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1. Introduction  
 

In order to suppress dynamic responses of civil 

engineering structures under external loads, an active mass 

damper/driver (AMD) (Bigdeli and Kim 2017, Xu et al. 

2014, Zhang and Ou 2015, Zhu et al. 2012), an active tuned 

mass damper (ATMD) (Li et al. 2010, Li and Qu 2004, Li et 

al. 2009), a passive tuned mass damper (TMD) (Jiang et al. 

2017, Mortezaie and Rezaie 2018, Li et al. 2019, Yang and 

Li 2017, Zhang et al. 2013), and other dampers (Qian et al. 

2016, Zhang et al. 2014, Zhou and Huang 2018, Zhou et al. 

2018) are commonly utilized. Indeed, the performance of an 

AMD system is better than other forms theoretically. 

However, several problems restrict the development of 

AMD systems. Specifically, high-rise buildings have an 

excessive number of degrees of freedom, and therefore the 

designed controller based on an original model has a long 

time-delay that is too difficult to fulfill the real-time control 

requirement (Pekar and Matusu 2018, Qu et al. 2014). 

Hence, it is important to build a reduced-order controller. 

The primary problem of a reduced-order control system 

is summed up as the establishment of a reduced-order 

model. Model-reduction methods (Jin et al. 2014) are used 

to transform a relatively complex model into a simple 

reduced-order model. Model-reduction methods are usually 
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used in engineering practice, such as balanced truncation 

method, dynamic condensation method, modal analysis 

reduction, etc. For instance, the elastic model-order 

reduction technique has been used to calculate contact 

forces due to impacts in hydraulic valves (Koreck and Von 

Estorff 2015). Based on a parametric model-order 

reduction, a coupled finite-element boundary-element 

method for solving parametric models of eddy-current 

problems has been proposed in reference (Klis et al. 2016). 

In reference (Azam and Mariani 2013), the performance of 

reduced order modeling of dynamic structural systems 

based on a proper orthogonal decomposition technique has 

been investigated, and then a reduced model through 

singular value decomposition and Galerkin projection has 

been built. In order to gain insight into the fluid flow 

physics, and potentially identify mechanisms for controlling 

these flows, reference (Rowley and Dawson 2017) has 

extracted simplified models based on balanced truncation 

and dynamic mode decomposition. According to 

eigenvalues’ size of state vectors in a structure, balanced 

truncation method can reorder these state vectors to form 

the internal equilibrium model, while partial state vectors 

that correspond to the small eigenvalues will be omitted 

(Hartmann et al. 2010). A dynamic condensation method is 

an iterative method that uses an eigenvalue-shifting 

technique (Boo and Lee 2017). Compared with a static 

condensation method, the accuracy of the reduced-order 

model obtained from a dynamic condensation method is 

relatively higher, and it is easier to design a control system 

for a reduced-order system than for a full-order system 
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(Wang et al. 2015). In reference (Louca 2014), based on the 

modal analysis of multi-body systems, a new model-

reduction method can be implemented to these systems with 

a non-proportional damping.  

From the existing references, model-reduction methods 

are generally used in electronics, communications, 

aerospace and automation. Model-reduction technologies 

need to be further studied in civil engineering. Firstly, a 

suitable reduced-order model should be selected for high-

rise buildings with a small first natural frequency, a large 

slenderness ratio and a high height (Shen et al. 2018). Then, 

a reduced-order controller is designed to reduce dynamic 

responses of high-rise buildings. Moreover, the calculation 

method of a control gain is particularly important. 

Conventional methods include a pole-assignment algorithm 

(Teng et al. 2016) and a linear quadratic regulator algorithm 

(Wang et al. 2009). However, they require an accurate 

mathematical model and cannot be used for uncertain 

systems. As a result, a suitable method called a regional 

pole-assignment algorithm is designed to consider the 

robustness in uncertain systems (Li et al. 2018). 

In this paper, a suitable reduced-order model is selected 

for high-rise buildings after comparing the transfer 

functions of several reduced-order models corresponding to 

different methods, and then the influence of retained orders 

on the system performance is analyzed. Based on a suitable 

reduced-order model, a new reduced-order controller 

proposed for high-rise buildings is performed to reduce a 

long control-force calculation time. Finally, a real high-rise 

building and a four-storey experimental frame are presented 

to validate the effectiveness of the proposed method. 

 
 
2. Establishment of several reduced-order models 

 
2.1 Common reduced-order methods 
 

The force equilibrium equation of a high rise building 

with an AMD system is 

𝑀𝑜�̈�(𝑡) + 𝐶𝑜�̇�(𝑡) + 𝐾𝑜𝑋(𝑡) = 𝐵𝑤𝑤(𝑡) + 𝐵𝑠𝑢(𝑡) (1) 

where Mo, Co and Ko are the mass, damping and stiffness 

matrices of the system, respectively. u and w are the control 

forces and the input excitations. Bs and Bw are the position 

matrices of the control forces and the input excitations. X is 

the displacements of the system, respectively. 

