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1. Introduction 
 

Beam-type structures are typically used in various 

engineering applications such as aerospace, civil and 

mechanical. In recent decades, functionally graded 

materials (FGMs) are used in beam forms (Gul et al. 2019). 

It is well known that FGM offers certain opportunities such 

as uninterrupted variation of the material properties in one 

or more directions. This makes it possible to have structures 

with very interesting characteristics such as high resistance 

to temperature shocks, lower transverse shear stresses and 

high strength to weight ratio (Barati and Shahverdi 2016, 

Lal et al. 2017, Rezaiee-Pajand et al 2018, Faleh et al. 

2018, Avcar 2019, Ahmed et al. 2019, Balubaid et al. 2019, 

Dash et al. 2019, Rahmani et al. 2020, Kaddari et al. 2020). 

Therefore, understanding the behavior of the beams in 

various loading conditions is paramount in order to have a 

reliable design (Ghiasian et al. 2015). Stability analysis of 

beams under thermodynamic effect has great importance in 

their design process. 

Analyze of FGM beams under various loading and 

considerations have been studied through the past decade by 

various investigators. 

In the literature, many beam theories have been 

proposed to study the behavior of beam-type structures. The 

conventional beam theories, including the Euler and  
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Timoshenko beam theories have been extensively used in 

modeling the static and dynamic behavior of beams (Chen 

et al. 2018). 

Caliò and Greco (2013) have studied the free vibration 

of the Timoshenko beam-columns on the elastic Pasternak 

foundations using the dynamic stiffness matrix method. 

Using the Euler–Bernoulli beam theory Fu et al. (2012) 

analyzed the dynamic stability and the thermo-piezoelectric 

buckling of FG beams subjected to steady heat conduction. 

Also, Ghiasian et al. (2013) studied the static and dynamic 

buckling of FG beam on non-linear elastic foundation 

subjected to uniform temperature rise across thickness. 

Using the Rayleigh-Ritz method, Pradhan and Chakraverty 

(2013) studied the free vibration response of Euler-

Bernoulli and Timoshenko FG beams having different 

boundary conditions. 

It should be noted that the Euler beam theory also called 

classical beam theory (CBT) ignores shear deformation and 

applies only to slender beams. Therefore, it underestimates 

deflection and overestimates buckling load and natural 

frequencies (Fahsi et al. 2019, Nguyen and Nguyen 2015). 

The Timoshenko beams theory or called the first order 

beam theory (FSBT) accounts for the shear deformation 

effect, but requires a shear correction factor. Sakar and 

Ganguli (2014) studied the free vibration of axially FG 

clamped Timoshenko beams. Ranjan et al. (2019) used first 

shear deformation theory for thermo-elastic free vibration 

analysis of functionally graded flat panel with temperature 

gradient along thickness. Draoui et al. (2019) employed 

also FSDT for static and dynamic behavior of nanotubes-

reinforced sandwich plates. 

In order to avoid the use of a shear correction factor and 
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to take into account the transverse shear deformation for 

better accuracy, researchers have developed higher order 

shear theories for the study of FG beams (HSBT). However 

the efficiency of the HSBT depends on the appropriate 

choice of displacement field which is an interesting subject 

that attracted many research (Nguyen and Nguyen 2015, 

Mehar et al. 2018abcd, Dash et al. 2018, Ramteke et al. 

2019, Singh et al. 2019, Sahu et al.2020ab, Sahla et al. 

2019, Batou et al. 2019, Salah et al. 2019, Mehar et al. 

2019abc and 2020, Mehar and Panda 2020). 

Tounsi and his co-workers have proposed several HSDT 

(higher order shear deformation theories) for the study and 

analysis of FG structures with or without elastic foundations 

(Bachir Bouiadjra et al. 2013 and 2018, Ait Atmane et al. 

2017, Chaabane et al. 2019, Zarga et al. 2019, Berghouti et 

al. 2019, Boutaleb et al. 2019, Tlidji et al. 2019, Ahmed et 
al. 2019, Bourada et al. 2019, Medani et al. 2019, 

Boussoula et al. 2020, Tounsi et al. 2020, Refrafi et al. 

2020). Giunta et al. (2013) studied the thermal static 

behavior of FG beams subjected to thermo-mechanical 

loading on the base of Carrera unified formulation. Şimşek 

(2010) have compared results of various HSDT of FG 

beams subjected to vibration. Mantari and Yarasca (2015) 

developed an efficient 4-unknown quasi-3D hybrid theory 

for the bending analysis of FG beams. 

