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1. Introduction 
 

The nonlinear hysteretic effect has been found in many 

physical systems such as structural dampers, mechanical 

systems with joints, base-isolation devices for buildings, 

and piezoelectric materials (Tran and Li 2018, Li and Shu 

2019, Korayem and Sadeghzadeh 2009, Korayem et al. 

20012, Korayem and Homayouni 2017). One of the 

mathematical models, the Bouc-Wen model, has been 

extensively employed in describing the nonlinear hysteretic 

of civil and mechanical systems due to its numerical 

tractability and capability in capturing hysteresis loop in an 

analytical form (Shu and Li 2017, Dong et al. 2019). 

However, it is a challenging task to accurately estimate 

parameters of the Bouc–Wen model due to its highly 

nonlinear and memory nature. 

Many researchers  formula ted  the  parameter 

identification problem of the Bouc–Wen model as a discrete 

state identification problem. For instance, Chang and Shi 

(2010) introduced a wavelet multiresolution technique for 

identifying time-varying parameters of hysteretic structures. 

Omrani et al. (2012) conducted the parameter identification 

of the Bouc-Wen model through an unscented Kalman 

filtering approach. More recently, Bajrić and Høgsberg 

(2018) proposed an output-only system identification 

method for estimating model parameters of a dynamic 

system with hysteretic damping. Niola et al. (2019) 

presented a constrained unscented Kalman filter for 

identifying hysteresis model parameters of the Bouc-Wen  
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model that was adopted to describe the hysteretic shear 

behavior of a seismic isolator. However, this kind of 

identification method is generally complicated and often 

requires a high sampling rate because the discrete state 

equations should be accurate enough to approximate the 

original time-varying differential equations. 

Alternatively, techniques based on metaheuristic 

stochastic algorithms attract growing interests for solving 

such nonlinear optimization problems in recent years. For 

example, Worden and Manson (2012) proposed a self-

adaptive differential evolution algorithm for identifying 

nonlinear parameters of dynamical systems. Ortiz (et al. 

2013) employed a multi-objective evolutionary 

optimization algorithm for identifying the parameters of the 

Bouc–Wen–Baber–Noori model. Quaranta et al. (2014) 

adopted PSO and DE for solving the parameter 

identification problem of Bouc–Wen model. Ding et al. 

(2019) proposed an improved tree-seed algorithm for 

determining parameters of nonlinear hysteretic systems. In 

most of these studies, stiffness and viscous damping of the 

Bouc-Wen model are usually given. This is not realistic for 

practical engineering problems, all parameters (including 

hysteretic parameter, stiffness, and viscous damping) need 

to be identified simultaneously. 

Recently, a novel heuristic algorithm named experience-

based learning algorithm (EBL) has been proposed for 

dealing with structural damage identification problems by 

the authors’ team (Zheng et al. 2019). The attractive 

features of this algorithm are its simple principle, fast 

convergence, and algorithm-specific parameter-free 

characteristics, which are beneficial for achieving excellent 

performance in searching global optimal solutions. 

Nevertheless, like other heuristic algorithms, the EBL may 

inevitably suffer from the imbalance between the  
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exploration and exploitation capabilities. Therefore, it is 

important to well-balance the exploration and exploitation 

abilities in order to obtain better convergence performance 

and more precise results. 

In this paper, an improved experience-based learning 

algorithm, namely IEBL, is proposed for Bouc–Wen 

hysteretic parameter identification, in which two 

modifications are introduced, including a concept of 

opposition-based learning and new updating equations for 

candidates. The quasi-oppositional learning handles a wider 

exploration of the search space, and the new updating 

equations enhance the exploitation capability by making use 

of more candidate information. Numerical simulations on a 

single-degree-of-freedom (SDOF) system are carried out to 

demonstrate the effectiveness of the proposed algorithm in 

comparison to the EBL and other four state-of-the-art 

algorithms including cloud model based fruit fly 

optimization algorithm (CMFOA) (Zheng et al. 2018), 

squirrel search algorithm (SSA) (Jain et al. 2019), and Jaya 

(Artar and Daloglu 2019). The influences of measurement 

noise and excitation input are also investigated. At last, a 

laboratory test of lead-filled steel tube dampers is presented 

and their parameters are identified to demonstrate the 

potential of the proposed algorithm for practical application. 

The rest of this paper is organized as follows. Section 2 

describes the problem formulation for nonlinear hysteretic 

parameter identification of the Bouc-Wen model. Section 3 

briefly recapitulates the original EBL and describes the 

proposed IEBL with two modifications. Section 4 shows the 

results of numerical simulations. Section 5 presents a 

laboratory test of seven lead-filled steel tube dampers and 

their identified hysteretic parameters. Finally, concluding 

remarks are drawn in Section 6. 

 

 

2. Problem statement 
 

2.1 Hysteresis Bouc-Wen model 
 

The equation of motion of a SDOF system is expressed 

as: 

𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) + 𝐹(𝑡) = 𝑓(𝑡) (1) 

where 𝑚 is the mass, 𝑢(𝑡) is the displacement, 𝑐 is the 

linear viscous damping, 𝐹(𝑡) is the restoring force, and  

 

 

𝑓(𝑡) is the excitation force. The memory-based relationship 

between the displacement 𝑢(𝑡) and the restoring force 

𝐹(𝑡) is expressed as (Ding 2019): 

𝐹(𝑡) = 𝑎
𝐹𝑦

𝑢𝑦

𝑢(𝑡) + (1 − 𝑎)𝐹𝑦𝑧(𝑡) (2) 

where 𝑎 is the ratio of post-yield to pre-yield (elastic) 

stiffness, 𝐹y  is the yield force,  𝑢y  is the yield 

displacement, and 𝑧(𝑡)  is a non-observable hysteretic 

displacement that obeys the following nonlinear differential 

equation with zero initial condition (𝑧(0) = 0):  

�̇�(𝑡) =
1

𝑢𝑦

[𝐴 − |𝑧(𝑡)|𝑛(𝛽 + 𝑠𝑖𝑔𝑛(�̇�(𝑡)𝑧(𝑡))𝛾)]�̇�(𝑡) (3) 

where 𝑠𝑖𝑔𝑛 is the signum function, and n, 𝐴, 𝛽, and 𝛾 

are dimensionless quantities that control the size and the 

shape of the hysteretic loop. Dimensionless quantity n 

determines the shape of the transition from elastic to post-

elastic branch: the transition tends to be smooth if 

parameter 𝑛 is small while the transition for a large value 

of n becomes abrupt. Dimensionless quantity A is usually 

set to unity, and a constraint 𝐴/(𝛽 + 𝛾) = 1 (𝛾 ∈ [0,1]) is 

also imposed in order to eliminate the inherent functionally 

redundant problem of the model (Ma et al. 2004). In this 

way, the total number of unknown parameters is reduced to 

six, i.e. 𝑢y, 𝐹y, 𝑎, 𝛾, 𝑛 and 𝑐. A vector �̂� containing the 

model’s unknown parameters is defined as: 

�̂� = {𝑢𝑦 , 𝐹𝑦 , 𝑎, 𝛾, 𝑛, 𝑐} (4) 

The restoring force 𝐹(𝑡) can be divided into an elastic 

part and a hysteretic part as follows: 

𝐹𝑒𝑙(𝑡) = 𝑎
𝐹𝑦

𝑢𝑦

𝑢(𝑡) (5) 

𝐹ℎ(𝑡) = (1 − 𝑎)𝐹𝑦𝑧(𝑡) (6) 

Therefore, as shown in Fig.1, the restoring force can be 

visualized as two springs connected in parallel with 𝑘𝑖 =
𝐹𝑦 𝑢𝑦⁄  and 𝑘𝑓 = 𝑎𝑘𝑖 being defined as the initial and post-

yielding stiffness of the system, respectively. 
 

