximate value of 7 in Eq. (4).
The above two dimensional eigenproblem with normalized condition

qT" (M +eMy) ¢q =1 (6)

can be solved to obtain two eigenpairs (u;, q,), (1, 6,), where I is unit matrix.
Then, the first two modes of Eq. (4) are put into an expansion form with respect to £

Vi =¢q +0y; (i=1,2) (7

where &y is a small vector of the same order as & g=(qy;, ¢.)'. So the two eigenvectors of the
perturbed system (4) can be written as

Vi=quP1+4u9,+0(9) g
V=q1p@1+4q,9,+0(9) ®

Because of the symmetry of the original system, its eigenvectors ¢, and ¢, are either symmetric
or antisymmetric. Therefore, if one of A, and A, corresponds to symmetric (antisymmetric) mode,
the other corresponds to antisymmetric (symmetric) mode, and the absolute value of g,,/q;, or g/
¢ approaches 1, then the linear combination of ¢, and ¢, see Eq. (8), will certainly lead to an
outcome that in the mode vibration the amplitudes of one half structure are inevitably larger,
meanwhile those of the other half structure are relatively smaller. Moreover, the loci of u; and y,
versus € veer with each other. In actual symmetric structures, fortunately, two equal or nearly
equal frequencies are frequently bound up with a symmetric mode and an antisymmetric one. This
fact will be found in the following analysis.

From the above physically intrinsic quality exploration, a criterion determining whether or not
the mode localization and frequency loci veering phenomena occur is established, i.e., if

B =|gx/qu| =1, or B’ =|qx/q,,| -1 9)

then the two phenomena may occur.
Now, the condensation technique is used to analyze the simplified aircraft model with stores in



Mode localization and frequency loci veering in an aircraft with external stores 185

Table 1 Eigen frequencies (rad/s) and symmetry of modes in system (2)

Order 1 2 3 4 5 6 7 8
Frequency  27.8897 36.8450 42.1720 422185 157.3689 382.8259 383.1890 555.3913
Symmetry S A A S A S A S

1st mode 2nd mode 1st mode 2nd mode

3rd mode 4th mode 3rd mode 4th mode

5th mode
6th mode : 5th mode 6th mode
8th mode
7th mode 8th mode 7th mode

- -

Fig. 2 Eight modes of the original symmetric  Fig. 3 Eight modes of the disordered system (g,=

system (g=0). The corresponding eight 0.03). The corresponding eight frequencies
frequencies are 27.8897, 36.8450, 42.1720, are 27.8782, 36.8350, 41.8316, 42.1971,
422185, 157.3689, 382.8259, 383.1890, 157.3685, 382.9981, 386.5931, 555.3941
555.3913 (rad/s), respectively (rad/s), respectively

Fig. 1. When &=0, the frequencies and the symmetries of corresponding modes of the original
symmetric system (2) are listed in Table 1, in which “S” denotes the symmetric modes and “A”
denotes the antisymmetric modes. The eight modes are plotted in Fig. 2, where each volume strip
from the left to the right indicates the mode amplitudes of the eight degrees of freedom, i.e., h,, h,,
o, 0, By, By, H, yrespectively.

When a disorder of store is introduced, the mass and stiffness of the left and right external
stores are no longer symmetric. This is to say, the symmetry of the system is violated. As an
example, let £=0.03 in Eq. (1), B in Eq. (9) can be calculated for different combinations of
modes. The obtained results are listed in Table 2, in which “2-3” denotes combination of the
second and third order modes, i.e., ¢=[¢,, @], and so on.

From Table 2, the values of B for only two combinations (3-4 and 6-7) approach 1, in fact,
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Table 2 Values of B for different mode combinations