The behavior of beams on elastic foundations is an 

important area of research in engineering. It is necessary to 

take the beam-foundation-soil interaction into account in a 

simple way to serve properly to the purposes of the 

application (Avcar and Mohammed 2018). Therefore, many 

studies have been conducted. Yas et al. (2017) examined the 

free vibration of FG beams resting on Pasternak foundation 

using the Euler–Bernoulli theory and by means of 

Generalized Differential Quadrature (GDQ) method. Avcar 

and Mohammed (2018) presented an analytical solution for 

the vibration of the FG beam on Pasternak foundation and 

under different boundary conditions. Duy et al. (2014) 

presented an analytical formulation to obtain eigen 

solutions of the FG beams resting on elastic foundation. 

Zhong et al. (2016) analyzed force vibration of FG beams 

resting on elastic foundation under heat conduction. 

Tossapanon and Wattanasakulpong (2016) studied dynamic 

analysis of FG beam on two parameters elastic foundation. 

Bellal et al. (2020) investigated the buckling behavior of a 

single-layered graphene sheet resting on viscoelastic 

medium via nonlocal four-unknown integral model. 

Studies on the thermodynamic behavior of FG structures 

are very limited. Through the literature we find only the 

works of Zenkour and Sobhy (2013), Bachiri et al. (2018) 

and Mekerbi et al. (2019) as new studies dealing with this 

behavior. Moreover, there is no work available in the 

literature related to thermodynamic behavior of FG beam on 

elastic foundation by employing a quasi-3D theory 

according to the knowledge of the authors. Addou et al. 

(2019) examined the effects of porosity on dynamic 

response of FG plates resting on Winkler/Pasternak/Kerr 

foundation using quasi 3D HSDT. Boukhlif et al. (2019) 

presented a simple quasi-3D HSDT for the dynamics 

analysis of FG thick plate on elastic foundation. Also, 

Boulefrakh et al. (2019) discussed the effect of parameters 

of visco-Pasternak foundation on the bending and vibration 

properties of a thick FG plate. Zaoui et al. (2019) employed 

new 2D and quasi-3D shear deformation theories for free 

vibration of functionally graded plates on elastic 

foundations. Karami et al. (2019a) investigated the wave 

propagation of FG anisotropic nanoplates resting on 

Winkler-Pasternak foundation. 

In this paper, thermodynamic behavior of FG beams 

based on Winkler–Pasternak foundation is studied by using 

an efficient analytical method. The equations of motion are 

derived using a quasi-3D theory for the case of plates but 

modified to make it applicable for the case of beams. The 

formulation takes both the thermodynamic effect through 

the thickness of the beam as well as the effect of the elastic 

foundation. 

The mechanical characteristics of the FG beam are 

assumed to be varied across the thickness according to a 

simple exponential law distribution of the volume fraction 

of the constituents. Validation of the present method is 

demonstrating the good agreement between our results and 

those available in literature. A detailed parametric study is 

presented to show the effect of the different parameters on 

the thermodynamic response of FG beam. 

 

 

2. Quasi-3D theory for functionally graded beams 
 

Consider a functionally graded (FG) beam of thickness 

h and length L. The beam is assumed to rest on a Winkler-

Pasternak elastic foundation. The mechanical characteristics 

of the beam are assumed to be varied according to thickness 

as (Zenkour and Sobhy 2013): 

1

2( ) , ln

P

z

ch
m

m

P
P z P e

P





 
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 
 

= =  
 

 (1) 

( )P z is the effective material properties like Young’s 

modulus E , density  , and thermal expansion coefficient 

. The subscripts m and c refer to metal and ceramic. p is 

the power law index. 

 

2.1 Kinematics 
 

The displacement field satisfying the conditions of 

transverse shear stresses (and hence strains) vanishing at (x, 

y, ±h/2) on the outer (top) and inner (bottom) surfaces of the 

beam, is given as follows: 

( ) ( )0
0 x

w
u x,z,t u ( x,t ) z f z ( x,t )

x



= − +


 

( ) ( ) ( ) ( )0, , , ,w x z t w x t g z x t= +
 

(2) 

𝑢0, 𝑤0, 𝑎𝑛𝑑 𝜑𝑥are the three-unknown displacement of 

the mid-plane of the beam.  