2.2 Objective function for optimization problem 
 

Nonlinear system identification with hysteretic models 

can be formulated as an optimization problem. The 
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Fig. 1 Definiton of Bouc–Wen model. 
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objective function of the optimization problem is defined as 

a function of the unknown parameter vector �̂� which can 

later be identified by minimizing the objective function 

through a specified heuristic algorithm. In this study, the 

objective function is constructed from the measured time 

history response of the model 𝑦(𝑡) and the estimated time 

history response �̂�(𝑡) . At the kth time step 𝑡𝑘 , the 

estimated response �̂�(𝑡𝑘) is defined as follows 

�̂�(𝑡𝑘) = 𝑓(�̂�, 𝑡𝑘) (7) 

where �̂�(𝑡𝑘) can be displacement, velocity, acceleration, or 

force response. The objective function is defined as the 

normalized mean square error (MSE) of the estimated time 

history �̂�(𝑡) as compared to the measured time history 

response 𝑦(𝑡) of the model: 

𝑜𝑏𝑗(�̂�) =
∑ (𝑦(𝑡𝑘) − �̂�(𝑡𝑘))

2𝑛𝑡𝑖𝑚𝑒
𝑘=1

𝑁𝜎𝑦
2

 (8) 

where 𝑛𝑡𝑖𝑚𝑒  is the number of time steps;  𝜎𝑦
2  is the 

variance of the measured time history response. Hence, the 

identification problem can be summarized as the 

minimization of the objective function 𝑜𝑏𝑗(�̂�) when the 

parameter vector �̂� is subjected to the feasible parameter 

side constraints 𝛤: 

Find �̂� ∈ 𝛤 such that 𝑜𝑏𝑗(�̂�) → 𝑚𝑖𝑛 (9) 

𝛤 = {�̂� ∈ ℝ𝑑|𝜃𝑗
𝑚𝑖𝑛 ≤ �̂�𝑗 ≤ 𝜃𝑗

𝑚𝑎𝑥 , 𝑗 = 1, 2, … , 𝑑} (10) 

where 𝑑  is the number of parameters to be identified; 

𝜃𝑗
𝑚𝑖𝑛 and 𝜃𝑗

𝑚𝑎𝑥 are the lower and upper bounds of model 

parameters, respectively. The objective function generally 

has multiple local minima to which the traditional 

optimization techniques are easy to be stuck. This may lead 

to poor identification results. Therefore, it is necessary to 

develop a powerful algorithm in order to deal with the 

nonlinear identification problem. 
 
 

3. Improved experience-based learning algorithm 
 
3.1 Original EBL 
 

The EBL was a recently proposed heuristic algorithm 

for structural damage identification problems, inspiring by a 

learning strategy following the experience of a randomly 

chosen candidate of the population (Zheng et al. 2019). The 

initial step of the EBL is to generate a random initial set of 

N candidates in the specified searching space, among which 

the candidate that yields the smallest objective function 

value in Eq. (8) is selected as the initial best population. 

The core of the EBL is the phase of updating the new 

position of each candidate in its vicinity according to the 

following two modes of learning strategy: 

Mode 1:  

�̂�𝑖𝑗
𝑛𝑒𝑤

= {
𝜃𝑖𝑗 + 𝑟𝑎𝑛𝑑 ∙ 𝐷 ∙ (�̂�𝑖𝑗 − �̂�𝑙𝑗), 𝑖𝑓 𝑜𝑏𝑗(�̂�𝑖𝑗) < 𝑜𝑏𝑗(�̂�𝑙𝑗)

�̂�𝑖𝑗 + 𝑟𝑎𝑛𝑑 ∙ 𝐷 ∙ (�̂�𝑙𝑗 − �̂�𝑖𝑗),           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 
(11) 

𝐷 = 1 − (
𝐼𝑡𝑒𝑟

𝐼𝑡𝑒𝑟𝑚𝑎𝑥

) ∙ exp (
𝐼𝑡𝑒𝑟

𝐼𝑡𝑒𝑟𝑚𝑎𝑥

) (12) 

Mode 2:  

𝜃𝑖𝑗
𝑛𝑒𝑤

= {
𝜃𝑖𝑗 + 𝑟𝑎𝑛𝑑 ∙ (�̂�𝑖𝑗 − 𝑟𝑎𝑛𝑑 ∙ 𝜃𝑙𝑗), 𝑖𝑓 𝑜𝑏𝑗(𝜃𝑖𝑗) < 𝑜𝑏𝑗(𝜃𝑙𝑗)

𝜃𝑖𝑗 + 𝑟𝑎𝑛𝑑 ∙ (𝜃𝑙𝑗 − 𝑟𝑎𝑛𝑑 ∙ 𝜃𝑖𝑗),           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 
(13

) 

where �̂�𝑖𝑗
𝑛𝑒𝑤 indicates the 𝑗th component (𝑗 = 1, 2, … , 𝑑) 

of the new 𝑖th candidate (𝑖 = 1, 2, … , 𝑁); �̂�𝑖𝑗  represents 

the 𝑗th component of the present 𝑖th candidate; �̂�𝑙𝑗 is the 

𝑗th component of a randomly selected 𝑙th candidate with 

𝑙 ≠ 𝑖; 𝐼𝑡𝑒𝑟𝑚𝑎𝑥 is the maximum number of iteration; 𝑁 is 

the number of population size; 𝑟𝑎𝑛𝑑  is a uniformly 

distributed random number in the range [0, 1]. In Mode 1, a 

new candidate is produced by moving the old candidate 

towards the randomly chosen one in the population with an 

exploring radius dynamically changing with iteration. In 

Mode 2, a new candidate is generated in the vicinity of its 

old candidate based on the experience of the randomly 

chosen candidate �̂�𝑙𝑗. In order to balance the exploration 

and exploitation abilities of the algorithm during the 

searching process, these two modes are called randomly in 

each iteration. To further enhance the intensive search of 

each dimension, a dimensional search strategy is carried out 

for the best-so-far candidate in a way that all dimensions of 

the candidate are updated independently: 

�̂�𝑏𝑒𝑠𝑡,𝑗
𝑛𝑒𝑤 = �̂�𝑏𝑒𝑠𝑡,𝑗 + 𝑟𝑎𝑛𝑑 ∙ (1 −

𝐼𝑡𝑒𝑟

𝐼𝑡𝑒𝑟𝑚𝑎𝑥

)10

∙ (�̂�𝑏𝑒𝑠𝑡,𝑗 − �̂�𝑤𝑜𝑟𝑠𝑡,𝑗), 𝑗 = 1, 2, … , 𝑑 
(14) 

 

3.2 Improved EBL algorithm 
 

Two modifications are introduced in the IEBL in order 

to improve the optimization performance of the EBL and to 

balance its exploration and exploitation abilities, including 

quasi-oppositional-based learning and new updating 

equations. 
 