1-2  .00086 23 .00702 3-5  .00001 4-8  .00001
1-3  .00208 24 .00683 3-6  .00015 5-6  .00008
1-4  .00204 2-5  .00007 37  .00015 57 .00008
1-5  .00009 2-6  .00003 3-8 .00001 5-8  .00001
1-6  .00002 2-7  .00003 4-5  .00001 6-7  .90236
1-7  .00002 2-8  .00003 4-6 ..00015 6-8  .00046
1-8  .00004 3-4 86464 4-7  .00015 7-8  .00046

they exactly are two groups of nearly equal frequencies corresponding to a symmetric mode and
an antisymmetric one in each group (see Table 1). The others of B are much less than 1.
Therefore, for £=0.03 the four modes (3, 4, 6, 7) undergo localization, the corresponding
frequency loci (3, 4 and 6, 7) veer with each other. In order to verify these findings, the eight
modes for £=0.03 are plotted in Fig. 3, from which we can observe that the 1st, 2nd, 5th, 8th
order modes remain nearly unchanged relative to the corresponding four modes plotted in Fig. 2,
however, marked differences occur for the 3rd, 4th, 6th, 7th order modes between Fig. 3 and Fig. 2.
In fact, the four (3, 4, 6, 7) modes in Fig. 3 are localized, but the other four (1, 2, 5, 8) modes are
not. Meanwhile, the eight frequency loci are plotted in Figs. 4(a), (b), from which the veering for
the 3-4 and 6-7 frequency loci is clearly observed, but no veering occurs in the other four
frequency loci. To be seen more clearly, the 3-4 and 6-7 frequency loci are again plotted in Figs.
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Fig. 4 (a) 1st, 2nd, 3rd, 4th frequency loci vs. disorder g, (b) 5th, 6th, 7th, 8th frequency loci vs.
disorder ¢,, (c) 3rd, 4th frequency loci vs. disorder g, (d) 6th, 7th frequency loci vs. disorder &,
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4(c), (d) respectively. These results have completely verified the validity of the criterion (9). For
other values of g, or/and &, in Eq. (1), the same analyses can be made.

4. Analysis by geometric theory

Triantafyllou et al. developed a geometric theory for the analysis of mode localization and
frequency coalescence (Triantafyllou and Triantafyllou 1991). In this section, we will improve and
extend this theory in order to apply it to analyze mode localization and frequency loci veering in
multi-degree-of-freedom systems. To this purpose, we introduce the so called condensation
technique in section 3 into the geometric theory. First, an eigensubspace is spanned by the
eigenvectors corresponding to the several eigenvalues of interest. Then, by using the geometric
method, the analysis can be easily carried out in the subspace. Again, without loss of generality,
the subspace is spanned by the first two eigenvectors. Considering that

‘

22

A’l 0 hll hlZ
¢'K+eK)p=A+eH=|, A Ve hy b

10 g8u 812
FM+eM)o=I +¢G = 01| %€ g gn

where A=diag. (4, A,), I=diag. (1, 1), H=¢'K,¢, G=¢'M,$, h,=h,,, g,=g1, as a result of the
symmetry of the mass and stiffness matrices. Therefore, one can rewrite Eq. (5) as

L0 hy by 10 g1 812
O ).2 te h12 h22 q=# 0 1 +£g12 8»n q (11)

By expanding the eigen equation corresponding to Eq. (11) and neglecting terms higher than
O(&), the following equation can be obtained

A+ —(p,+ep)u+(Ps+eps)=0 (12)
Solving Eq. (12) yields
L=[(p+ep3)£\ps1/[2(1 +py)] (13)

where p/'s are given in Appendix B.
On the basis of Eq. (13), it can be easily concluded that u has a double root if and only if p,=0,
then € can be readily obtained as

e=[-p,£\Np7 —4pepsl/(2pe) (14)

By the geometric theory, if € determined by Eq. (14) is real, a real double root can be obtained,
the loci are bound to crossover; if € is complex, a complex double root can be obtained, then the
geometric structure of a saddle/branch point can be observed. In addition, if the module of ¢ is
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Table 3 Values of ¢ for different mode combinations

1-2 13 1-4 1-5 1-6 1-7
-5.510+i10.07 2.316+i2.864 2.348+12.990 -34.82+i0.9397 -1.979~1.879 -1.980/-1.880
1-8 2-3 2-4 2-5 2-6 2-7
-35.91/-35.15 0.8429+i0.5073 0.8731+i0.5370  -53.60x£i2.387 -2.018/-1.908 -2.018/-1.909
2-8 3-4 3-5 3-6 3-7 3-8
-56.33/-54.66  -6.962e-5+i3.792¢-3 -3.309+i3.738¢-2  -1.361/-1.149  -1.361/~1.149 -3.262/-3.230
4-5 4-6 4-7 4-8 5-6 5-7
-3.145+i3.917e-2 -1.378/~1.164 -1.378/-1.164 -3.376/-3.342  -1.831/-1.785 -1.832/-1.786
5-8 6-7 6-8 7-8
-1633/~-1109 —7.40e-6113.03¢-3 8.8861£i2.260 8.763£i2.201