By considering that𝜑𝑥 = ∫ 𝜃(𝑥, 𝑡)𝑑𝑥 , the displacement 

fields mentioned above can be written as follows: 

( ) ( ) ( )0
0 1, , ( , ) ,

w
u x z t u x t z k f z x t dx

x



= − +

  (3) 
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( ) ( ) ( ) ( )0, , , ,w x z t w x t g z x t= +
 

The integrals defined in the above equations shall be 

resolved by a Navier type method and the displacement 

fields can be rewritten as: 

( ) ( ) ( )0

0 1

dw dθ
u x, z,t = u x,t - z + k A f z

dx dx


 

( ) ( ) ( ) ( )0, , , ,w x z t w x t g z x t= +
 

(4) 

where 

( )
2

15

df
g z

dz
= , 

2

2
;1

1 m
k A = -= ;

L
-


 


=  

2
1k =  

(5a) 

 

(5b) 

The coefficient A’ is expressed according to the Navier 

type solution and they are given by:  

,
1

'
2

−=A  (6a) 

And
 

m

a


 =  (6b) 

It can be seen that the displacement field in Eqs. (3)-(4) 

contains only three unknowns 0 0u ,w and 
 

The shape function f ( z )  is given as follows: 

( ) sin
h z

f z z
h




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= −  
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 (7) 

The kinematic relations can be obtained as follows: 
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(9) 

 
2.2 Constitutive relations 

 

By assuming that the material of FG beam obeys 

Hooke’s law, the stresses in the beam become: 
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(10a) 

 

 

(10b) 

where (𝜎𝑥,𝜎𝑧𝜏𝑥𝑧) and (𝜀𝑥, 𝜀𝑧, 𝛾𝑥𝑧) are the stress and strain 

components, respectively. 𝛼(𝑧)  is the coefficient of 

thermal expansion, and T is the distribution of the 

temperature load. 
 

2.3 Equations of motion 
 

Hamilton’s principle is used herein to derive the 

equations of motion. The principle can be stated in 

analytical form as (Behera and Kumari 2018, Fenjan et al. 

2019ab, Faleh et al. 2020): 

( )
0

0 ?

T

U K T dt  = + −  (11) 

where 𝛿𝑈 is the variation of strain energy and 𝛿𝐾 is the 

variation of potential energy; 𝛿𝑇 is the variation of kinetic 

energy. 

The variation of strain energy of the beam can be stated 

as: 

 
/2

0 /2
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h
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−

= + +   (12) 

Substituting Eqs. (8)-(10) into Eq. (12) and integrating 

through the thickness of the beam, Eq. (12) can be rewritten 

as 

2 2
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2

2

h
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(14b) 

 

 

(14c) 

Using Eq. (10) in Eq. (14), the stresses resultants, for the 
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present FG beam, can be related to the displacements as: 

0
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where A , B , D , etc., are the beam stiffness, defined by 
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The stress and moment resultants, , ,
T TT b s

x x xN M M

due to thermal loading are defined by 
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The potential energy of the foundation and distributed 

load is expressed as: 
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Also, the variation of the kinetic energy can be expressed as 
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Where dot-superscript convention indicates the 

differentiation with respect to the time variable t ;ρ(z) is the 

mass density; and (I0, I1, 0J ,J1, I2, J2, 0K ,K2) are mass 

inertias defined as: 
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Substituting the expressions for δU, δK and δT from Eqs. 

(13)-(19) and (21) into Eq. (11) and integrating by parts and 

collecting the coefficients of 0 0,u w  and  , the 

following equations of motion of the beam are obtained 
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By substituting Eqs. (15)-(16) into Eq. (23), the 

equations of motion can be expressed in terms of 

displacements ( )0 0, ,u w   as 
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(24c) 

 

 

The variation of temperature is assumed to occur in the 

thickness direction according to a power law form. The 
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temperature field variation through the thickness is assumed 

to be (Zenkour and Sobhy (2013)) 

ˆˆ( , , ) ( ) ( , ),T x z t t z T x t=  (25a) 

where 
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 

=

 

(25b) 

 

(25c) 

where t  is arbitrary parameter and 𝑇+and 𝑇− are the top 

and the bottom temperature.  

In which 𝜂 is the temperature exponent. Note that 𝜂 =
0 represents a top surface temperature of the beam while 

𝜂 = ∞ represents a bottom surface temperature. 