3.2.1 Modification 1: Quasi-oppositional-based 
learning 

The concept of opposition-based learning is to 

simultaneously consider the current candidate and its 

opposite to find a solution efficiently, which is typically 

useful for escaping from local optima. This concept has 

been successfully applied in many soft computing 

algorithms for enhancing their optimization performance 

(Mahdavi et al. 2018). In the IEBL, population candidates 

and their opposite to the candidates are generated, and both 

are considered at the same time before the two modes of 

learning strategy. In order to maintain the stochastic nature 

of the IEBL, the quasi-opposite candidate �̂�𝑖𝑗
𝑞

 of a 

candidate �̂�𝑖𝑗 is introduced: 

�̂�𝑖𝑗
𝑞

= {
𝑐𝑠 + 𝑟𝑎𝑛𝑑 ∙ (𝑚𝑝 − 𝑐𝑠), 𝑖𝑓 𝑚𝑝 > 𝑐𝑠

𝑚𝑝 + 𝑟𝑎𝑛𝑑 ∙ (𝑐𝑠 − 𝑚𝑝), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
, 𝑖

= 1, 2, … , 𝑁 
(15) 
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𝑐𝑠 =
𝜃𝑚𝑎𝑥 + 𝜃𝑚𝑖𝑛

2
 (16) 

𝑚𝑝 = 𝜃𝑚𝑎𝑥 + 𝜃𝑚𝑖𝑛 − �̂�𝑖𝑗 (17) 

where cs is the center of search space, mp is the mirror of 

the candidate �̂�𝑖𝑗. After the generation of N quasi-opposite 

candidates, the fitness values of the original N candidates 

and the N quasi-opposite candidates are calculated and 

ranked in a descending order, from which the first 𝑁 

candidates are selected for the present population. In this 

way, the candidates are able to explore a much larger region 

of the search space, thus enhancing the exploration ability 

of the algorithm. 
 

3.2.2 Modification 2: New updating equations for 
solution search 

In the original EBL, the phase of updating a new 

position of one candidate �̂�𝑖𝑗
𝑛𝑒𝑤 in its vicinity is conducted 

by either Eq. (11) or (13). It can be observed that the 

experience of only one individual candidate �̂�𝑙𝑗  is 

employed. This does not make full use of information 

hidden in other candidates, especially the information of the 

current best candidate, and thus may lead to a premature 

convergence in the case with multiple local optima. To 

address this problem, new updating equations are 

introduced by utilizing the information of the current best 

candidate �̂�𝑏𝑒𝑠𝑡,𝑗  and another three randomly chosen 

candidates �̂�𝑙𝑗, �̂�𝑚𝑗 and �̂�𝑛𝑗 . Hence, the two modes are 

modified as follows: 

(1) Mode 1: 

𝜃𝑖𝑗
𝑛𝑒𝑤

= {
𝜃𝑖𝑗 + 𝑟𝑎𝑛𝑑 ∙ 𝐷 ∙ (𝜃𝑏𝑒𝑠𝑡,𝑗 − 𝜃𝑙𝑗), 𝑖𝑓 𝑜𝑏𝑗(𝜃𝑖𝑗) < 𝑜𝑏𝑗(𝜃𝑙𝑗)

𝜃𝑛𝑗 + 𝑟𝑎𝑛𝑑 ∙ 𝐷 ∙ (𝜃𝑚𝑗 − 𝜃𝑙𝑗),           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑟𝑒
 (18) 

𝐷 = 1 − (
𝐼𝑡𝑒𝑟

𝐼𝑡𝑒𝑟𝑚𝑎𝑥

) ∙ exp (
𝐼𝑡𝑒𝑟

𝐼𝑡𝑒𝑟𝑚𝑎𝑥

) (19) 

Mode 2: 

𝜃𝑖𝑗
𝑛𝑒𝑤

= {
𝜃𝑖𝑗 + 𝑟𝑎𝑛𝑑 ∙ (𝜃𝑏𝑒𝑠𝑡,𝑗 − 𝑟𝑎𝑛𝑑 ∙ 𝜃𝑙𝑗), 𝑖𝑓 𝑜𝑏𝑗(𝜃𝑖𝑗) < 𝑜𝑏𝑗(𝜃𝑙𝑗)

𝜃𝑛𝑗 + 𝑟𝑎𝑛𝑑 ∙ (𝜃𝑚𝑗 − 𝑟𝑎𝑛𝑑 ∙ 𝜃𝑙𝑗),           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑟𝑒
 (20) 

In the original EBL, the two modes are called in a 

random manner. In order to further balance the search 

performance and to control the convergence rate, a 

nonlinear factor (𝑁𝐹) is introduced to dynamically adjust 

the use of two modes in each iteration: 

𝑁𝐹 = (1 −
𝐼𝑡𝑒𝑟

𝐼𝑡𝑒𝑟𝑚𝑎𝑥

)
20

 (21) 

If 𝑁𝐹 < 𝑟𝑎𝑛𝑑, the new position of candidate �̂�𝑖𝑗
𝑛𝑒𝑤 is 

updated by Mode 1; otherwise, �̂�𝑖𝑗
𝑛𝑒𝑤 is updated by Mode 

2. 

A step-by-step pseudocode of the IEBL is presented in 

Algorithm 1. 

Algorithm 1 Pseudocode of IEBL 

Set 𝐼𝑡𝑒𝑟𝑚𝑎𝑥, 𝑁, 𝑑, 𝜃𝑚𝑖𝑛 and 𝜃𝑚𝑎𝑥 

Randomly initialize candidates 

�̂�𝑖𝑗 = 𝜃𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 ∗ (𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛), 𝑖 = 1, 2, … , 𝑁, 𝑗 =

1, 2, … , 𝑑  

Calculate fitness value 

𝑓𝑖 = 𝑜𝑏𝑗(�̂�𝑖1, �̂�𝑖2, … , �̂�𝑖𝑑), 𝑖 = 1, 2, … , 𝑁  

while 𝐼𝑡𝑒𝑟 < 𝐼𝑡𝑒𝑟𝑚𝑎𝑥  

Generate quasi-opposite population 

𝑐𝑠 =
𝜃𝑚𝑎𝑥+𝜃𝑚𝑖𝑛

2
, 𝑚𝑝 = 𝜃𝑚𝑎𝑥 + 𝜃𝑚𝑖𝑛 − �̂�𝑖𝑗 

�̂�𝑖𝑗
𝑞

= {
𝑐𝑠 + 𝑟𝑎𝑛𝑑 ∙ (𝑚𝑝 − 𝑐𝑠), 𝑖𝑓 𝑚𝑝 > 𝑐𝑠

𝑚𝑝 + 𝑟𝑎𝑛𝑑 ∙ (𝑐𝑠 − 𝑚𝑝), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
, 𝑖 =

1, 2, … , 𝑁, 

Select good candidates from the original population and 

the quasi-opposite population 

Update new position of population  

for i=1: 𝑁 

Calculate 𝑁𝐹 

𝑁𝐹 = (1 −
𝐼𝑡𝑒𝑟

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
)

20

  

Find �̂�𝑏𝑒𝑠𝑡,𝑗 and randomly select �̂�𝑙𝑗, �̂�𝑚𝑗 and �̂�𝑛𝑗 

if 𝑁𝐹 < 𝑟𝑎𝑛𝑑 

𝐷 = 1 − (
𝐼𝑡𝑒𝑟

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
) ∙ 𝑒𝑥𝑝 (

𝐼𝑡𝑒𝑟

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
)  