infinitely small, the mode localization and loci veering phenomena occur. From the analysis, it
can be seen that, on the practical side, to achieve localization and frequency loci veering, one
must consider a system having closely spaced eigenvalues to start with, and then study conditions
of obtaining a non-degenerate saddle point, and as close to the real parameter axis as possible, i.c.,
if

e=g +ig, |egl«1 (153, b)

where i=V-1, then mode localization and frequency loci veering may occur. Conditions (15) can
be regarded as another criterion relative to criterion (9).

The above mentioned procedure is also used to analyze the mode localization and frequency
loci veering of the aircraft model in section 2. € in Eq. (14) is calculated for all of the different
combinations of modes. The obtained results are listed in Table 3.

From Table 3, real values of ¢ (for combinations of 1-6, 1-7, 1-8, 2-6, 2-7, 2-8, 3-6, 3-7, 3-8,
4-6, 4-7, 4-8, 5-6, 5-7, 5-8) correspond to the crossover of loci, so no catastrophic phenomena
may occur. Complex values of & (for combinations of 1-2, 1-3, 1-4, 1-5, 2-3, 2-4, 2-5, 3-4, 3-5,
4-5, 6-7, 6-8, 7-8) satisfy Eq. (15a), but only four of which for combinations of 3-4 and 6-7
satisfy Eq. (15b), too. Therefore, we can deduce that the 3rd, 4th, 6th and 7th order modes are
localized and 3-4, 6-7 frequency loci veer when small disorder is introduced. These conclusions
are exactly in full agreement with that obtained by the condensation technique and the numerical
calculation in section 3, thus also confirming the validity of criterion (15).

5. Conclusions

The aircraft model with external stores has been analyzed. The condensation technique and
improved geometric theory have been used to obtain two criteria for predicting the occurrence of
mode localization and frequency loci veering. From this study, the following main conclusions
may be drawn.

(1) In the case of small disorder of the left and right external stores, i.e., the case of asymmetry
of stores, mode localization and frequency loci veering may occur in the model. It is worthwhile
paying special attention to the influence of disorder on dynamics in the field of aircraft design.

(2) The two criteria are very simple in form and can be used conveniently with less
computation by applying the condensation technique, in which only the eigenpair results of the
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original symmetric system are needed to allow one to perform the analysis.

(3) The main advantage of the geometric method is its conceptual simplicity. However, its
application is somewhat confined in the analysis of systems having many degrees of freedom.
This paper has demonstrated that it is possible to cope with such limitation and extend the
application of this methodology by combining with the condensation procedure.
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Appendix A
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where u,, s, pu are the nondimensional masses of wing, store and fuselage divided by mpb’
respectively, p is the air density, b is the length of wing semichord, u, is the nondimensional rolling
moments of inertia of fuselage divided by mpb’, y,b and yzb are the distances from the centres of
gravity of the wing section and the store respectively to the rotation axis of wing, r,b and rb are the
gyroscopic radii of the wing section and the store respectively, /b is the distance from the hinged point
of the store to the rotation axis of wing, subscript “1” and “2” denote the left and right wings or stores
respectively, Each  (rad/s) denotes the branch frequency corresponding its subscript, ab is the distance
from the midpoint of wing chord to the rotation axis of wing. The following specific parameter values
obtained from the simplified designed data in the case of symmetric structural model are used for the
analysis:

thw =200, py =300, =100, ug =pg =53, a=-033, x,=0.13
rl=0147, 1,=1,=067, xp=xp,=-1 rp=rp=1 b=1 o =a,,=40
g, = By, = 64, W = g, = 230, @y =150, y=1450, 0,= 400

Appendix B

P1=81+8xm Pr=hothg P3=hognthoguthythy Pi=Aoky
Ps=Ayohn+ Al 1y, P6=P3 —4PiPs, P1=2D03—4ps—4Ds, pe=pi —4p,,
Po=PeE +PsE+Ps