Eq. (1) can be described as 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 2

1 2

Z t AZ t B w t B u t

Y t CZ t D w t D u t

 = + +


= + +
 (2) 

where Z is the state vector that includes the displacements 

and the velocities. A, B1 and B2 are the state matrix, the 

excitation matrix and the control matrix, respectively. C, D1 

and D2 are the state output matrix, the direct transmission 

matrices of the control forces and the external excitations, 

respectively. Y is the output vector. 

The observation equation can output the displacements, 

the velocities, the accelerations and the control forces of the 

system. A, B1, B2, C, D1 and D2 can be expressed as 
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(3) 

 
2.1.1 An improved balanced truncation method 
A balanced truncation (BT) method is a process that the 

original control system can be transformed into a balanced 

realization system by a non-singular transformation, and 

then truncates the balanced realization system according to 

the singular value of a Hankel matrix.  

Defining 

 ( ) ( )bZ t TZ t=
 

(4) 

where T is the transform matrix. Zb is the state vector of the 

balanced realization system. 

By substituting Eq. (4) into Eq. (2), the state-space 

equation of the balanced realization system is 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 2

1 2

b b b b b

b b b b b

Z t A Z t B w t B u t

Y t C Z t D w t D u t

 = + +


= + +
 

(5) 

where 𝐴𝑏 = 𝑇−1𝐴𝑇 , 𝐵𝑏1 = 𝑇−1𝐵1 , 𝐵𝑏2 = 𝑇
−1𝐵2 , 𝐶𝑏 =

𝐶𝑇, 𝐷𝑏1 = 𝐷1 and 𝐷𝑏2 = 𝐷2. 

According to reference (Laub et al. 1987), the transform 

matrix T is calculated as 

 
1/2

cT L VS −=
 

(6) 

where V and S are the orthogonal and the positive diagonal 

matrices that can be obtained by applying the singular value 

decomposition technique for the matrix Lo
TLc. Lc and Lo are 

the lower triangular matrices of the controllability and 

observability matrices decomposed by Cholesky.  

Then the matrix S can be described as 

 1 2diag( , , , )nS   =

 
(7) 

where 𝜎𝑖  is the diagonal elements that reflect the 

controllability and the observability of the state vector. 

The diagonal elements 𝜎𝑖  were rearranged in 

descending order. When 𝜎𝑟+1 << 𝜎𝑟 , r is the retained 

orders and is the twice number of the structure vibration 

modes, it means that the states Zr+1~Zn corresponding to the 

eigenvalues 𝜎𝑟+1~𝜎𝑛  have a low performance of the 

controllability and the observability. Only the states Z1~Zr is 

retained in the balanced realization system. The state-space 

equation of this system is 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 2

1 2

br br br br br

br br br br br

Z t A Z t B w t B u t

Y t C Z t D w t D u t

 = + +


= + +
 (8) 

where 𝐴𝑏𝑟 = 𝐴𝑏(1: 𝑟, 1: 𝑟) , 𝐵𝑏𝑟1 = 𝐸𝑏1(: ,  1: 𝑟) , 𝐵𝑏𝑟2 =
𝐵𝑏2(1: 𝑟, : ), 𝐶𝑏𝑟 = 𝐶𝑏(: ,  1: 𝑟), 𝐷𝑏𝑟1 = 𝐷𝑏1, 𝐷𝑏𝑟2 = 𝐷𝑏2. 

The truncation error of the reduced-order model shown 

as Eq. (8) can be defined as 

 ( )1 22 r r ne   + +
 + + +

 (9) 
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Depending on inequality (9), the model-reduction 

accuracy of the reduced-order model is 

 min

1

1 / 2
n

i

i

e  


=

 
= −  

 
  (10) 

where ηmin=90% is the minimum model-reduction accuracy. 

The model-reduction process of the BT method is only 

carried out on a partial small number of modes, which 

cannot guarantee the modeling accuracy. Its omitted state 

vectors decrease the accuracy of the reduced-order model. 

Therefore, it is necessary to re-consider this omitted modal 

information in the design process of a reduced-order 

controller.  

The balanced realization system (8) is described as a 

block matrix. 
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( )

( )
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( ) ( )
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( )
( ) ( )
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1 2
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w t u t
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Z t
Y t C C D w t D u t

Z t

           
= + +        

           


  
=  + + 

  

 (11) 

where Zbr and Zbl are the retained, abandoned state vectors 

respectively. 
Because the abandoned state vector Zbl corresponding to 

the relatively small eigenvalues contains some vibration 

information, the process reduces the accuracy of order 

reduction. 

Let 

 
( ) ( ) ( ) ( ) ( )21 22 1 2 0bl b br b bl bl blZ t A Z t A Z t B w t B u t=  +  +  +  =

 

( ) ( ) ( ) ( ) ( )21 22 1 2 0bl b br b bl bl blZ t A Z t A Z t B w t B u t=  +  +  +  =
 

(12) 

Under an input excitation, the low-order modal mass 

participation ratio of a high-rise building is close to 1, and 

the high-order modal mass participation ratio is relatively 

small. Therefore, the contribution of high-order modes to 

the structural response can be ignored, and the structural 

responses corresponding to the high-order modes are 

assumed as zero, in order to fulfill the engineering 

requirement. 