�̂�𝑖𝑗
𝑛𝑒𝑤 =

{
�̂�𝑖𝑗 + 𝑟𝑎𝑛𝑑 ∙ 𝐷 ∙ (�̂�𝑏𝑒𝑠𝑡,𝑗 − �̂�𝑙𝑗), 𝑖𝑓 𝑓(�̂�𝑖𝑗) < 𝑓(�̂�𝑙𝑗)

�̂�𝑛𝑗 + 𝑟𝑎𝑛𝑑 ∙ 𝐷 ∙ (�̂�𝑚𝑗 − �̂�𝑙𝑗),        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑟𝑒
  

else 

�̂�𝑖𝑗
𝑛𝑒𝑤 =

{
�̂�𝑖𝑗 + 𝑟𝑎𝑛𝑑 ∙ (�̂�𝑏𝑒𝑠𝑡,𝑗 − 𝑟𝑎𝑛𝑑 ∙ �̂�𝑙𝑗), 𝑖𝑓 𝑓(�̂�𝑖𝑗) < 𝑓(�̂�𝑙𝑗)

�̂�𝑛𝑗 + 𝑟𝑎𝑛𝑑 ∙ (�̂�𝑚𝑗 − 𝑟𝑎𝑛𝑑 ∙ �̂�𝑙𝑗),        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑟𝑒
  

end 

Calculate fitness value of new population 

if 𝑓(�̂�𝑖𝑗
𝑛𝑒𝑤) < 𝑓(�̂�𝑖𝑗) 

�̂�𝑖𝑗 = �̂�𝑖𝑗
𝑛𝑒𝑤  

end 

end 

Enhance intensive dimensional search 

Find �̂�𝑏𝑒𝑠𝑡,𝑗 , �̂�𝑤𝑜𝑟𝑠𝑡,𝑗 , 𝑓𝑏𝑒𝑠𝑡 

for j=1 : 𝑑 

�̂�𝑏𝑒𝑠𝑡,𝑗
𝑛𝑒𝑤 = �̂�𝑏𝑒𝑠𝑡,𝑗 + 𝑟𝑎𝑛𝑑 ∙ (1 −

𝐼𝑡𝑒𝑟

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
)10 ∙ (�̂�𝑏𝑒𝑠𝑡,𝑗 −

�̂�𝑤𝑜𝑟𝑠𝑡,𝑗), 𝑗 = 1, 2, … , 𝑑  

Calculate fitness value of the new candidate 

𝑓𝑏𝑒𝑠𝑡
𝑛𝑒𝑤 = 𝑓(�̂�𝑏𝑒𝑠𝑡,1, �̂�𝑏𝑒𝑠𝑡,2, … , �̂�𝑏𝑒𝑠𝑡,𝑗

𝑛𝑒𝑤 , … , �̂�𝑏𝑒𝑠𝑡,𝑑)  

if 𝑓𝑏𝑒𝑠𝑡
𝑛𝑒𝑤 < 𝑓𝑏𝑒𝑠𝑡 

�̂�𝑏𝑒𝑠𝑡,𝑗 = �̂�𝑏𝑒𝑠𝑡,𝑗
𝑛𝑒𝑤   

𝑓𝑏𝑒𝑠𝑡 = 𝑓𝑏𝑒𝑠𝑡
𝑛𝑒𝑤  

end 

end 

𝐼𝑡𝑒𝑟 = 𝐼𝑡𝑒𝑟 + 1  

end 
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Table 2 Parameter settings for the involved algorithms. 

Algorithm 
Maximal iteration 

number 

Population 

size 
Other parameters 

IEBL 500 25 - 

EBL 500 50 - 

CMFOA 500 50 
𝐸𝑛max = (𝑋max

− 𝑋min)/4 

SSA 500 50 
𝐺𝑐 = 1.9, 𝑠𝑓
= 18, 𝑃𝑑𝑝 = 0.01 

Jaya 500 50 - 

 
 

4. Numerical studies 
 

In this section, a series of numerical simulations have 

been carried out for a SDOF system without/with viscous 

damping in order to investigate the effectiveness of the 

proposed IEBL for nonlinear identification of Bouc–Wen 

hysteretic parameters. Numerical results are compared with 

the other four state-of-the-art algorithms (the original EBL, 

CMFOA, SSA, and Jaya). A list of six case studies is 

summarized in Table 1. 
 

4.1 Parameter setting for the algorithms 
 

The maximal iteration number and the population size 

are set to the same values for EBL, CMFOA, SSA, and 

Jaya, which are 500 and 50, respectively. The population 

size of IEBL is a half of that of the other algorithms and 

equals 25 because the first modification of IEBL doubles 

the population number at the beginning of each iteration. 

The same set of the initial random population is used for all 

algorithms. Ten independent runs are carried out in each 

case study to obtain meaningful statistic results. Table 2 

lists the parameter settings of all algorithms. 
 

4.2 Parameter identification without viscous 
damping 

 

Three case studies are carried out in this section with 

four scenarios of input excitation. Three (Scenarios a-c) are 

displacement-controlled sinusoidal inputs with amplitudes 

being 0.5, 2.0, and 7.0 times the yield displacement, 

respectively; one (Scenario d) is force-controlled input with 

an external loading 𝑓(𝑡) = 5/2 cos(𝑡/2) and a mass 𝑚 =
25. The initial displacement, velocity, and restoring force of 

the system are all set to be zero. The time history of 

acceleration is used to construct the objective function. The 

total time is 6π with a sampling rate of 50 Hz. Table 3  

 

Table 3 True values and constraints in the cases with no 

viscous damping 

Parameters 𝑢𝑦 (m) 𝐹𝑦 (kN) 𝑎 (-) 𝛾 (-) 𝑛 (-) 𝑐 (kNs/m) 

True values 0.1 3 0.1 0.9 2 0 

Lower bound 0 0 0 0 0 - 

Upper bound 1 10 1 1 10 - 

 

 

shows the true parameter values and the lower and upper 

bound constraints. Fig. 2 shows the true hysteretic loops 

under the four input excitations. 

 
4.2.1 Case 1: Identification of Scenario d without 

noise 
This case study aims to test the effectiveness of IEBL on 

the identification of hysteretic parameters of Bouc-Wen 

nonlinear model without viscous damping. Table 4 shows 

the final identification results with the mean detected values 

and the corresponding relative errors. It is found that IEBL 

is able to accurately identify the hysteretic parameters of the 

Bouc-Wen model without any estimation errors. However, 

EBL, CMFOA, SSA, and Jaya cannot identify the hysteretic 

parameters exactly with maximum errors of 0.10%, 

39.65%, 2.10%, and 0.02%, respectively. Fig. 3 shows the 

average evolutionary process of the fitness values for all 

five algorithms in a logarithmic form. It can be observed 

that the fitness values of IEBL converge more quickly than 

those of the EBL, CMFOA, SSA, and Jaya, indicating that 

the identified results of proposed IEBL are the closest to the 

true parameter values. The final identified results obtained 

by the IEBL are much more reliable with the best precision. 

For instance, Fig. 4 shows a comparison between the true 

hysteresis loop and the loop calculated by IEBL and 

CMFOA. In Fig. 4(a), a perfect match is observed between 

the curve identified by IEBL and the true one. By contrast, 

the curve identified by CMFOA does not fit the true one 

very well, as presented in Fig. 4(b). This comparison 

confirms the superiority of the IEBL in identifying the 

Bouc-Wen hysteretic parameters. 
 

4.2.2 Case 2: Influence of excitation input 
This case study is to test the influence of excitation 

input. Four types of input are investigated. For a fair 

comparison, only the IBEL is used in the present case study. 

