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1. Introduction 
 

Transverse isotropy is important because many artificial 

and natural materials behave effectively as transversely 

isotropic elastic materials. A large number of joints in 

advanced electronic devices are carried out with the 

application of these materials. Couple stress theory is an 

extension to continuum theory that includes the effects of 

couple stresses, in addition to the classical direct and shear 

forces per unit area. First mathematical model to examine 

the materials with couple stresses was presented by 

Cosserat and Cosserat (1909). In this theory, both curvature 

tensor and the couple stress moment tensor are asymmetric 

and every particle is assumed to be capable of both linear 

displacement and rotation during the deformation of the 

material. Because of the failure of establishing the 

constitutive relationships, this theory was not given 

importance by researchers. However, Tiwari (1971) 

determined the effect of couple stress on deflection 

produced in a semi-infinite elastic body because of 

impulsive twist over surface using Cosserat equations. 

Mindlin and Tierstein (1962) were first to formulate the 

complete boundary value problem of couple stress theory. 

Koiter (1964) introduced the constitutive relationships for 

couple stress theory, involving length scale parameters to 

predict the size effects. This version of theory is known as  
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Mindlin-Tierstein-Koiter Couple stress theory. This theory 

suffers from some inconsistencies, such as the 

indeterminacy of the couple-stress tensor, inconsistent 

boundary conditions and the consideration of the redundant 

body couple distribution. Employing the balance law for 

moments of couple besides the balance laws for forces and 

moment of forces a modified couple stress theory (M-CST) 

with one length scale parameter was offered by Yang et al. 

(2002). Application of this equilibrium equation leads to a 

symmetric couple-stress tensor. In M-CST 

휀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖), 

𝜒𝑖�̂� =
1

2
(𝜔𝑖,𝑗 + 𝜔𝑗,𝑖), 

𝜔𝑖 =
1

2
𝑒𝑖𝑗𝑘𝑢𝑘,𝑗, 𝜎𝑖𝑗 = 𝜆휀𝑘𝑘𝛿𝑖𝑗 + 2𝐺휀𝑖𝑗 

𝑚𝑖�̂� = 2𝑙
2𝐺𝜒𝑖�̂� 

 

Here 𝑢𝑖  is the displacement vector, 𝑚𝑖𝑗  is couple 

stress moment tensor,λ and G are lame’s constant, l is 

material length scale,σij  is stress tensor, 𝜖𝑖𝑗   is strain 

tensor, χijis curvature tensor,ωi are rotation components.  

Tsiatas and Yiotis (2010) proposed a modified couple stress 

model for the static study of orthotropic micro-plates with 

various shapes, aspect and Poisson’s ratios subjected to 

various boundary conditions and on the basis of principle of 

minimum potential energy. Ke et al. (2012) studied the 

nonlinear free vibration problem of a functionally graded 

micro-beam according to the modified couple stress theory. 

Najafi (2012) investigated the quality factor of thermo-

elastic damping in an electro-statically deflected micro-

beam resonator using Hamilton principles based on 

modified couple stress theory and hyperbolic heat 

conduction model. Free vibration analysis of a three 
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dimensional cylindrical micro-beam on the basis of 

modified couple stress theory was done by Wang et al. 

(2013).  Roque et al. (2013) examined the bending of 

simply supported micro isotropic plates using modified 

couple stress theory and a meshless method. The added 

scale parameter produces an effect according to the size of 

the plate, the effect getting to be smaller as the plate size 

increases. Shaat et al. (2014) studied the bending analysis 

of nano-sized Kirchhoff plates using modified couple-stress 

theory including surface energy and microstructure effects. 

Kumar et al. (2015) studied the impact of Hall current and 

rotation in thermoelastic diffusive media caused by ramp 

type loading on the basis of modified couple stress theory 

using Laplace and Fourier Transform techniques. Khorshidi 

and Shariati (2015) gave an exact solution on the basis of 

modified couple stress theory for the analysis of 

postbuckling conduct of shear deformable micro-/nanoscale 

carbon beams. Shafiei et al. (2016a) did the nonlinear 

vibration study of axially nonuniform FG microbeams using 

modified couple stress theory and on the basis of Euler–

Bernoulli beam theory and Von-Kármán’s strain. Atanasov 

et al. (2017) examined the thermal effect on the free 

vibration and buckling of the Euler-Bernoulli double 

microbeam system based on the modified couple stress 

theory using Bernoulli–Fourier method. Togun and Bağdatlı. 