( ) ( ) ( ) ( )1

22 21 1 2bl b b br bl blZ t A A Z t B w t B u t−= −  +  +     (13) 

Substituting Eq. (13) into Eq. (11) leads to 

 

{
  
 

  
 
�̇�𝑏𝑟(𝑡) = (𝐴𝑏𝑟 − 𝐴𝑏12𝐴𝑏22

−1 𝐴𝑏21)𝑍𝑏𝑟(𝑡) +

(𝐵𝑏𝑟1 − 𝐴𝑏12𝐴𝑏22
−1 𝐵𝑏𝑙1)𝑤(𝑡) +

(𝐵𝑏𝑟2 − 𝐴𝑏12𝐴𝑏22
−1 𝐵𝑏𝑙2)𝑢(𝑡)

𝑌𝑏𝑟(𝑡) = (𝐶𝑏𝑟 − 𝐶𝑏𝑙𝐴𝑏22
−1 𝐴𝑏21)𝑍𝑏𝑟(𝑡)

+(𝐷𝑏1 − 𝐶𝑏𝑙𝐴𝑏22
−1 𝐵𝑏𝑙1)𝑤(𝑡)

+(𝐷𝑏2 − 𝐷𝑏𝑙𝐴𝑏22
−1 𝐵𝑏𝑙2)𝑢(𝑡)

 
(14) 

From the above improvement process, a new reduced-

order system retains more information of the original 

system and reflects its dynamic characteristics accurately. 

 
2.1.2 A dynamic condensation method 
A dynamic condensation (DC) Method is based on 

structural vibration characteristics. The reduced-order 

control system is 

 ( ) ( ) ( ) ( )tFtXKtXCtXM rrrr =++ 

 
(15) 

where 

 

( ) ( )

  ( )  
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( )
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 = =

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
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 

  = + − 
 = − = −

 = − = +


 
(16) 

where the subscripts m and s are the master and the slave 

degrees of freedom of the system, respectively. The 

subscript r refers to the reserved model having m degrees of 

freedom.  min max,   is a given frequency range. Dss, Dsm, 

Mss and Msm are the sub-matrices of D and M, respectively, 

i.e., from 

 ,
mm ms mm ms

sm ss sm ss

D D M M
D M

D D M M

   
= =   
   

 (17) 

 
2.1.3 A modal value method 
The modal analysis of a control system is widely used to 

study its behavior and relative controller design. After that, 

a modal value (MV) method is proposed to reduce the 

orders of high-rise buildings by a transformation matrix 

composed of relatively high value corresponding to 

vibration modes. The force equilibrium equation of a high-

rise building with n degrees of freedom is shown as Eq. (1), 

and the system output is 

 Y aX bX= +
 

(18) 

where a and b are the output matrices. 

The modal vector is  

  1 2 n   =
 

(19) 

The vector in generalized coordinates is 

  1 2

T

nq q q q=
 

(20) 

Supposing 

 X q=
 

(21) 

Eqs. (1) and (18) are decoupled and transformed as 

 
( ) ( ) ( )

1 1 1
* * * * * *

* *

q M C q M K q M B U

Y a q b q

− − − + + =


= +
 

(22) 

where 𝑀* = 𝜙𝑇𝑀𝑜𝜙 , 𝐶* = 𝜙𝑇𝐶𝑜𝜙 , 𝐾* = 𝜙𝑇𝐾𝑜𝜙 , 𝐵* =
𝜙𝑇𝐵, 𝑎* = 𝑎𝜙 and 𝑏* = 𝑏𝜙. 

As 

 ( ) ( ) ( )
1 1 2

* * * * * * *2 ,M C M K  
− −   = =      (23) 

Hence, 

 
( ) ( )

2 *2 /T

i i i i i i i i

i i i i i

q q q B U m

y a q b q

   

 

 + + =


= +
 

(24) 
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The ith modal value is 

( )
( ) ( )

1
2 2* 2 2

2

0 i

T

i j k i i k i
i

jk

i i i i

B a b
V y t dt

m

   

 


 +
 = =  

(25) 

where Bj is the jth column of B. ak and ck are the kth row of a 

and c.  

If the input and output dimensions of the system are n1 

and n2, the number of the ith modal value is n1×n2, and its 

sum is the ith modal value. The transformation matrix T is 

composed of the modal vectors corresponding to the 

relatively high values.  

  1 mT  =
 

(26) 

Then the model-reduction process is the same as the BT 

method. 

 
2.1.4 A revised minimum information loss method 
Based on the observable and controllable information, a 

revised minimum information loss (RML) method, which is 

applicable to a linear time-invariant system, is proposed for 

the conventional minimum information loss method. In 

system (2), the transformation matrix is taken as T=Lo
-1. 

Singular value decomposition is used to decompose the 

controllable matrix of the output model. 