 

 

3. Analytical solution 
 

In this paragraph, the Navier solution for simply 

supported beams will be used to solve the problem. The 

variables  𝑢0 , 𝑤0and 𝜃can be written by assuming the 

following variations: 

( )
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  (26) 

where: 
mU ,

mW ,
mX  are arbitrary parameters to be 

determined,𝝎is the eigen frequency associated with mt h 

eigen mode, and 
𝑚𝜋

𝐿
. The transverse load 𝑞 is also 

expanded in Fourier series as: 

( )
1

sin i t

m

m

m
q x Q x e

L



=

 
=  

 
  (27) 

where 𝑄𝑚 is the load amplitude calculated from: 

( )
0

sin( )

L

mQ q x x=   (28) 

For the case of uniform distributed load, the coefficient 

𝑄𝑚is given as: 

( )04
1,3,5,.....m

q
Q m

m
= =  (29) 

Substituting Eqs. (26)-(27) into Eq. (24), the analytical 

solutions can be obtained by: 

• For the free vibration problem 

   ( ) 2 0K M−  =  (30) 

•  For the case of the static problems 

    K F =  (31) 

• For the case of the thermodynamic  

   ( )   2K M F−  =  (32) 

where [𝑀]is the mass stiffness matrix, [𝐾]is the stiffness 

matrix, {𝛥} is the displacement of the nodal value, and 

{𝐹} is the distributive force vector, and 𝜔2 is the eigen 

values of dynamic system (natural frequencies). 
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4. Results and discussion 
 
In this section, numerical computations of the simply 

supported FG beams resting on elastic foundation by the 

present method are suggested for investigation. 

In absence of works relating to FG beams subjected to 

thermodynamic loading in literature, the results of this 

model have been validated for the static case in the presence 

of a mechanical load and in the dynamic case for free 

vibration. 

Numerical calculations are performed for a mixture 

made of Aluminum and Alumina, where the top region is 

Alumina rich and the bottom region is Aluminum rich with 

the following material properties: 
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- Metal (Aluminium, Al): 𝐸𝑀 = 70 × 109  N/m2;

3.0= ; 2702=M kg/m3;  

- Ceramic (Alumina, Al2O3): 𝐸𝐶 = 380 × 109; N/m2;

3.0= ; 𝜌𝐶 = 3960kg/m3 ;  

In all examples, the foundation parameters are presented 

in the non-dimensional form of 𝑘𝑤 = 𝐾𝑤𝐿4/𝐸𝐼and𝑘𝑝 =

𝐾𝑝𝐿2/𝐸𝐼. 

For simplicity, the following non-dimensional 

parameters are used in the numerical examples: 
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where 𝐼 =
𝑏ℎ

3

12
 (beam stiffness) 

 

4.1 Comparison studies 
 

The accuracy and efficiency of the present method to 

characterize well the free vibration and the static bending 

behaviors is firstly demonstrated. 

Tables 1-2 present respectively the comparisons of the 

non-dimensional natural frequency and the mid-span 

deflection obtained from the present computational model 

with other reported methods (Ying et al. (2008), Ait Atmane 

et al. (2017)). Results are presented for different values of 

foundation parameters, and thickness-to-length ratio. 

In general, good agreements are observed between the 

present results and the exact two-dimensional theory of 

elasticity by Ying et al. (2008) and shear and normal 

deformation beam theory of Ait Atmane et al. (2017). 

Table 1 Comparisons of the mid-span non-dimensional 

deflection (𝑤̄) of an isotropic homogeneous beam on elastic 

foundations using various beam theories.  

Another comparison is presented in Table 3 where the  
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Fig. 1 Variation of deflection w  versus the natural 

frequency 𝜔  (𝐿/ℎ = 5, 𝑡 = 5,  𝜂 = 1, 𝑇− = 25,  𝑘 =
1, 𝐾𝑤 = 100, 𝐾𝑝 = 10) 

 

 

results of present method are compared with those of Li et 

al. (2010) and Ould Larbi et al. (2015).  

The results are presented in terms of displacements and 

stress for different values of the power index and thickness-

to-length ratio. 

In this case too, an excellent agreement between results  

is observed. The difference is found to be relatively small 

while the thickness-to-length a/h=5 compared to the other 

two solutions. 