(2017) presented the linear free vibration of a simply-

supported by using modified couple stress theory and 

Hamilton’s principle and analyzed the effects of the length 

scale parameter and the Poisson’s ratio on natural frequency 

showing that the natural frequency is decreased as the 

dimensionless scale parameter is magnified. Vibrational 

frequency of a tapered microbeam resonator was examined 

via a generalized thermoelastic theory in connection with 

modified couple stress theory by Zenkour (2018). Despite 

of this several researchers worked on different theory of 

thermoelasticity and similar concept as Marin (1997,2007), 

Marin and Baleanu (2016), Marin and Stan (2013), Marin 

(1998,2009,2010) and Lata and Kaur (2019a,2019b,2019c), 

Khorshidi (2018), Li et al. (2019), Zhang and Li(2020),Guo 

et al.(2016,2018), Reddy et al.(2016), El-Karamany and 

Ezzat(2011), Ezzat and Ewad(2010), Ezzat and Abd-

Elaal(1997,1997a).. 

M-CST cannot describe the pure bending of plate 

properly as no couple stresses and no size-effects are 

predicted for pure bending of plate. So, Hadjesfandiari and 

Dargush (2011) gave consistent couple stress theory (C-

CST) with the skew-symmetric couple-stresses. Here, 

𝜒𝑖𝑗 =
1

2
(𝜔𝑖,𝑗 − 𝜔𝑗,𝑖) 

𝜎𝑖𝑗 = 𝜆휀𝑘𝑘𝛿𝑖𝑗 + 2𝐺휀𝑖𝑗 + 2𝐺𝑙
2𝑒𝑖𝑗𝑘∇

2𝜔𝑘 

𝑚𝑖𝑗 = 4𝑙
2𝐺𝜒𝑖𝑗  

 

Hadjesfandiari et al. (2018) developed size-dependent 
Timoshenko beam model using C-CST. Laminated 
composite materials are anisotropic and are usually used in 
engineering. Modified couple stress theory could not be 
applied to anisotropic materials. So, Chen and Li (2014) 
introduced the new modified couple stress theory (NM-CST) 
for anisotropic materials containing three length scale 
parameters. For NM- couple stress theory, 

𝜒𝑖𝑗 = 𝜔𝑖,𝑗 

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙휀𝑘𝑙 

𝑚𝑖𝑗 = 𝑙𝑖
2𝐺𝑖𝜒𝑖𝑗 + 𝑙𝑗

2𝐺𝑗𝜒𝑗𝑖 

𝑐𝑖𝑗𝑘𝑙are elastic parameters, 𝑙𝑖  and 𝑙𝑗  are material length 

scale parameters. Chen et al. (2014) studied the scale 

effects of composite laminated plates using new modified 

couple stress theory by finite element method.  

In the present investigation, our objective is to study the 

deformation in transversely isotropic thermoelastic solid 

using new modified couple stress theory without energy 

dissipation. The solid is employed to ramp-type heating. 

The couple stress constitutive relationships are introduced 

for transversely isotropic thermoelasticity, in which the 

curvature (rotation gradient) tensor is asymmetric and the 

couple stress moment tensor is symmetric. Laplace and 

Fourier transform technique is applied to obtain the 

solutions of the governing equations. The displacement 

components, stress components, temperature change and 

couple stress are obtained in the transformed domain and 

are presented graphically for different values of 

displacement. The effects of length scale parameters on 

resulting quantities are also depicted graphically. 
 

 

2. Basic equations 
 

Following Chen and Li (2014), Kumar and Devi (2015) 

and Kumar et al.(2015c), the field equations transversely 

isotropic thermoelastic solid using new modified couple 

stress theory in the absence of body forces, body couple and 

without energy dissipation are given by 

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙휀𝑘𝑙 +
1

2
𝑒𝑖𝑗𝑘𝑚𝑙𝑘,𝑙 − 𝛽𝑖𝑗𝑇 (1) 

𝑐𝑖𝑗𝑘𝑙휀𝑘𝑙,𝑗 +
1

2
𝑒𝑖𝑗𝑘𝑚𝑙𝑘,𝑙𝑗 − 𝛽𝑖𝑗𝑇,𝑗 = 𝜌�̈�𝑖 (2) 

𝐾𝑖𝑗𝑇,𝑖𝑗 − 𝜌𝐶𝐸�̈� = 𝛽𝑖𝑗𝑇0휀�̈�𝑗 (3) 

where 

𝛽𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝛼𝑖𝑗 (4) 

휀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) (5) 

𝑚𝑖𝑗 = 𝑙𝑖
2𝐺𝑖𝜒𝑖𝑗 + 𝑙𝑗

2𝐺𝑗𝜒𝑗𝑖 (6) 

𝜒𝑖𝑗 = 𝜔𝑖,𝑗 (7) 

𝜔𝑖 =
1

2
𝑒𝑖𝑗𝑘𝑢𝑘,𝑗 (8) 