   1 1

1 2

2 2
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0
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S U
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S U

  
=   

   
 (27) 

where 
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
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

= 

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

     

 (28) 

Let 

 
( )

1

-1
1

1 1 1

T

r o

T

r o

L U L

T L U U U−

 =


=
 

(29) 

The reduced-order model is 

 




+=

+=

uDZCY

uBZAZ

rrr

rrrr


 

(30) 

where Zr is the state vector of a reduced- order model. Ar, 

Br, Cr and Dr are the coefficient matrices with appropriate 

dimensions in a reduced-order model, respectively, which 

can be expressed as 

 , , ,r r r r r r r rA L AT B L B C CT D D= = = =
 

(31) 

From the model-reduction process of a high-rise 

building, the dimensionality of the matrices U1 and U2 

determines the dimensionality of its reduced-order model 

and the state of its original model, while the 

dimensionalities of the matrices U1 and U2 have no 

quantitative constraint. 

Table 1 The modal frequencies and the modal mass 

participation ratios of the ten-storey frame 

Mode 

number 

Modal frequencies (Hz) Modal mass 

participation 

ratio 
Original 

model 
BT DC MV RML 

1 0.4140 0.4140 — 0.4140 0.1019 0.7829 

2 1.2468 1.2468 — 1.2468 — 0.1124 

3 2.2771 2.2771 1.8885 2.2771 — 0.0423 

4 3.5032 3.5032 — 3.5032 — 0.0245 

5 5.0239 5.0303 4.6242 5.0223 — 0.0144 

6 6.8838 — — — 6.3710 0.0095 

7 8.9331 — 8.4793 — 9.6513 0.0062 

8 11.1545 — — — — 0.0023 

9 13.8599 — 13.5510 — 13.1736 0.0042 

10 19.1768 — 19.1624 — 18.9920 0.0014 

 

 
2.2 Comparative analysis and comparison of 

reduced-order methods 
 

In this paper, the mathematical model of a ten-storey 

frame along its minor-axis is used as an example to 

compare and analyze these above methods. The frame 

includes a two-span beam along the minor-axis and a four-

span beam along the major-axis. The height of each floor is 

3.6 m, and the length, the height and the width of the beams 

along the minor-axis and the major-axis are 6000 mm×500 

mm×300 mm. The dimensions of the columns from the 1st 

to 5th floors are 500 mm×500 mm, and the dimensions of 

the columns from the 6th to 10th floors are 400 mm×400 

mm. The thickness of the slabs is 80 mm. The above frame 

is built by reinforced concrete, and its damping ratio is set 

as 0.02. 

Through the BT, DC, MV and RML methods, the key 

parameter of the reduced-order model which includes the 

structural frequencies and the modal mass participation 

ratios of different vibration modes are shown in Table 1. 

Different reduced-order models are designed by a simulink 

toolbox in Matlab. Regarding the above ten-storey frame, 

the displacement and acceleration transfer functions of the 

10th floor under different methods are shown in Fig. 1. In 

these figures, ORM means the structure retains an original 

model (20 retained orders), while others are the reduced-

order model (10 retained orders) through different methods. 

Considering its structural frequency range, the part between 

0.1Hz and 100Hz is shown in the figures. 

From Fig. 1 and Table 1, the displacement transfer 

functions of the above reduced-order models are basically 

consistent with the original model at low frequency, which 

means that the model-reduction process can retain the low-

order dynamic characteristics of the original model. It is 

noteworthy that when the frequency of control voltage is 

consistent with the natural frequency of the frame, a sudden 

change of the magnitude transfer function is generated, and 

a resonance phenomenon between the structure and its 

controller occurs. 

The reduced-order model obtained by the BT method or 

the MV method retains the first five modes of the original 

structure, which is continuous and has a relatively large 

modal mass participating ratio. Based on its structural  
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vibration modes, the BT method that reduces the orders of a 

control system has a similar principle with the MV method. 

Through the MV method, several structural vibration modes 

with a high modal value are selected to obtain a reduced-

order model. On the other hand, the difference between the 

original model and the model obtained by the BT method or 

the MV method is relatively smaller than that by the DC 

method or the RML method. The reduced-order model 

obtained by the DC method or the RML method retains the 

high-order modes of the original model which has a 

relatively small modal mass participating ratio, and the 

result causes the loss of its low-order characteristics. 

Generally, the dynamic characteristics of civil engineering 

structures are controlled by their low-order vibration modes. 

Therefore, the DC method or the RML method is unsuitable 

for civil engineering structures. The paper focuses on the 

BT method and combines it with the dynamic 

characteristics of high-rise buildings. 

Based on the BT method, the above ten-storey frame 

structure is regarded as an example to analyze the influence 

 

 

 

of the number of the retained orders. The magnitudes of the 

displacement transfer functions of the bottom floor of its 

reduced-order models are shown in Fig. 2. In this figure, 

ORM means the structure retains the original model (20 

orders), while r is the retained orders of 6, 10, 14 and 18. 

Considering the structural frequency range, the part 

between 0.1 Hz and 100 Hz is shown in the Fig. 2. 

