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Abstract. The dynamic response of buried pipelines has gained considcrable importance because
these pipelines perform vital role in conducting cnergy, water, communication and transportation. After
realizing the magnitude of damage, and hence, the human uncomfort and the economical losses,
researchers have paid sincerc attention to this problem. A number of papers havc appeared in the past
which discuss the different aspects of the problem. This paper presents a thcoretical analysis of non-
axisymmetric dynamic response of buried orthotropic cylindrical shell subjected to a moving load along
the axis of the shell. The orthotropic shell has been buried in a homogeneous, isotropic and elastic
medium of infinite extent. A thick shell theory including the effects of rotary inertia and shear
deformation has been uscd. A perfect bond between the shell and the surrounding medium has been
assumed. Results have been obtained for very hard (rocky), medium hard and soft soil surrounding the
shell. The effects of shell orthotropy have been brought out by varying the non-dimensional orthotropic
parameters over a long range. Under these conditions the shell response is studied in axisymmetric
mode as well as in the flexural mode. It is observed that the shell response is significantly affected by
change in orthotropic parameters and also due to change of response mode. It is observed that axial
deformation is large in axisymmetric mode as compared to that in flexural mode.

Key words: buried pipelines; cylindrical shell; dynamic response; moving load; non-axisymmetric
response.

1. Introduction

During the last 15 years, a good deal of research interest has been generated in the dynamic
response of buried pipelines subjected to radial moving load. As they perform a vital role in
modern day life, any damage to these buried pipelines may cause sufferings to mankind over a
vast area. The moving load in the axial direction along the interior of the pipeline is one of the
prominent source of excitation to buried pipelines. It has been shown in the past that the treatment
of pipeline as buried cylindrical shell gives the better ways of explaining the nature of pipe
failures (Singh et al. 1987).

The problem of dynamic response of a cylindrical shell subjected to a moving load has gained
considerable importance in the fields of mechanical, civil and in particular aerospace engineering.
Structures such as rocket, aeroplanes and submarines are subjected to various types of pressure
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pulses generated from the inhomogeneity of the atmosphere or the surrounding fluid medium.
Studies concerning a moving load on a cylindrical shell have been reported by Mindlin and
Bleich (1953), Mann-Nachbar (1962), Jones and Bhuta (1964), Reismann (1968), Huang (1976),
etc. Realizing the frequent use of orthotropic circular cylindrical shells, e.g., in design of chemical
plants and nuclear powered structures, Baker and Herrmann (1966), Jain (1974), Greenberg and
Stavsky (1980) and other researchers studied the various aspects of vibration of orthotropic
cylindrical shells. Mangrum and Burns (1979) analyzed the dynamic response of infinitely long
orthotropic cylindrical shells subjected to an axisymmetric axially moving load. The response of a
cylindrical shell subjected to a non-axially symmetric moving load was considered by Liao and
Kessel (1972).

None of the above cited works concerned with the buried shell structures, because in all the
referred papers shell is either filled with some acoustic medium or an acoustic medium is
surrounding the shell. Chonan (1981) and Datta et al. (1984) have studied the dynamic response
of buried shell subject to a radial moving load when shell is isotropic in nature. However, the
pipes of composite materials, nowadays, are gaining more popularity in pipeline systems with one
important property that strengths and stiffnesses of a composite material in different directions can
be controlled at the time of fabrication of composite pipes. In last decade, some papers have
appeared on dynamic response of buried orthotropic cylindrical shell under moving load (e.g.,
Singh et al. 1988, 1990 & 1991). However, in all these works the response of the shell is
axisymmetric in nature. But, as the orthotropic material possesses different strength and stiffness
in different directions, non-axisymmetric response of orthotropic shells assumes considerable
importance.