Here 𝑢 = (𝑢1, 𝑢2, 𝑢3) is the components of 

displacement vector, 𝑐𝑖𝑗𝑘𝑙(𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑖𝑗𝑙𝑘 = 𝑐𝑗𝑖𝑘𝑙 = 𝑐𝑗𝑖𝑙𝑘) are 

elastic parameters, 𝜎𝑖𝑗 are the components of stress tensor, 

휀𝑖𝑗  are the components of strain tensor,𝑒𝑖𝑗𝑘  is alternate 
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tensor, 𝑚𝑖𝑗are the components of couple-stress,  𝛼𝑖𝑗are the 

coefficients of linear thermal expansion, 𝛽𝑖𝑗  is thermal 

tensor, 𝑇  is the temperature change, 𝑙𝑖(i = 1,2,3)  are 

material length scale parameters ,𝜒𝑖𝑗 is curvature,𝜔𝑖is the 

rotational vector,  is the density, 𝐾𝑖𝑗  isthe thermal 

conductivity, 𝑐𝐸 is the specific heat at constant strain, 𝑇0is 

the reference temperature assumed to be such that 𝑇 𝑇0
⁄ ≪

1,𝐺𝑖 are the elasticity constants and 𝛽1 = (𝑐11 + 𝑐12)𝛼1 +
𝑐13𝛼3, 𝛽3 = 2𝑐13𝛼1 + 𝑐33𝛼3. 

 
 
3. Formulation and solution of the problem 
 

We consider a two dimensional homogeneous  

transversely isotropic thermoelastic solid using new 

modified couple stress theory   initially at uniform 

temperature 𝑇0occupying the region of a half space 𝑥3 ≥
0 .A  rectangular coordinate system (𝑥1, 𝑥2, 𝑥3)  having 

origin on the surface 𝑥3 = 0 has been taken. All the field 

quantities depend on (𝑥1, 𝑥3, 𝑡). We have used appropriate 

transformation using Slaughter (2002), on the set of 

equation (1) - (3) to derive the equations for transversely 

isotropic thermoelastic solid under consideration. 

Equation of motion in u1-u3 plane are given by 

𝑐11𝑢1,11 + (𝑐44 −
1

4
𝑙2
2𝐺2∇

2) 𝑢1,33

+ (𝑐13 + 𝑐44 +
1

4
𝑙2
2𝐺2∇

2) 𝑢3,13

− 𝛽1
𝜕𝑇

𝜕𝑥1
= 𝜌𝑢1̈ 

(9) 

𝑐33𝑢3,33 + (𝑐44 + 𝑐13 +
1

4
𝑙2
2𝐺2∇

2) 𝑢1,31

+ (𝑐44 +
1

4
 𝑙2
2𝐺2∇

2) 𝑢3,11 − 𝛽3
𝜕𝑇

𝜕𝑥3
= 𝜌�̈�3 

(10) 

Equation of heat conduction without energy dissipation 

is given by 

𝐾1
𝜕2𝑇

𝜕𝑥1
2 + 𝐾3

𝜕2𝑇

𝜕𝑥3
2 − 𝜌𝑐𝐸

𝜕2𝑇

𝜕𝑡2

= 𝑇0
𝜕

𝜕𝑡
(𝛽1

𝜕𝑢1
𝜕𝑥1

+ 𝛽3
𝜕𝑢3
𝜕𝑥3

) 
(11) 

where 

𝛽1 = (𝑐11 + 𝑐12)𝛼1 + 𝑐13𝛼3 ,    𝛽3 = 2𝑐13𝛼1 + 𝑐33𝛼3 

where ∇2= (
𝜕2

𝜕𝑥1
2 +

𝜕2

𝜕𝑥3
2)  .And comma in the subscript 

denotes the derivative w.r.t. displacement component 

written after comma. In the above equation we use 

contracting subscript notation (1 → 11,2 → 22,3 →
33,4 → 23,5 → 31,6 → 12)to relate 𝑐𝑖𝑗𝑘𝑙 to 𝑐𝑚𝑛 .  

And the constitutive relationships are 

𝜎33 = 𝑐13
𝜕𝑢1
𝜕𝑥1

+ 𝑐33
𝜕𝑢3
𝜕𝑥3

− 𝛽3𝑇 (12) 

𝜎31 = 𝑐44 (
𝜕𝑢1
𝜕𝑥3

+
𝜕𝑢3
𝜕𝑥1

)

+
1

4
((𝑙1

2𝐺1 − 𝑙2
2𝐺2) (−

𝜕3𝑢1

𝜕𝑥3𝜕𝑥1
2 +

𝜕3𝑢3

𝜕𝑥1
3 )

+ (𝑙3
2𝐺3 − 𝑙2

2𝐺2) (−
𝜕3𝑢1

𝜕𝑥3
3 +

𝜕3𝑢3

𝜕𝑥1
3 ) ) 