Table 5 lists the statistical results in terms of the mean value 

and relative error. It can be found that in Scenario a the 

relative errors of the IEBL are rather large. This is because 

the response in the scenario is almost linear and does not  

Table 1 Identification case studies in the numerical studies 

Case No. Loading scenario* Parameters Algorithms Noise level 

1 d 𝑢𝑦, 𝐹𝑦, 𝑎, 𝛾, 𝑛 IEBL, EBL, CMFOA, SSA, Jaya 0% 

2 a, b, c, d 𝑢𝑦, 𝐹𝑦, 𝑎, 𝛾, 𝑛 IEBL 0% 

3 c 𝑢𝑦, 𝐹𝑦, 𝑎, 𝛾, 𝑛 IEBL, EBL, CMFOA, SSA, Jaya 10% 

4 d 𝑢𝑦, 𝐹𝑦, 𝑎, 𝛾, 𝑛, 𝑐 IEBL, EBL, CMFOA, SSA, Jaya 0% 

5 b, c, d 𝑢𝑦, 𝐹𝑦, 𝑎, 𝛾, 𝑛, 𝑐 IEBL, EBL 0% 

6 d 𝑢𝑦, 𝐹𝑦, 𝑎, 𝛾, 𝑛, 𝑐 IEBL 0%, 5%, 10% 

*Loading scenario a: 𝑢 = 0.5𝑢𝑦 sin 𝑡; b: 𝑢 = 2𝑢𝑦 sin 𝑡; c: 𝑢 = 7𝑢𝑦 sin 𝑡; d: 𝑓(𝑡) = 5/2 cos(𝑡/2). 
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Fig. 3 Average evolutionary process for fitness value of 

Case 1 
 

 

contain any information in the post-elastic state, as shown 

in Fig. 2(a). By contrast, the hysteretic parameters can be 

perfectly identified in Scenarios b-d without any error, in 

 

 

which strongly nonlinear hysteresis responses appear, as 

shown in Fig. 2(b)-(d). The average evolution processes of 

fitness values for the four scenarios are shown in Fig. 5. It 

can be observed that under loading Scenarios b-d, the 

identification needs about 320 iterations to converge while 

the performance obtained under loading Scenario a suffers a 

slow convergence problem after a few iterations. It can be 

inferred that the sensitivity of excitation input for nonlinear 

hysteresis parameter identification is weak if the to-be-

identified system enters the post-elastic state. 
 

4.2.3 Case 3: Identification of Scenario c with noise 

This case study is to further investigate the sensitivity of 

the five algorithms to noise. Only the loading Scenario c is 

considered, i.e. a displacement-controlled sinusoidal 

loading 𝑢 = 7𝑢𝑦 sin 𝑡 with 10% uniform noise added to 

the response. Table 6 presents the final results of the 

identification of the five algorithms. It can be observed that 

IEBL, EBL, SSA, and Jaya are insensitive to measurement 

noise and yield promising estimation results with only small  
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Fig. 2 Hysteretic loops for Scenarios a-d. 
 

Table 4 Identified results of nonlinear hysteretic parameters of Case 1 

Algorithms  𝑢𝑦 (m) 𝐹𝑦 (kN) 𝑎 (-) 𝛾 (-) 𝑛 (-) 

IEBL Mean value 0.1000 3.0000 0.1000 0.9000 2.0000 

 Relative error 0.00% 0.00% 0.00% 0.00% 0.00% 

EBL Mean value 0.1000 3.0003 0.1000 0.9009 1.9996 

 Relative error 0.03% 0.01% 0.05% 0.10% 0.02% 

CMFOA Mean value 0.1396 4.0252 0.0632 0.9809 1.4559 

 Relative error 39.65% 34.17% 36.80% 8.99% 27.21% 

SSA Mean value 0.1003 2.9999 0.1005 0.9189 2.0176 

 Relative error 0.29% 0.00% 0.50% 2.10% 0.88% 

Jaya Mean value 0.1000 3.0001 0.1000 0.8999 2.0004 

 Relative error 0.01% 0.00% 0.02% 0.01% 0.02% 
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relative errors ranging from 0.09% to 2.24%. As for 

CMFOA, it has unsatisfied performance in this case with a 

maximum estimation error of 12.14%. The average 

evolution processes of fitness values are shown in Fig. 6. It 

can be found that IEBL, EBL, SSA, and Jaya algorithms 

can converge to the minimum fitness value, among which 

IEBL has the fastest convergence speed and only needs 

around 50 iterations. This confirms the excellent 

computational efficiency of IEBL. 
 

4.3 Parameter identification with viscous damping 
 

The above case studies demonstrate that accurate 

identification results can be achieved by using IEBL for the 

SDOF system with no viscous damping in the hysteresis 

Bouc-Wen model. To further assess the performance of the 

proposed IEBL, the SDOF hysteretic system with viscous 

damping is considered in this section and unknown  

 

 

 
Fig. 5 Average evolutionary process for fitness value of 

Case 2 
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Table 5 Identified results of nonlinear hysteretic parameters of Case 2. 

Scenario  𝑢𝑦 (m) 𝐹𝑦 (kN) 𝑎 (-) 𝛾 (-) 𝑛 (-) 

a Mean value 0.1190 3.5646 0.1514 0.9420 1.7793 

 Relative error 19.01% 18.82% 51.39% 4.67% 11.03% 

b Mean value 0.1000 3.0000 0.1000 0.9000 2.0000 

 Relative error 0.00% 0.00% 0.00% 0.00% 0.00% 

c Mean value 0.1000 3.0000 0.1000 0.9000 2.0000 

 Relative error 0.00% 0.00% 0.00% 0.00% 0.00% 

d Mean value 0.1000 3.0000 0.1000 0.9000 2.0000 

 Relative error 0.00% 0.00% 0.00% 0.00% 0.00% 

Table 6 Identified results of nonlinear hysteretic parameters of Case 3 

Algorithms  𝑢𝑦 (m) 𝐹𝑦 (kN) 𝑎 (-) 𝛾 (-) 𝑛 (-) 

IEBL Mean value 0.0999 3.0057 0.1003 0.9202 2.0062 

 Relative error 0.09% 0.19% 0.25% 2.24% 0.31% 

EBL Mean value 0.0999 3.0057 0.1003 0.9202 2.0062 

 Relative error 0.09% 0.19% 0.25% 2.24% 0.31% 

CMFOA Mean value 0.1074 3.1521 0.0948 0.8886 1.7572 

 Relative error 7.38% 5.07% 5.20% 1.27% 12.14% 

SSA Mean value 0.0991 3.0040 0.0994 0.8945 1.9551 

 Relative error 0.93% 0.13% 0.63% 0.61% 2.24% 

Jaya Mean value 0.0999 3.0057 0.1003 0.9202 2.0062 

 Relative error 0.09% 0.19% 0.25% 2.24% 0.31% 

 

 

(a) IEBL (b) CMFOA 

Fig. 4 Hysteretic loops obtained by IEBL and CMFOA of Case 1 
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Fig. 6 Average evolutionary process for fitness value of 

Case 3 
 

Table 7 True values and lower and upper bound constraints 

in the cases with viscous damping 

Parameters 𝑢𝑦 (m) 𝐹𝑦 (kN) 𝑎 (-) 𝛾 (-) 𝑛 (-) 𝑐 (kNs/m) 

True values 0.1 3 0.1 0.9 2 5 

Lower bound 0 0 0 0 0 0 

Upper bound 1 10 1 1 10 100 

 

 

parameters thus become six, that is 𝑢𝑦, 𝐹𝑦, 𝑎, 𝛾, 𝑛, and 

𝑐. Scenarios b-d are considered in order to ensure that the 

system enters the post-elastic state. The true parameter 

values and the lower and upper bound constraints are listed 

in Table 7. The other settings are the same as those in 

Section 4.2. 
 