The aim of the work reported in this paper, therefore, is to study the non-axisymmetric dynamic
response of orthotropic cylindrical shells embedded in a linearly elastic, homogeneous and
isotropic medium. A thick shell theory including the effects of rotary inertia and shear
deformation has been used. The excitation has been taken in the form of an unsymmetric radial
line load moving along the axis of the shell. The shell has perfectly been bonded to the
surrounding continuum of infinite extent. Results have been obtained for very hard (rocky),
medium hard and soft soil surrounding the shell. For different orthotropic parameters the flexural
mode u (n=1) response has been compared with that of the axisymmetric mode (r=0). It is found
that, depending upon the soil condition the shell deformation in flexural mode may be even
greater than that in the axisymmetric mode. Thus, for orthotropic shells, non-axisymmetric
response becomes quite important. However, the shell response is found to be significantly
influenced due to variation of surrounding soil condition as well as by the orthotropy parameters.

2. Formulation of the problem

In the shell theory a co-ordinate system is employed by forming two axes in the middle surface
of the shell and third axis is always normal to the middle surface. So, a cylindrical-polar co-
ordinate system (r, 6, x) is defined such that x coincides with the axis of the shell and z is
measured normal to the shell middle surface,

z=r-R, -h/2<r<h/2 (1)

The equation governing the non-axisymmetric motion of a cylindrical shell can be written as
(Mirsky and Herrmann 1957),
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In the above expressions w, v and u are the displacement components of the middle surface of
the shell in radial, tangential and axial directions respectively, with y, and v, as the angles of
rotation of a straight line initially normal to the middle surface of the shell in the tangential and
axial directions, respectively.

The {P*} are the traction components per unit area exerted on the surface of the shell and
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caused due to radial moving load and also due to the scattered field created in the surrounding
medium. The elements of {P*} are given as

P* =(142/R) Oz | ,cpsin P,* =(14z2/R) C,¢ | rpunns
Py* =z(14z2/R) Oyq | ,op s P* =(1+2/R) Ox | yopinns
PS* :Z(1+Z/R) Ozx | r=R+h/s

where o, denotes stresses with their usual meaning.

The constants appearing in the expressions for L, are defined as

= —%, E, = E—Qh’ D =E,h?/12, D' =E,'h*/12, I=h’/12 and k=k=mN12 (shear

1=V, gVe, 1=V, gVp,
correction factor), where E,, E, are elastic moduli, v, Vv, the Poisson's ratios, G, G,, and G., the
shear moduli and p is the density of the shell material.

For evaluation of {P*}, the stresses o, at the outer surface of the shell (i.e., z=+h/2) are
determined in terms of scattered fields in the surrounding medium.

For any disturbance propagating in the medium, displacement d(r, 6, x, f) at any point in the
surrounding medium satisfies the equation of motion

82
e} YT d)-c2VA VA d=2-@) 3)

where, ¢; = ((A+21)/pn)"* and c,=(u/pn)"? are respectively, the longitudinal and shear wave
speeds depending of the values of Lame's constants A and y, and density, p,, of the medium.

By solving this wave equation in the surrounding infinite medium, the components of the
scattered fields for the nth mode (n=0 and n+0 for axisymmetric and non-axisymmetric modes,
respectively) can be written as

40 = [{mf(y%)}gﬁ {—iﬁ 5K, (5 %)}Bw { (RA K (S @}Bﬁi
cos n Bexp.[i §(x —ct)],
d§y = [{—n R/ YK, (}%)}Bﬁ {— in(R/)B K. (5%)}34 + {-51@ '(‘%)}B (}
sin n B exp.[i §(x — ct)],
46 = [ {,- BK, (y}%)}82+ {52&, (5%)} 34} cos n @ exp. [i E(x —ct)] (4)

where d), d§) and d,*) are the components of the scattered field displacements. K, is modified
Bessel functions of the second kind, which is due to scattered wave,

B=ER =2mR/A y=(B=€])", 8= (B-e)", =P, &=P .