From Fig. 2, with the increase of the retained orders, the 

difference between the original model and the reduced-

order model becomes smaller. The dynamic characteristics 

of the building are mainly determined by the first few 

modes of the original model that is continuous and with a 

large modal mass participating ratio. For the above frame, it 

is suggested to take 10 retained orders which mean the first 

five modes of the frame are retained (the modal mass 

participation ratio is 0.9765). The displacement transfer 

functions of the reduced-order model are basically 

consistent with the original model at low frequency which 

indicates that the dynamic characteristics of the original 

model are retained completely. 

 

  

 

 (a) (b)  

 

  

 

 (c) (d)  

Fig. 1 The transfer functions of the 10th floor of different reduced-order models, (a) the magnitude and (b) the phase of the 

displacement transfer functions, (c) the magnitude and (d) the phase of the acceleration transfer functions 

 

  

 

 (a) (b)  

Fig. 2 The displacement transfer functions of the bottom floor under the BT method, (a) the magnitude and (b) the phase 
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Table 2 The natural periods of the original model and the 

reduced-order models 

Mode 

number 

The original 

model 

The classical BT 

method 

The improved BT 

method 

Period (s) Period (s) Error (%) Period (s) Error (%) 

1 7.1522 7.1522 0 7.1522 0 

2 1.9435 1.9436 -0.2779 1.9435 0 

3 0.9635 0.9455 1.8682 0.9543 0.9548 

4 0.6467 0.6568 -1.5618 0.6512 -0.6958 

 
 
3. Numerical verification 

 
3.1 Influence analysis of the reduced-order model 

with an improved BT method 
 

In this paper, a high-rise building called the KingKey 

Financial Center (KK100) (Chen et al. 2017) along its 

minor-axis is used as an example to compare and analyze 

these above methods which include the classical BT method 

and the improved BT method (in section 2.1.1). The orders 

of the original model and the reduced-order model are 202 

and 50 respectively. The first twenty-five vibration modes 

of the building are retained, and the modal mass 

participation ratio is 0.9929, while the minimum model-

reduction accuracy is 90%. Through the reduced-order 

process, the first four natural periods of different systems 

are compared in Table 2. Compared with the reduced-order 

model obtained by the classical BT method, the 

fundamental period or the second-order period of the 

reduced-order model obtained by the improved BT method 

is closer to that of the original model. With the increase of 

the orders, the difference between the natural periods of the 

reduced-order model and those of the original model 

become larger, indicating that the model-reduction process 

preserves the low-frequency natural vibration 

characteristics of the original model. 

Regarding the above building, its acceleration transfer 

functions of the 91st floor are shown in Fig. 3. Considering 

the structural frequency range, the part between 0.01 Hz 

and 10 Hz is shown in the figures. From Fig. 3, the transfer 

functions of the two reduced-order models are basically 

consistent with the original model at high frequency, while 

the acceleration transfer function of the reduced-order 

model obtained by the classical BT method is not consistent 

 

 

well with the original model at low frequency. The reason is 

that the acceleration response is mainly affected by the 

higher modes and the reduced-order model obtained by the 

classical BT method discards the structural information of 

its high-order modes. Nevertheless, since the improved BT 

method presented in this paper retains the discarded 

information, its acceleration transfer function is basically 

consistent with the original model at low frequency, 

meaning the reduced-order model obtained by the improved 

BT method reflects the dynamic characteristics of the 

original model. 

According to reference (Chen et al. 2017), a ten-year 

return period fluctuating wind load is generated for KK100. 

The speed is based on a Davenport spectrum, and a mixed 

autoregressive-moving average (MARMA) model is used to 

simulate the stochastic process of the wind load. Under the 

fluctuating wind load, the dynamic responses of the 87th 

floor between the original model and the reduced-order 

models of KK100 are shown in Fig. 4, respectively. Error 

is defined as the difference between the structural responses 

from the original model and the reduced-order model. From 

Fig. 4, the maximum variations of the displacement and 

acceleration responses between the original model and the 

reduced-order model obtained by the classical BT method is 

0.7285×10-4 m, 0.0153 m/s2, respectively. And the 

maximum variations of the displacement and acceleration 

responses between the original model and the reduced-order 

model obtained by the improved BT method is only 

0.4460×10-7 m, 0.0354×10-2 m/s2 which are all less than the 

former. Therefore, the precision of the reduced-order model 

obtained by the improved BT method is higher than that 

obtained by the classical BT method. Moreover, as the 

model-reduction process retains the low-order dynamic 

characteristics of the original model, while the acceleration 

responses are greatly affected by high-order dynamic 

characteristics, the maximum variations of the acceleration 

responses are more obvious than that of the displacement 

responses. 

The displacement and acceleration responses along 

height between the original model and the reduced-order 

models are shown in Fig. 5. From Fig. 5, the dynamic 

responses of the reduced-order models are basically close to 

that of the original model. The error of the displacement 

responses of two reduced-order models is smaller than that 

of the acceleration responses. Obviously, the errors of the  

 

  

 

 (a) (b)  

Fig. 3 The acceleration transfer functions of the 91st floor of the original model and the reduced-order models, (a) the 

magnitude and (b) the phase 
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Fig. 6 The poles of the original model and the reduced-

order models 

 

 

reduced-order model obtained by the improved BT method 

are smaller than that of the classical BT method. The results 

reflect the superiority of the improved BT method. The 

improved BT method is more suitable to be used in 

reducing the orders of high-rise buildings. 