This is due to the fact that the two solutions are 2D theories, 

whereas the present is a quasi 3D theory so it takes into 

account the stretching effect. 

 

4.2 Parametric studies 
 

In this section, a series of parametric studies are 

conducted to investigate the effects of beam parameters, 

elastic foundation and thermal loading on the 

thermodynamic behavior of simply supported FG beam 

resting on elastic foundation. 

Table 1 Comparisons of the mid-span non-dimensional deflection (w ) of an isotropic homogeneous beam on elastic 

foundations using various beam theories 

Foundation 

parameters 
L/h=120 L/h=15 L/h=5 

Kw Ks 
Ying et al. 

(2008) 

Ait Atmane 

et al. (2015) 

 

Present 

 

Ying et al. 

(2008) 

Ait Atmane 

et al. (2015) 

 

Present 

 

Ying et al. 

(2008) 

Ait Atmane 

et al. (2015) 

 

Present 

 

0 

0 1.3023 1.3009 1.3021 1.3153 1.3022 1.3105 1.4202 1.3133 1.4091 

10 0.6448 0.6446 0.6448 0.6483 0.6532 0.6473 0.6745 0.7217 0.6730 

25 0.3661 0.3662 0.3661 0.3674 0.3796 0.3671 0.3767 0.4842 0.3763 

10 

0 1.1806 1.1794 1.1803 1.1913 1.1817 1.1875 1.2773 1.2003 1.2688 

10 0.6133 0.6131 0.6132 0.6165 0.6223 0.6156 0.6403 0.6945 0.6389 

25 0.3557 0.3557 0.3556 0.3568 0.3694 0.3566 0.3657 0.4755 0.3653 

100 

0 0.6401 0.6398 0.6400 0.6434 0.6486 0.6425 0.6685 0.7177 0.6670 

10 0.4256 0.4256 0.4255 0.4272 0.4380 0.4268 0.4388 0.5344 0.4383 

25 0.2829 0.2830 0.2828 0.2836 0.2981 0.2835 0.2894 0.4148 0.2891 
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Fig. 1 displays the variation of deflection w versus the 

natural frequency 𝜔  for various values of the arbitrary 

parameter  𝑡̄ . From this figure, it can be seen that the 

displacements are strongly influenced in the low frequency 

zone, that is to say at the level of the first modes of 

vibration. This influence is clearly noted for cases of 𝑡̄ ≻ 1. 

While for the case where 𝑡̄ = 1, the displacements are little 

disturbed. Then, there is a gradual attenuation of the 

displacements to approach the zero value that is to say the 

stability of the beam for the high modes. 

 

 

Fig. 2 presents the variation of the axial stress x versus 

the natural frequency   for different values of the arbitrary 

parameter t .   

It can be seen from the figure that, for all cases of the 

values of the arbitrary parameter t , the stresses have a 

sinusoidal shape whatever the mode of vibration.  The 

increase in the values of this parameter leads to an increase 

in the stresses. 

Table 2 Comparisons of the non-dimensional-fundamental frequency ( ) parameter of an isotropic homogeneous beam on 

elastic foundations using various beam theories 

Foundation 

parameters 
L/h=120 L/h=15 L/h=5 

Kw Ks/  

Ying et 

al. 

(2008) 

Ait Atmane 

et al. (2017) 

 

Present 

 

 

Ying et al. 

(2008) 

Ait Atmane 

et al. (2017) 

 

Present 

 

 

Ying et 

al. 

(2008) 

Ait Atmane 

et al. (2017) 

 

Present 

 

 

0 

0 3.1415 3.1421 3.1414 3.1323 3.1309 3.1329 3.0637 3.0484 3.0552 

1 3.7359 3.7363 3.7358 3.7278 3.7270 3.7278 3.6665 3.6598 3.6644 

2.5 4.2969 4.2972 4.2968 4.2889 4.2884 4.2887 4.2232 4.2249 4.2296 

102 

0 3.7482 3.7486 3.7482 3.7401 3.7393 3.7402 3.6788 3.6724 3.6769 

1 4.1436 4.1438 4.1438 4.1356 4.1350 4.1354 4.0720 4.0712 4.0758 

2.5 4.5823 4.5825 4.5822 4.5741 4.5738 4.5738 4.5028 4.5097 4.5153 

104 

0 10.0240 10.0240 10.0240 9.9958 10.0066 10.0059 7.3408 7.5525 7.7604 

1 10.0481 10.0481 10.0481 10.0197 10.0306 10.0299 7.3410 7.5525 7.7604 

2.5 10.0839 10.0839 10.0839 10.0552 10.0663 10.0656 7.3412 7.5525 7.7604 
 

 