A=21/6) is wavelength and ¢ (=w/§) is the speed of the moving load; B,, B, and B; are arbitrary
constants. (") denotes differentiation with respect to the arguments of the Bessel functions.
Stress field due to scattered wave can be obtained by plugging Eq. (4) into the stress-
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displacement relation of the medium, and is given by,

o) = % { {(2512 —e))Ku (1 /R)+27°K:" (/R )}B2 + {—21' BS82K."(6r /R )} B,
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Stresses in the medium at the outer surface of the shell (z=h/2 or r=R+h/2) can now be obtained.

43

As the shell is being subjected to a radial moving load only, so for the calculations of P,*, the

radial stress at the outer surface is written as

Pu(®) 5,
Rz T

O | yerin2 = O | rogonn

where, P,(6) is the intensity of the applied radial line load (force per unit length) and is the

function of 6. & ) is the Dirac delta function defined as

Nx—ct)=1, at x=ct
‘ =0, for all the values except at x=ct
P,(0) can be written as

=Z P, cos nb
n=0

and then stresses generated at the outer surface of the shell are written,

R

+ - - .
R+h/2
Crolrorsnn =0 |, renn +0 Ot | roronn = O | orinn + 0

and thus {P*} in Eq. (2) is evaluated.
Now the shell displacements are assumed to be of the forms

Crr | rpenn= O | 1opanr2 cos n 6 o (x—ct)

(6)
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w =wqcos nBexp [i {(x—ct)]
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u =uycosnOexp [i Ex—ct)]
Wy = W,ocos n O [i E(x—ct)]
and
Wo= Y sin n 8 exp[i §(x —ct)] (7

These displacements equations along with {P*} are substituted into Eq. (2) to yield a set of five
simultaneous equation. Three more equations are obtained by enforcing the boundary conditions
at the outer surface of the shell as,

w=d |, pis
V+ (W2 Yo=d§) |, gunn
u+ /2y =d®|, pun ®)
Using Egs. (2) and (7), Eq. (8) yield a set of three algebraic equations. The eight algebraic
equations, thus obtained, can be presented in a matrix form to yield the final response equation
which is given as
[Q1{U}={Z}8 (x—ct) exp{—i {(x—ct)} )
where [Q] is a (8 8) matrix and {Z} is (8x 1) matrix. The clements of these matrices are as
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Now a new moving coordinate is defined as

x = 6=t)
R
and the Fourier transform given by
®=]" f@e dx
and
&)= [ (e ap
is used in Eq. (9). With this transformation the matrix Eq. (9) become
[0]{U*}={Z}

45

(10)

(1)

(12)

(13)

Now the matrix Eq. (13) can be solved to get the value W* of column matrix {U*}. To get back
the value W i.e., the radial displacement from W*, inverse transformation given in Eq. (12) is used.

3. Results and discussions

The results are presented for a transversely isotropic shell with »— 8 as. the plane of isotropy.
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Accordingly, Eg=E:, G =G, Vo =V, Vig=Vee and G,,=E/2(1+v,). Thus, we have
Mm="n; and 1n,=G,/E: =1n,/2(1+vy,). v, and v,, have been taken as 0.3 for numerical
calculations. These different values of 7; and 7, used in the results are as follows:

1,=0.05, 0.10 and 0.50
1,=0.02, 0.05 and 0.10

These values are expected to cover a wide range of orthotropic materials. While studying the
effect of one orthotropy parameter the other one is kept constant.

To simulate all kinds of combinations of ground and pipe, the rigidity ratio 4 has been varied
between 0.10 and 10. u=0.10 corresponds to soft soil whereas u=10 represents hard and rocky
surrounding medium. For all the value of g, the Poisson's ratio of the medium, v, has been
assumed as 0.25. Thickness to radius ratio of the shell (#) has been taken as 0.05 and density
ratio of the surrounding medium to that of the shell (p) has been taken as 0.30. Non-dimensional
amplitudes of the middle surface of the shell in the radial and axial directions (W and U) have
been plotted against X at a load speed, C=0.10.