 

 

 

The poles of different systems after using the original 

model and the reduced-order model obtained by the 

improved BT method are shown in Fig. 6. From Fig. 6, the 

pole positions of the balanced realization system are similar 

to those of the original system, indicating that the non-

singular transformation does not change the system 

dynamic characteristics. The corresponding poles of the 

first eight modes before and after model-reduction generally 

coincide, indicating that the reduced-order system retains 

the information of the first eight modes of the original 

system. In addition, the first eight modal mass participation 

ratio of KK100 is 89.39% which is close to 90%, indicating 

that the controller design based on a reduced-order model 

meets the engineering requirement.  

 
3.2 A reduced-order controller design 
 

In the paper, a new controller is designed based on a 

reduced-order model obtained by the improved BT method. 

The control force of the reduced-order control system is 
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 (c) (d)  

Fig. 4 The comparison of the structural responses of the 87th floor of KK100, (a) the displacement, (b) the errors of 

displacement, (c) the acceleration, (d) the errors of acceleration 

 

  

 

 (a) (b)  

Fig. 5 The comparison of the structural responses along height, (a) the displacement, (b) the acceleration 
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 ( ) ( )br br bru t G Z t= −
 

(32) 

where Gbr is a closed-loop feedback gain matrix. 

Since the state vector Zbr cannot be observed directly, 

Eq. (4) is described as 

 ( ) ( )1

bZ t T Z t−=
 

(33) 

Eq. (33) can be written as a block matrix. 
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(34) 

where Z1 and Z2 are the retained, abandoned state vectors 

corresponding to the original system. 

Then  

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1

1 211 12

1 1

1 221 22

br

bl

Z t T Z t T Z t

Z t T Z t T Z t

− −

− −

 =  + 


=  + 

 (35) 

According to Eq. (35), Zbl is  

  ( ) ( ) ( ) ( ) ( )1 1

1 221 22
0blZ t T Z t T Z t− −=  +  =

 (36) 

From Eq. (36), Z1 is 

 ( ) ( ) ( ) ( )
1

1 1

2 122 21
Z t T T Z t

−
− − = −  

   (37) 

Substituting Eq. (37) into Eq. (34) leads to 

( ) ( ) ( ) ( ) ( )  ( )
1

1 1 1 1

111 12 22 21brZ t T T T T Z t
−

− − − − = −   
   (38) 

Therefore, control force of the reduced-order control 

system shown in Eq. (32) is 

( ) ( ) ( ) ( ) ( )  ( )
1

1 1 1 1

111 12 22 21br bru t G T T T T Z t
−

− − − − = − −   
  

( ) ( ) ( ) ( ) ( )  ( )
1

1 1 1 1

111 12 22 21br bru t G T T T T Z t
−

− − − − = − −   
   

(39) 

Let 

( ) ( ) ( ) ( ) 
1

1 1 1 1

11 12 22 21brG G T T T T
−

− − − − = −  
   (40) 

Then the state feedback control law is 

 ( ) ( )1bru t G Z t= − 
 

(41) 

Since the state vectors Z of a control system is estimated 

by the state observer in reference (Chen et al. 2017), the 

negative influence of observation errors is reduced by 

 

Table 3 The control-force calculation time under different 

systems 

Controller The calculation time (s) The accelerated ratio 

The original 

controller 
0.1847 -- 

The reduced-order 

controller 
0.1356 26.58% 

 

 

intercepting the first few state vectors. A regional pole-

assignment method (Li et al. 2018) is applied in the AMD 

system. The simulink block diagram of the reduced-order 

controller is shown in Fig. 7. Its state-space equation is 

depicted by the dashed box, and the symbol inside the solid 

box in the figure represents the control gain obtained by the 

regional pole-assignment method.  

 
3.3 Numerical verification 
 

Under a fluctuating wind load, the structural responses 

of the 87th floor and the AMD parameters of different 

control systems are shown in Fig. 8. The statement whether 

the reduced-order system can effectively reduce the time 

delays for calculating control forces is given in the part, and 

the control-force calculation time under different systems is 

shown in Table 3. The corresponding control effects and the 

AMD parameters are listed in Table 4. The reduction is 

defined as the ratio between structural response reduction 

and the responses without control, and the AMD 

parameters include control forces and strokes. The 

duration of each scenario is 600s, and Table 4 presents the 

root mean square values of the data.  

From Fig. 8, Tables 3-4, the original controller and the 

reduced-order controller reduces wind vibration responses 

obviously, and the control effects and the AMD parameters 

of the reduced-order control system are close to the original 

control system. Specifically, the variations of the 

acceleration control effects of the 87th and 91st floors are 

only 0.0994% and 0.0899%. The AMD parameters of the 

reduced-order controller only increase by 0.0557 kN and 

0.0001 m. In addition, the reduced-order controller can be 

used to instead of the original controller. The control-force 

calculation time of the original controller is 0.1847s. 