Table 3 Comparisons of the non-dimensional 𝑤̄,𝜎̄𝑥 ,𝜏̄𝑥𝑧of an FGM beam on using various beam theories 

p Theory 
w  u  𝜎̄𝑥 𝜏̄𝑥𝑧 

a/h=5 a/h=20 a/h=5 a/h=20 a/h=5 a/h=20 a/h=5 a/h=20 

0 

Li et al. (2010)  3.1653 2.8962 0.9402 0.2306 3.8018 15.0128 0.7321 0.7435 

Ould Larbi et al. (2015) 3.1653 2.8962 0.9406 0.2305 3.8018 15.0128 0.7330 0.7436 

Present 3.2986 2.9148 0.9293 0.2273 3.9572 15.5018 0.8006 0.7754 

0.5 

Li et al. (2010)  4.8285 4.4644 1.6603 0.4087 4.9922 19.7002 0.7493 0.7604 

Ould Larbi et al. (2015) 4.8285 4.4644 1.6608 0.4087 4.9476 19.6891 0.7501 0.7605 

Present 4.9851 4.4640 1.6089 0.3959 5.2021 20.3442 0.8427 0.8426 

1 

Li et al. (2010)  6.2594 5.8049 2.3045 0.5686 5.8834 23.2051 0.7321 0.7435 

Ould Larbi et al. (2015) 6.2594 5.8048 2.3052 0.5685 5.8066 23.1860 0.7329 0.7436 

Present 6.4055 5.7573 2.2123 0.5445 6.1287 23.9620 0.8006 0.7754 

2 

Li et al. (2010)  8.0676 7.4420 3.1134 0.7691 6.8823 27.0989 0.6696 0.6810 

Ould Larbi et al. (2015) 8.0676 7.4421 3.1146 0.7691 6.7591 27.0682 0.6704 0.6811 

Present 8.1941 7.3256 2.9753 0.7303 7.1607 27.9772 0.6711 0.5966 

5 

Li et al. (2010)  9.8280 8.8182 3.7089 0.9133 8.1104 31.8127 0.5896 0.6011 

Ould Larbi et al. (2015) 9.8280 8.8186 3.7128 0.9134 7.9252 31.7667 0.5903 0.6012 

Present 9.9849 8.6951 3.5761 0.8693 8.4172 32.8328 0.5067 0.4002 

10 

Li et al. (2010)  10.9381 9.6905 3.8860 0.9536 9.7119 38.1382 0.6456 0.6584 

Ould Larbi et al. (2015) 10.9381 9.6907 3.8898 0.9537 9.5285 38.0926 0.6465 0.6585 

Present 11.2077 9.6274 3.7888 0.9162 10.0728 39.3600 0.5473 0.4287 
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Fig. 2 Variation of the axial stress

 x  versus the natural 

frequency  (𝐿/ℎ = 5, 𝑡 = 5,  𝜂 = 1, 𝑇− = 25,   𝑘 =

1, 𝐾𝑤 = 100, 𝐾𝑝 = 10) 
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Fig. 3 Variation of the transverse shear stress xz versus 

the natural frequency  (𝐿/ℎ = 5, 𝑡 = 5,  𝜂 = 1, 𝑇− =

25,  𝑘 = 1, 𝐾𝑤 = 100, 𝐾𝑝 = 10) 
 

 

Fig. 3 depicts the variation of the transverse shear stress 

𝜏𝑥𝑧versus the natural frequency. The same observation as 

Fig. 1 is noted, namely that the tangential stresses are 

strongly affected during the first modes of vibration. Then, 

as the natural frequency of the plate rise, the transverse 

shear stress decrease until canceled (vanished). 

Figs. 4-6 show the variation of the deflection w , the 

axial stress 𝜎̄𝑥 and the transverse shear stress 𝜏𝑥𝑧 with the 

time t respectively for different values of the temperature 

exponent 𝜂.  

From these figures, the following remarks can be made: 

• Increasing in the temperature exponent 𝜂 values 

leads to a reduction of the deflection and stresses (axial and 

shear transverse), 

• The shape of the displacement and stresses is 

sinusoidal regardless of the value of the temperature 

exponent  or time.  