4.3.1 Case 4: Identification of Scenarios d without 
noise 

This case study aims to investigate the performance of 

IEBL for the identification of hysteretic parameters of 

Bouc-Wen nonlinear model with viscous damping by 

comparing with EBL, CMFOA, SSA, and Jaya. The 

identification results are exhibited in Table 8. It can be 

observed that exactly accurate parameter values up to four 

decimal digits can be obtained by IEBL, and the maximum 

errors of EBL and Jaya are acceptable and equal 0.09% and 

3.05%, respectively. Even though this case has no noise 

corruption, CMFOA and SSA yet completely failed to 

identify the assumed values with maximum errors as large 

as 142.86% and 128.68%, respectively. It should bear in 

mind that the maximum relative errors obtained by CMFOA 

and SSA in Case 1 (Section 4.2.1) are 39.65% and 2.10%, 

respectively. This reveals that it is more difficult to identify 

the nonlinear parameter accurately of a system with viscous 

damping than that without damping. Fig. 7 shows the 

average evolution process of the logarithmic fitness values 

in ten independent runs. It is obvious that IEBL achieves a 

very small error at a magnitude of 10-28 with a much faster 

convergence speed than the other algorithms, which 

indicates an excellent identification performance of the 

proposed method. In contrast, EBL, CMFOA, SSA, and 

Jaya may be stuck to local optima and thus easily cease 

convergence with unsatisfactory identified results. Once 

again, the superiority of the proposed IEBL has 

demonstrated for its identification accuracy of nonlinear 

hysteretic parameters. 

 

Fig. 7 Average evolutionary process for fitness value of 

Case 4 

 

4.3.2 Case 5: Influence of excitation input with 
viscous damping 

Different excitation inputs are considered to examine 

their influence on the performance of IEBL and the original 

EBL. Table 9 lists a summary of the identified results of 

Scenarios b-d. It can be found that the proposed IEBL 

accurately identify the nonlinear hysteresis parameters 

without any estimation error in all scenarios, which 

demonstrates again that the proposed method is insensitive 

to excitation input. These identification results of IEBL are 

better than those of the original EBL. As per Table 9, EBL 

seems to obtain better and better identification results from 

Scenario b to Scenario d with the maximum error 

decreasing from 3.84% to 0.09%. That is to say, the original 

EBL is still a bit sensitive to excitation input. Fig. 8 shows 

the average evolution processes of fitness values for the 

three scenarios in a logarithmic form, in which IEBL 

reaches a small fitness value in an order of 10-28 while EBL 

can only achieve an order of 10-8. This also validates that 

the convergence performance of the proposed IEBL is 

significantly improved. 
 

4.3.3 Case 6: Influence of noise level 
The objective of this study is to examine the effect of 

noise level on nonlinear parameter identification 

performance of the IEBL. Two noise levels (5% and 10%) 

are added into the original time history of acceleration in 

Scenario d and the final identified results are presented in 

Table 10. It is found that the proposed IEBL can achieve a 

small maximum error of 1.23% under the noise level of 5%. 

The identified results are still acceptable with a fair level of 

accuracy even under the noise levels of 10%. Taken the 

identified nonlinear parameter 𝛾 as an example (Fig. 9), 

the proposed IEBL converges to the preset true value 0.9 at 

around 150-th iteration and after that the evolutionary 

curves are quite stable. Although the relative error of the 

identified parameter 𝛾  increases gradually with the 

increase of noise level, the maximum error is still small 

even with as high as 10% noise level. Fig. 10 shows the true 

acceleration and the calculated acceleration with the 

identified parameters under 10% noise level condition. A 

very good match can be achieved between these two curves. 

This indicates the superiority of using IEBL for nonlinear 

system identification and also reveals that the proposed 

method is insensitive to measurement noise. 
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Fig. 8 Average evolutionary process for fitness value of 

Case 5 

 

 

5. Laboratory test of lead-filled steel tube dampers 
and their parameter identification 

 
5.1 Cyclic loading test of lead-filled steel tube 

dampers 
 

In this section, a set of experimental data from Zhou et 

al. (2017) is utilized to identify hysteretic parameters of a 

lead-filled steel tube damper (LFSTD) to verify the 

superiority of the proposed IEBL algorithm. The LFSTD 

consists of a steel tube, a lead cylinder, and two steel plate 

caps, as shown in Fig. 11. The steel tube is made of a 

seamless steel tube with a category of #20 in Chinese 

standard, the exterior surface of which is profiled in a 
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Table 8 Identified results of nonlinear hysteretic parameters of Case study 4 

Algorithms  𝑢𝑦 (m) 𝐹𝑦 (kN) 𝑎 (-) 𝛾 (-) 𝑛 (-) 𝑐 (kNs/m) 

IEBL Mean value 0.1000 3.0000 0.1000 0.9000 2.0000 5.0000 

 Relative error 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

EBL Mean value 0.1000 2.9997 0.1001 0.9000 2.0004 5.0005 

 Relative error 0.01% 0.01% 0.09% 0.00% 0.02% 0.01% 

CMFOA Mean value 0.2429 7.1540 0.0304 0.4782 0.6748 9.9136 

 Relative error 142.86% 138.47% 69.55% 46.87% 66.26% 98.27% 

SSA Mean value 0.1997 6.8605 0.0176 0.4378 0.7197 8.8175 

 Relative error 99.72% 128.68% 82.36% 51.36% 64.01% 76.35% 

Jaya Mean value 0.1002 2.9991 0.1030 0.8967 2.0030 5.0485 

 Relative error 0.20% 0.03% 3.05% 0.37% 0.15% 0.97 

Table 9 Identified results of nonlinear hysteretic parameters of Case 5 

Algorithm Scenario  𝑢𝑦 (m) 𝐹𝑦 (kN) 𝑎 (-) 𝛾 (-) 𝑛 (-) 𝑐 (kNs/m) 

IEBL b Mean value 0.1000 3.0000 0.1000 0.9000 2.0000 5.0000 

  Relative error 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

 c Mean value 0.1000 3.0000 0.1000 0.9000 2.0000 5.0000 

  Relative error 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

 d Mean value 0.1000 3.0000 0.1000 0.9000 2.0000 5.0000 

  Relative error 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

EBL b Mean value 0.1000 2.9988 0.1003 0.9001 2.0011 5.1920 

  Relative error 0.03% 0.04% 0.33% 0.01% 0.05% 3.84% 

 c Mean value 0.1001 3.0013 0.1000 0.9019 2.0005 4.9377 

  Relative error 0.08% 0.04% 0.01% 0.21% 0.02% 1.25% 

 d Mean value 0.1000 2.9997 0.1001 0.9000 2.0004 5.0005 

  Relative error 0.01% 0.01% 0.09% 0.00% 0.02% 0.01% 

Table 10 Identified results of nonlinear hysteretic parameters of Case 6 

Noise level  𝑢𝑦 (m) 𝐹𝑦 (kN) 𝑎 (-) 𝛾 (-) 𝑛 (-) 𝑐 (kNs/m) 