Nevertheless, the control-force calculation time of the 

reduced-order system with 50 retained orders is only 

0.1356s. The accelerated ratio between the two systems is 

26.58% which proved that the reduced-order controller not 

only guarantees the performance of the control system, but  

 

Fig. 7 The simulink block diagram of the reduced-order controller 

312



 

Model reduction techniques for high-rise buildings and its reduced-order controller with an improved BT method 

 

 

 

 

also reduces its control-force calculation time effectively. 

Based on an energy conservation law, the energy 

equilibrium of a control system is 

 k d p w AMDE E E E E+ + = +
 

(42) 

where Ek, Ed and Ep are the kinetic energy, the damping 

dissipation energy and the elastic potential energy of a high-

rise building, respectively. Ew and EAMD are the energy input 

from a wind load excitation and an auxiliary mass.  

Based on Eq. (42), the kinetic energy, the damping 

dissipation energy and the elastic potential energy of the 

reduced-order model and the original model are shown in 

 

 

 

Figs. 9-11. The energy distribution of the reduced-order 

control system is shown in Fig. 12. 
From

 
these

 
figures,

 
the

 
energy

 
distribution

 
of
 

the 

reduced-order system is basically close to those of the 

original

 
system.

 
From

 
the

 
perspective

 
of

 
the

 
energy 

distribution, a similar trend exists between the reduced-

order system and the original system. Since a control 

system exerts energy on a controlled building, the damping 

dissipation energy of the system is greater than the external 

energy input. The damping dissipation energy is obviously 

greater than the kinetic energy and the elastic potential 

energy in a whole system which indicates that an AMD  

 

 
 

 

 (a) (b)  

 

  

 

 (c) (d)  

 

  

 

 (e) (f)  

Fig. 8 The comparison of the structural responses of the 87th floor and the AMD parameters of KK100, the displacement (a) 

0-600s and (b) 500-520s, the acceleration (c) 0-600s and (d) 500-520s, (e) the control force, (f) the stroke 

Table 4 The responses of different control systems 

Floor Index No-control 
The original control The reduced-order control 

Response Reduction (%) Response Reduction (%) 

87th 
Maximum displacement (m) 0.2594 0.2249 13.2999 0.2249 13.2999 

Maximum acceleration (m/s2) 0.2011 0.1718 14.5699 0.1716 14.6693 

91st 
Maximum displacement (m) 0.2711 0.2351 13.2792 0.2351 13.2792 

Maximum acceleration (m/s2) 0.2226 0.1891 15.0494 0.1893 14.9595 

Maximum control force (kN) — 620.0941 — 620.0384 — 

Maximum stroke (m) — 3.1625 — 3.1624 — 
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Fig. 9 The total kinetic energy of KK100 

 
 

Fig. 10 The total damping dissipation energy of KK100 

 
 

Fig. 11 The total elastic potential energy of KK100 

 

 

control system improves the damping dissipation energy 

capacity of high-rise buildings greatly. 

 
 
4. Experimental verification 

 

The experimental system consists of a four-storey frame 

and an AMD control device installed on the 4th floor (Teng 

et al. 2016). To validate the efficiency of the above method, 

the reduced-order controller by the improved BT method is 

applied to the experimental system. The full-order model of 

the experimental system is 10 (2×5), which includes a four-

storey frame with an AMD system. The magnitudes of the 

displacement transfer functions of the bottom floor of its 

reduced-order models are shown in Fig. 13. In this figure, 

ORM means the structure retains the original model (10 

orders), while r is the retained orders of 4, 6 and 8. 

Considering the structural frequency range, the part 

 

Fig. 12 The energy distribution of the AMD control system 

in KK100 

 
 

(a) 

 

(b) 

Fig. 13 The displacement transfer functions of the 

bottom floor of the experimental system under different 

retained orders, (a) the magnitude and (b) the phase 

 

Table 5 The modal frequencies of the experimental frame 

Mode 

number 

Modal frequencies (Hz) 

Original model r=4 r=6 r=8 

1 0.1354 0.1391 0.1368 0.1359 

2 0.4634 -- 0.4773 0.4657 

3 0.8599 -- -- 0.8630 

4 1.2723 -- -- -- 

 

 

between 0.01 Hz and 2 Hz is shown in the figures. Through 

the reduced-order process, the first four modal frequencies 

of different systems are compared in Table 5. The original 

model used in the frequency domain response analysis is 

modified by a modal test. For the original model, the mass 

matrix and stiffness matrix are two important parameters. In 

the experimental system, the diagonal element of its mass 

matrix is the mass of each floor or auxiliary mass; the 

stiffness matrix is calculated based on its structural finite  
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Fig. 14 The poles of the original model and the reduced-

order models of the experimental system 

 

 

element model, and then adjusted according to the 

measured natural frequencies, which are determined based 

on a modal test. 