• Deflections and stresses reach their maxima at 

time 0, , ,...
2

t

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Fig. 4 Effect of time “t” on deflection “ w “of FG beam for 

different values of the temperature exponent  with 

(𝐿/ℎ = 5, 𝜔 = 4,  𝑡̄ = 2, 𝑇− = 25, 𝑇𝑟 = 4,  𝑘 =
1, 𝐾𝑤 = 100, 𝐾𝑝 = 10) 
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Fig. 5 Effect of time “t” on the longitudinal stress x of 

FG beam for different values of the temperature 

exponent 𝜂 with (𝐿/ℎ = 10, 𝜔 = 4,  𝑡̄ = 2, 𝑇− =
25, 𝑇𝑟 = 4,  𝑘 = 1, 𝐾𝑤 = 100, 𝐾𝑝 = 10) 
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Fig. 6 Effect of time “t” on the transverse shear stress xz

of FG beam for different values of the temperature 

exponent 𝜂 with (𝐿/ℎ = 5, 𝜔 = 4,  𝑡̄ = 2, 𝑇− = 25, 𝑇𝑟 =

4,  1, 100, 10)w pk K K= = =  
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Fig. 7 Variation of the axial stress 𝜎̄𝑥through the thickness 

of the FG beam resting on elastic foundations for different 

values of elastic foundations parameters
 

(𝐿/ℎ = 5, 𝑡 =
3,  𝜂 = 1, 𝜔 = 4, 𝑡̄ = 2, 𝑇− = 25,  𝑘 = 1, 𝑇𝑟 = 4) 

 

 
The effect of the elastic foundation parameters on the 

variation of the axial stresses across the thickness is plotted 

on Fig. 7. 

According to this figure, it can be concluded that, 

• Increasing in values of elastic foundation 

parameters leads to a increasing in values of the maximum 

axial stresses, 

• The maximum compressive stresses occur at a 

point on the top surface and the maximum tensile stresses 

occur at a point on the bottom surface of the FG beam. 

In the same way, the variation of the shear stresses 

through the thickness of the FG beam resting on elastic 

foundations for different values of parameter of these 

foundations is represented in Fig.8. It is observed that the 

increase in the parameters of the elastic foundation 

increases the transverse shear stresses. 
 

 

5. Conclusion 
 

In this paper, the thermodynamic response of FG beam 

resting on elastic foundation subjected to a harmonic 

temperature field across its thickness is analyzed by a 

refined quasi 3D theory. Influences of the temperature and 

elastic foundation parameters are investigated in great 

details. From the numerical examples it can be concluded 

that above mentioned parameters all affect the 

thermodynamic response of the FG beam especially in the 

first modes as it is the case of the variation of the 

displacement and the shear stress as a function of the 

arbitrary time parameter. 

In addition, the present method is very efficient for the 

thermodynamic response analysis of FG beam resting on 

elastic foundation. This work can be extended in the future 

work for other type of materials (Arani and Kolahchi 2016, 

Daouadji 2017, Sharma et al. 2018abc, Ayat et al. 2018, 

Panjehpour et al. 2018, Narwariya et al. 2018, Mehar and 

Panda 2018abcd and 2019ab, Malikan 2018 and 2019, 

Othman and Fekry 2018, Hussain and Naeem 2019,  
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Fig. 8 Variation of the transverse shear stress 𝜏𝑥𝑧through 

the thickness of the FG beam for different values of elastic 

foundations parameters (𝐿/ℎ = 5, 𝑡 = 3,  𝜂 = 1, 𝜔 =
4, 𝑡̄ = 2, 𝑇− = 25,  𝑘 = 1, 𝑇𝑟 = 4) 

 

 

Belbachir et al. 2019 and 2020, Pandey et al. 2019, 

Semmah et al. 2019, Hussain et al. 2019, Selmi 2019, 

Bensattalah et al. 2019, Abualnour et al. 2019, Alimirzaei et 

al. 2019, Karami et al. 2019bc, Adda Bedia et al. 2019, 

Timesli 2020, Asghar et al. 2020, Taj et al. 2020, Matouk et 

al. 2020, Al-Maliki et al. 2020, Khorasani et al. 2020, 

Bourada et al. 2020, Bousahla et al. 2020, Chikr et al. 2020, 

Bisen et al. 2020).  
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