0 Mean value 0.1000 3.0000 0.1000 0.9000 2.0000 5.0000 

 Relative error 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

5% Mean value 0.0999 2.9974 0.1012 0.9097 2.0095 4.9490 

 Relative error 0.06% 0.09% 1.23% 1.08% 0.48% 1.02% 

10% Mean value 0.0998 2.9884 0.1041 0.9327 2.0466 4.8453 

 Relative error 0.24% 0.39% 4.13% 3.63% 2.33% 3.09% 
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parabolic shape in order to ensure that the deformation and 

energy dissipation of the LFSTD mainly occur in its middle 

section. The lead cylinder (Pb99.990) is commonly adopted 

in the design of passive earthquake-resistant dampers 

because of its promising plastic deformation ability and 

energy absorption ability. The two caps are made of Q235 

steel and are corrected with a targeted seismic-resistant 

structure by blots. The LFSTD has the following merits: (a) 

both steel and lead are stable and durable materials and their 

combination has a promising energy absorption ability, (b) 

the lead cylinder causes no pollution because it is placed 

inside the steel tube and does not need to be welded, (c) its 

structure is simple and convenient to manufacture with low 

cost, and (d) it is easy to install and replace. 

 

 

 

Table 12 Lower and upper bound constraints of the 

experimental model. 

Parameters 𝑢𝑦 (m) 𝐹𝑦 (kN) 𝑎 (-) 𝛾 (-) 𝑛 (-) 𝑐 (kNs/m) 

Lower bound 0 0 0 0 0 0 

Upper bound 5 500 1 1 10 100 

 

Table 11 lists the design dimension of seven LFSTDs 

manufactured at Guangzhou University, China (Zhou et al. 

2017). A cyclic loading test was carried out on these seven 

LFSTDs in a platform shown in Fig. 12, in which two 

vertical steel frames are hinged in order to ensure horizontal 

movement of the test specimen. In the test, a hydraulic 

actuator cyclically pushes the top steel frame of the  

  

Fig. 9 Average evolution process for parameter γ of Case 6 Fig. 10 True and calculated acceleration responses with 10% 

noise of Case 6 

 
Fig. 11 Geometry of LFSTD 

Table 11 Structural parameters of test specimens (Unit: mm) 

Specimen No. Hd H Din t2 t1 t0 Hb Hr×tr L×tb 

LFSTD-1 400 300 150 11 6 3 20 25×20 270×25 

LFSTD-2 400 300 150 14 8 4 20 25×20 270×25 

LFSTD-3 400 300 150 17 10 5 20 25×20 270×25 

LFSTD-4 400 300 150 14 8 3.2 20 25×20 270×25 

LFSTD-5 400 300 150 14 8 4.8 20 25×20 270×25 

LFSTD-6 450 350 150 14.33 8 4 23.3 25×20 270×25 

LFSTD-7 500 400 150 14.67 8 4 26.7 25×20 270×25 
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platform and then causes a cyclic motion of the LFSTD. A 

displacement-controlled loading strategy is adopted, and the 

loading started from 0.3 mm to 30 mm in 10 steps and each 

step is repeated for three cycles. The loading frequency is 

0.02 Hz. The force of the actuator is collected by its force 

sensor, and the displacement of the LFSTD is measured by 

a displacement transducer. 
 

5.2 Identified results 
 

Nonlinear hysteretic parameters of the Bouc-Wen model 

for the seven LFSTDs are identified using IEBL, the 

original EBL, and the other four algorithms based on the 

measured displacement-force data. The settings of these 

algorithms are the same as the numerical studies in Section 

4. The lower and upper bound constraints of identified 

parameters are summarized in Table 12, in which the 

constraints of parameters 𝑢𝑦  and 𝐹𝑦  are chosen from a 

simple inspection of the experimental force-displacement 

diagram. For each LFSTD, ten independent runs are taken 

and the best solution of each algorithm is kept and 

compared. 
 

 

Fig. 13 presents the evolution of the best run of each 

algorithm for all seven LFSTDs in a logarithmic form, 

which is used as an indicator to examine the algorithm 

performance. In terms of the best run performance, it is 

found that IEBL manages to outperform the other four 

algorithms especially at the later iterations, which further 

demonstrates the excellent robustness of the proposed 

IEBL. Table 13 lists the final identification results of all 

LFSTDs using IEBL, including the mean parameter values 

of ten runs and the values of the best run. Fig. 14 compares 

the experimental displacement-force loops with the 

hysteresis loops of the identified system obtained by the 

best run of IEBL. It can be observed that the loops of the 

identified system are in very good agreement with the 

experimental ones for all LFSTDs. The final values of 

normalized MSE are very small, which are 0.71%, 1.13%, 

1.87%, 1.43%, 1.09%, 2.61%, and 2.97% for LFSTDs 1-7, 

respectively. These small MSE values also serve as another 

index to confirm the excellent performance of IEBL in 

identifying nonlinear hysteretic parameters that govern the 

hysteretic response. From an engineering point of view, it 

can be stated that the identification results of the IEBL are 

adequate for nonlinear hysteretic parameter analysis. 
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(a) Sketch (b) Picture 

Fig. 12 

 

Table 13 Final identified parameter values using IEBL 

Specimen No.  𝑢𝑦 (m) 𝐹𝑦 (kN) 𝑎 (-) 𝛾 (-) 𝑛 (-) 𝑐 (kNs/m) 

LFSTD-1 Mean value 0.9121 271.7108 0.0083 0.4198 0.1588 5.2025 

 Best value 0.7762 272.4978 0.0068 0.3414 0.1291 5.1109 

LFSTD-2 Mean value 0.9013 361.4261 0.0073 0.5239 0.1528 4.1653 

 Best value 0.6994 361.1877 0.0056 0.3958 0.1127 4.7956 

LFSTD-3 Mean value 0.5401 437.6155 0.0027 0.1875 0.1003 14.8495 

 Best value 0.3529 442.0305 0.0016 0.1203 0.0599 13.3095 

LFSTD-4 Mean value 0.5233 285.0112 0.0066 0.3019 0.1341 20.7546 

 Best value 0.4129 281.3155 0.0054 0.2337 0.1091 22.1413 

LFSTD-5 Mean value 0.7171 389.1734 0.0059 0.2649 0.1145 28.6998 

 Best value 0.3897 400.0357 0.0026 0.1312 0.0540 25.7215 

LFSTD-6 Mean value 0.6284 309.8575 0.0047 0.2479 0.1694 18.3896 

 Best value 0.5184 307.1141 0.0040 0.1992 0.1432 19.2226 

LFSTD-7 Mean value 0.8345 290.1381 0.0044 0.2756 0.1956 11.2239 

 Best value 0.7838 291.0453 0.0040 0.2568 0.1771 11.1229 
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(a) LFSTD-1 (b) LFSTD-2 

  

(c) LFSTD-3 (d) LFSTD-4 

  

(e) LFSTD-5 (f) LFSTD-6 

 

 

(g) LFSTD-7  

Fig. 13 Evolutionary process for fitness value of the best run of each algorithm 
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(a) LFSTD-1 (b) LFSTD-2 

  
(c) LFSTD-3 (d) LFSTD-4 

  
(e) LFSTD-5 (f) LFSTD-6 

 

 

(g) LFSTD-7  

Fig. 14 The experimental and identified hysteretic loops. 
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6. Conclusions 
 

In this paper, an improved experience-based learning 

algorithm is presented for nonlinear parameter identification 

of Bouc–Wen hysteretic system. Two modifications, 

including the quasi-oppositional learning and the new 

updating equations, are incorporated to modify the original 

EBL for improvement of global optimization ability. The 

efficiency and robustness of the proposed algorithm are 

investigated by parameter identification of a nonlinear 

SDOF system with hysteresis Bouc-Wen model and of 

seven lead-filled steel tube dampers. Through these 

investigations, several conclusions can be drawn as follows: 

•  The effectiveness of the IEBL is insensitive to 

excitation input if the system enters the post-elastic state. 