From Fig. 13 and Table 5, with the increase of the  

 

 

 

retained orders, the difference between the original model 

and the reduced-order model becomes smaller. The dynamic 

characteristics of the frame are mainly determined by the 

first few modes of the original structure that is continuous 

and with a large modal mass participating ratio. For the 

overhead frame, it is suggested to take 6 retained orders 

which mean the first three modes of the frame are retained. 

Meanwhile, the modal mass participation ratio of the frame 

is 0.9452, and the model-reduction accuracy is 90%.  

The poles of the experimental system after using the 

original model and the reduced-order model obtained by the 

improved BT method are shown in Fig. 14. The pole 

positions of the balanced realization system are similar to 

those of the original system, indicating that the non-singular 

transformation does not change the system dynamic 

characteristics.  

Under the excitation load which has a frequency of 1 Hz 

and a peak value of 45.89 N, the structural responses of 

different systems are shown in Fig. 15, and the 

corresponding control effects and its AMD parameters are  

 

 

 

 

  

 

 (a) (b)  

 

  

 

 (c) (d)  

Fig. 15 The comparison of the structural responses of the 4th floor and the AMD parameters of the experimental system: (a) 

the displacement, (b) the acceleration, (c) the control force, (d) the stroke 

Table 6 The control effectiveness of the structural responses 

Index No control 
The original control The reduced-order control 

Response Reduction (%) Response Reduction (%) 

Maximum 

displacement (m) 

The 2nd floor 0.0158 0.0108 31.6456 0.0108 31.6456 

The 3rd floor 0.0231 0.0157 32.0346 0.0156 32.4675 

The 4th floor 0.0267 0.0182 31.8352 0.0180 32.5843 

Maximum 

acceleration (m/s2) 

The 2nd floor 0.1174 0.0386 67.1210 0.0308 73.7649 

The 3rd floor 0.1247 0.0836 32.9591 0.0781 37.3697 

The 4th floor 0.1495 0.0561 62.4749 0.0478 68.0268 

Maximum control force (N) — 14.7916 — 15.2265 — 

Maximum stroke (cm) — 16.79 — 17.41 — 
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listed in Table 6. The test duration of each scenario is 300s. 

Table 6 presents the root mean square values of the data, 

and the figures only give the time-history data in 30s.  

From Fig. 15 and Table 6, the reduced-order controller 

based on the improved BT method suppresses structural 

responses effectively. The control effects and the AMD 

parameters of the reduced-order system are relatively close 

to the original system. In particular, the maximum 

variations of the displacement and acceleration control 

effects between two different systems are only 0.7491% and 

6.6439%, and the AMD parameters of the reduced-order 

controller decrease by 0.4349 N and 0.62 cm. Under a 

sinusoidal excitation, the dynamic responses should be 

consistent with the excitation and obey the sine law. In fact, 

due to several factors, such as the interaction between the 

control system and the structure, the coupling between the 

horizontal and vertical vibrations of each floor, interference 

signals, unsmooth support track and uneven magnetic field 

between the rotor and stator, the structural response does 

not completely obey to the sine law, and its maximum 

amplitude fluctuates slightly. Since a state observer used 

acceleration signals to calculate control forces, the 

acceleration control effects are better than the displacement 

control effects. Acceleration control needs the control forces 

with a relatively high frequency, which creates the high-

order modes. Meanwhile, the AMD device is placed on the 

4th floor of the structure, and the 3rd floor has an opposite 

high-order phase with the 2nd or 4th floors. Therefore, its 

control effects are less than those on the 2nd or 4th floors. 

 
 
5. Conclusions 

 

A long control-force calculation time has a negative 

influence in AMD control systems. To address the issue, the 

paper has presented a new reduced-order controller. Several 

model-reduction methods have been compared and 

analyzed. Then, an improved reduced-order model that 

retains the abandoned modal information of its original 

model is proposed based on the dynamic characteristics of 

high-rise buildings. Finally, a new reduced-order controller 

is designed for a numerical example and an experimental 

system. Based on the results, the following conclusions can 

be drawn. 

• The classical BT method retains the low-order 

vibration modes with a large modal mass participating 

ratio, and it is suitable for the model-reduction of high-

rise buildings. The retained order of the reduced-order 

model is determined according to the model-reduction 

accuracy and the modal mass participating ratio of high-

rise buildings. 

• The dynamic characteristics of high-rise buildings are 

controlled by their low-order vibration modes. The 

classical BT method retains the low-order modal 

information, and the corresponding reduced-order model 

can better reflect the dynamic responses of the original 

model. 

• Compared with the classical BT method, the reduced-

order model obtained by the improved BT method has a 

higher accuracy. The model can better retain the 

abandoned structural modal information, and its 

acceleration transfer functions are more precise with the 

original model at a low frequency than that of the model 

obtained by the classical BT method. 

• The dynamic responses of the reduced-order model 

obtained by the improved BT method are basically close 

to those of the original model. The improved model is 

used to design a reduced-order control system. The new 

controller suppresses wind vibration responses 

effectively, and it has reasonable AMD parameters and a 

short calculation time.  
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