Figs. 1 and 2, respectively, show the variation of radial deformation (W) with (x) for soft
surrounding soil (i =0.10) and with 7, and n, as parameters. Figures show that radial deformation
is maximum under the load (i.c., (¥)=0) and decreases as (¥) approaches 0.5. It is observed that
when shell is surrounded by very soft soil the flexural mode response is predominant over the
axisymmetric response. It can also be seen that the variations in 7, and 7, have strong influence
on radial displacement and this influence is relatively more in axisymmetric mode. Figures show
that with increase in 7,, W decreases, whereas it increases with increase in 77;, and this behaviour
is similar in both the modes. Ahead of the load the difference in displacement pattern due to
variation of m, or 7, goes on shrinking and it is very narrow in flexural mode when x)

0.0
0.0 Q.25 0.50

|
>

Fig. 1 Radial displacement (W) versus non-di- Fig. 2 Radial displacement (W) versus non-di-
mensional moving axial coordinate (x) at mensional moving axial coordinate (x) at
C=0.10 with n, as parameter at 1 =0.10 C=0.10 with 1, as parameter at £ =0.10
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approaches 0.5.

Figs. 3 and 4 have been plotted when rigidity moduli of surrounding soil and the shell are
comparable (i.e., ¢ =1.0). Here also it is observed that flexural mode response dominates the
axisymmetric mode response. But, compare to the soft surrounding soil condition, the differences
in W between two modes, here, is very small. It is evident from the figures that 1, or 7, has very
small influence on W in both the modes. However, the difference in W due to change of mode is
more remarkable than the variation of orthotropy parameters. The maximum radial displacement
under the load is not much affected due to variation of orthotropy parameters. Figs. 5 and 6 are
drawn to show the behaviour of radial displacement with 17, and 7, respectively, as parameters.
Figures show that when shell is buried in very hard or rocky surrounding soil (u =10), the radial
displacement W, is not affected due to changes in n, or 775. However, the flexural mode response
is predominant over axisymmetric mode response. This difference is small but increases slowly as
x approaches 0.5. So, in hard and rocky surrounding soil the introduction of orthotropy through
the parameters 17, and 71, does not bring any difference in W, whereas, W is affected as response
mode is changed.

Figs. 7-12 have been drawn for axial displacement (U) of the shell in the axisymmetric (n=0)
and the flexural mode (n=1) with n,, n; and y as parameters.

Figs. 7 and 8 show, with 1, and 7, respectively as parameters the variation of the axial
deformation of the middle surface of the shell () with (¥), when soil surrounding the shell is
very soft (u=0.10). It is seen from figures that the amplitude of the axial deformation in
axisymmetric mode is very high as compared to the flexural mode response. The rate of decay of
displacement amplitude is similar for both the orthotropic parameters and in both the response
modes. The difference in U, due to changes in 1, or 1, appears to be shrinking as (¥) approaches

00 i e 100 ;

0.60

0.0 0.25 Q50

Fig. 3 Radial displacement (W) versus non-di- Fig. 4 Radial displacement (W) versus non-di-
mensional moving axial coordinate (x) at mensional moving axial coordinate (x) at
C =0.10 with 7, as parameter at £ =1.0 C =0.10 with n; as parameter at £=1.0
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Fig. 7 Axial displacement (U) versus non-di-
mensional moving axial coordinate (x) at
C=0.10 with n, as parameter at 1=0.10
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Fig. 6 Radial displacement (W) versus non-di-
mensional moving axial coordinate (x) at
C=0.10 with 1, as parameter at =10
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Fig. 8 Axial displacement (U) versus non-di-
mensional moving axial coordinate (x) at
C =0.10 with 7, as parameter at 1 =0.10