•  Numerical results show that the IEBL is insensitive 

to noise and is able to identify both the hysteretic parameter 

as well as viscous damping with small relative errors (less 

than 4.13%). 

•  Laboratory test results of seven lead-filled steel tube 

dampers confirm the efficiency of the IEBL in nonlinear 

identification of Bouc–Wen hysteretic parameters for 

practical application and the normalized mean square error 

values range from 0.71% to 2.97%. 

•  Both numerical and experimental studies 

demonstrate that the IEBL manages to obtain better 

identification performance compared with the other four 

algorithms (EBL, CMFOA, SSA, and Jaya). 

 
 
Acknowledgments 

 

This work is supported by a research grant from the 

National Natural Science Foundation of China (51808147). 

 

 

References 
 

Artar, M. and Daloglu, A.T. (2019), “Optimum design of steel 

space truss towers under seismic effect using Jaya algorithm”, 

Struct. Eng. Mech., 71(6), 1-12. http://dx.doi.org/ 

10.12989/sem.2019.71.1.001. 

Bajrić, A. and Høgsberg, J. (2018), “Estimation of hysteretic 

damping of structures by stochastic subspace identification”, 

Mech. Syst. Signal Proc., 105, 36-50. 

http://dx.doi.org/10.1016/j.ymssp.2017.11.042. 

Chang, C.C. and Shi, Y. (2010), “Identification of time-varying 

hysteretic structures using wavelet multiresolution analysis”, Int. 

J. Non-Linear Mech., 45(1), 21-34. 

http://dx.doi.org/10.1016/j.ijnonlinmec.2009.08.009. 

Ding, Z., Li, J., Hao, H. and Lu, Z.R. (2019), “Nonlinear 

hysteretic parameter identification using an improved tree-seed 

algorithm”, Swarm Evol. Comput., 46, 69-83. 

http://dx.doi.org/10.1016/j.swevo.2019.02.005. 

Dong, H., Han, Q. and Du, X. (2019), “Application of an extended 

Bouc-Wen model for hysteretic behavior of the RC structure 

with SCEBs”, Struct. Eng. Mech., 71(6), 683-697. 

http://dx.doi.org/10.12989/sem.2019.71.6.683. 

Jain, M., Singh, V. and Rani, A. (2019) “A novel nature-inspired 

algorithm for optimization: Squirrel search algorithm”, Swarm 

Evol. Comput., 44, 148-175. http://dx.doi.org/ 

10.1016/j.swevo.2018.02.013. 

Korayem M.H. and Homayouni, A. (2017) “The size-dependent 

analysis of multilayer micro-cantilever plate with piezoelectric 

layer incorporated voltage effect based on a modified couple 

stress theory”, Eur. J. Mech. A-Solids, 61, 59-72. 

http://dx.doi.org/10.1016/j.euromechsol.2016.08.013. 

Korayem, M.H. and Sadeghzadeh, S. (2009) “A new modeling and 

compensation approach for creep and hysteretic loops in SPM’s 

piezotubes”, Int. J. Adv. Manuf. Technol., 44(7-8), 1133-1143. 

http://dx.doi.org/10.1007/s00170-009-1926-x. 

Korayem M.H., Sadeghzadeh, S. and Rahneshin, V. (2012) “A new 

multiscale methodology for modeling of single and multi-body 

solid structures”, Comput. Mater. Sci., 63, 1–11. 

http://dx.doi.org/10.1016/j.commatsci.2012.05.059. 

Li, Z. and Shu, G. (2019), “Hysteresis characterization and 

identification of the normalized Bouc-Wen model”, Struct. Eng. 

Mech., 70(2), 209-219. 

http://dx.doi.org/10.12989/sem.2019.70.2.209. 

Ma, F., Zhang, H., Bockstedte, A., Foliente, G.C. and Paevere, P. 

(2004), “Parameter analysis of the differential model of 

hysteresis”, J. Appl. Mech., 71, 342-9. 

http://dx.doi.org/10.1007/978-94-010-0179-3_22. 

Mahdavi, S., Rahnamayan, S. and Deb, K. (2018), “Opposition 

based learning: A literature review”, Swarm Evol. Comput., 39, 

1-23. http://dx.doi.org/10.1016/j.swevo.2017.09.010. 

Niola, V., Palli, G., Strano, S. and Terzo, M. (2019), “Nonlinear 

estimation of the Bouc-Wen model with parameter boundaries: 

Application to seismic isolators”, Comput. Struct., 222, 1-9. 

http://dx.doi.org/10.1016/j.compstruc.2019.06.006. 

Omrani, R., Hudson, R.E. and Taciroglu, E. (2012), “Parametric 

identification of nondegrading hysteresis in a laterally and 

torsionally coupled building using an unscented Kalman filter”, 

J. Eng. Mech., 139(4), 452-468. 

http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000498. 

Ortiz, G.A., Alvare,z D.A., Bedoya-Ruíz, D. (2013), 

“Identification of Bouc-Wen type models using multi-objective 

optimization algorithms”, Comput. Struct. 114-115, 121-132. 

http://dx.doi.org/10.1016/j.compstruc.2012.10.016 

Quaranta, G., Marano, G.C., Greco, R. and Monti, G. (2014), 

“Parametric identification of seismic isolators using differential 

evolution and particle swarm optimization”, Appl. Soft. Comput., 

22, 458-464. http://dx.doi.org/10.1016/j.asoc.2014.04.039. 

Shu, G. and Li, Z. (2017), “Parametric identification of the Bouc-

Wen model by a modified genetic algorithm: Application to 

evaluation of metallic dampers”, Earthq. Struct., 13(4), 397-407. 

Tran, C.T.N. and Li, B. (2018), “Seismic performance of RC short 

columns with light transverse reinforcement”, Struct. Eng. 

Mech., 67(1), 93-104. http://dx.doi.org/ 

10.12989/sem.2018.67.1.093. 

Worden, K. and Manson, G. (2012), “On the identification of 

hysteretic systems. Part I: Fitness landscapes and evolutionary 

identification”, Mech. Syst. Signal Proc., 29, 201-212. 

http://dx.doi.org/10.1016/j.ymssp.2012.01.004. 

Zheng, T., Liu, J., Luo, W. and Lu, Z. (2018), “Structural damage 

identification using cloud model based fruit fly optimization 

algorithm”, Struct. Eng. Mech., 67(3), 245-254. 

http://dx.doi.org/10.12989/sem.2018.67.3.245. 

Zheng, T., Luo, W., Hou, R., Lu, Z. and Cui, J. (2019), “A novel 

experience-based learning algorithm for structural damage 

identification: simulation and experimental verification”, Eng. 

Optimiz., 1-24. http://dx.doi.org/10.1080/0305215X.2019.1668935. 

Zhou, Y., Lu, D. and Zhang, M. (2017), “Study on mechanical 

properties of lead-filled steel tube damper”, China Civ. Eng. J., 

50(1), 46-52. (in Chinese) 

 

 

CC 

114