0.5. From figures it is evident that orthotropy parameter 7, has small influence on U as compared
to 7m; in both axisymmetric as well as flexural modes. It can be seen that the maximum axial

displacement under the load can be reduced to an appreciable level by decreasing the value of 7,.
Therefore, in soft surrounding soil the axial deformation under the load can be reduced to a
remarkably low level by choosing a proper combination of orthotropic parameters. The
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1.20 | — 160 ,

Ux10
U x10

i
%80 o.és 050 %00 0.25 050
X X
Fig. 9 Axial displacement (U) versus non-di- Fig. 10 Axial displacement (U) versus non-di-
mensional moving axial coordinate (x) at mensional moving axial coordinate (x) at
C=0.10 with n, as parameter at g =1.0 C =0.10 with n, as parameter at gz =1.0

observation is true for axisymmetric as well as flexural mode response.

Figs. 9-12 indicate that when shell is buried under medium hard (u¢=1.0) or very hard and
rocky (u=10) surrounding medium the axial deformation U, is maximum in axisymmetric mode
than in flexural mode. This behaviour of the response is true with both the orthotropy parameters,

3.00 T

250 - | -

M=10, N3=005
m=0.25

————— n=
n=

0
1

1.50
o
>
050~
0.0 - : :
0.0 0.25 030 0.0 0.7 050
X X
Fig. 11 Axial displacement (U) versus non-di- Fig. 12 Axial displacement (U) versus non-di-
mensional moving axial coordinate (x) at mensional moving axial coordinate (X)

€ =0.10 with 7, as parameter at 1=10.0 at C=0.10 with 7, as parameter at 1 =10.0
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Fig. 13 Radial displacement (W) versus non-di- Fig. 14 Axial displacement (U) versus non-di-
mensional moving axial coordinate (x) at mensional moving axial coordinate (x) at
C=0.10 with i as paramefer C=0.10 with g as parameter

1, and 7. The maximum response under the load goes on reducing as X approaches 0.5. In both
the response modes variation in 77, does not bring any appreciable change in axial displacement,
whereas changes in 7, make remarkable difference in U and this difference narrows down as X
increases. Increase in 1), increases U. The nature of variation in U due to changes in orthotropy
parameters are similar for axisymmetric and flexural mode response. It is interpreted for both
surrounding soil conditions (ie., p#=1.0 and 10.0), that whether it is axisymmetric mode or
flexural mode response the axial deformation under the load can be reduced to a remarkable level
by a proper combination of orthotropy parameters 7, and 7.

Figs. 13 and 14 show, respectively, the variation of W and U against X for different values of
 in both axisymmetric and flexural modes. From figures it is clear that the radial deformation W,
is always higher in flexural mode whereas axial deformation U, is predominant in axisymmetric
mode. The difference in the value of deformations (W or U) for the two response modes is very
distinct when soil surrounding the shell is very soft and, as it appears, this difference is very
significant for the axial deformation of the shell. The deformation amplitudes (W or U) is almost
the same in both the modes.

4. Conclusions

The main finding of the work carried out in this paper may be concluded as:
(1) Radial displacement W due to the flexural mode response is greater than the axisymmetric
mode response and this difference in W is more significant when surrounding soil is soft.
(2) The effect of variation of orthotropy parameters on W is almost similar in both the modes,
however, the values of W is more sensitive to the choice of the mode than the variation in m
or 1, when surrounding soil is hard.
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(3) The axial displacement U is large under axisymmetric mode in comparison of the flexural

mode and under the load U is significantly affected due to variation of 1,. This behaviour is
true for all the values of u .

(4) In general, the difference in displacements (W or U) due to variation of 7, and n, is large
when surrounding soil is soft, whereas, in hard and rocky medium the displacements have
almost the same amplitudes in both the modes.

(5) The maximum deflection under the load can be reduced by adjusting the orthotropy
parameters in both the modes.

The observation that axial displacement under the load can be significantly be reduced, by
changing the values, of 1,, is of special interest because most of the failure of buried pipes have
been reported as due to excessive axial displacements.
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