(13) 

𝑚32 =
1

2
(𝑙2
2𝐺2 − 𝑙3

2𝐺3)(
𝜕2𝑢1

𝜕𝑥3
2 −

𝜕2𝑢3
𝜕𝑥1𝜕𝑥3

) (14) 

To facilitate the solution following dimensionless 

quantities are used 

𝑥1
, =

𝑥1

𝐿
,𝑥3
, =

𝑥3

𝐿
,𝑢1
, =

𝜌𝑐1
2

𝐿𝛽1𝑇0
𝑢1 ,𝑢3

, =
𝜌𝑐1
2

𝐿𝛽1𝑇0
𝑢3,𝑇

, =

𝑇

𝑇0
, 𝑡 , =

𝑐1

𝐿
𝑡,𝜎11

, =
𝜎11

𝛽1𝑇0
,𝜎33
, =

𝜎33

𝛽1𝑇0
,𝑚32

, =
𝑚32

𝐿𝛽1𝑇0
 

(15) 

where 𝑐1
2 =

𝑐11

𝜌
 and L is constant of dimension of length. 

Using the dimensionless quantities defined by (15) into 

equations (9) - (14) and suppressing the primes, we obtain 

𝜕2𝑢1

𝜕𝑥1
2 + (𝛿1 −

1

4𝐿2𝑐11
𝑙2
2𝐺2 (

𝜕2

𝜕𝑥1
,2 +

𝜕2

𝜕𝑥3
,2))

𝜕2𝑢1

𝜕𝑥3
2  

+(𝛿2 +
1

4𝐿2𝑐11
𝑙2
2𝐺2 (

𝜕2

𝜕𝑥1
,2 +

𝜕2

𝜕𝑥3
,2))

𝜕2𝑢3
𝜕𝑥1𝜕𝑥3

−
𝜕𝑇

𝜕𝑥1

=
𝜕2𝑢1
𝜕𝑡2

 

(16) 

𝛿4
𝜕2𝑢3

𝜕𝑥3
2 + (𝛿2 +

1

4𝐿2𝑐11
𝑙2
2𝐺2 (

𝜕2

𝜕𝑥1
,2 +

𝜕2

𝜕𝑥3
,2))

𝜕2𝑢1
𝜕𝑥1𝜕𝑥3

 

+(𝛿1 −
1

4𝐿2𝑐11
𝑙2
2𝐺2 (

𝜕2

𝜕𝑥1
,2 +

𝜕2

𝜕𝑥3
,2))

𝜕2𝑢3

𝜕𝑥1
2 − 𝑝5

𝜕𝑇

𝜕𝑥3
=
𝜕2𝑢3
𝜕𝑡2

 

(17) 

𝑐1
𝜕2𝑇

𝜕𝑥1
2 + 𝑝3𝑐1

𝜕2𝑇

𝜕𝑥3
2 = 휁1𝐿

𝜕2𝑢1
𝜕𝑡𝜕𝑥1

+ 휁2𝐿
𝜕2𝑢3
𝜕𝑡𝜕𝑥3

+ 휁3𝑐1
𝜕2𝑇

𝜕𝑡2
 (18) 

𝜎33 =
𝑐13

𝜌𝑐1
2

𝜕𝑢1
𝜕𝑥1

+
𝑐33

𝜌𝑐1
2

𝜕𝑢3
𝜕𝑥3

− 𝑝5𝑇 (19) 

𝜎31 =
𝑐44

𝜌𝑐1
2 (
𝜕𝑢1
𝜕𝑥3

+
𝜕𝑢3
𝜕𝑥1

) 

+
1

4𝜌𝑐1
2𝐿2

((𝑙1
2𝐺1 − 𝑙2

2𝐺2) (−
𝜕3𝑢1

𝜕𝑥3𝜕𝑥1
2 +

𝜕3𝑢3

𝜕𝑥1
3 )

+ (𝑙3
2𝐺3 − 𝑙2

2𝐺2) (−
𝜕3𝑢1

𝜕𝑥1𝜕𝑥3
2

+
𝜕3𝑢3

𝜕𝑥1
2𝜕𝑥3

)) 

(20) 

19
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𝑚32 =
1

2

𝛽1𝑇0

𝐿2𝜌𝑐1
2 (𝑙2

2𝐺2 − 𝑙3
2𝐺3)(

𝜕2𝑢1

𝜕𝑥3
2 −

𝜕2𝑢3
𝜕𝑥1𝜕𝑥3

) (21) 

where 

𝛿1 =
𝑐44

𝑐11
       𝛿2 =

𝑐13+𝑐44

𝑐11
        𝛿4 =

𝑐33

𝑐11
            

𝑝5 =
𝛽3

𝛽1
         𝑝3 =

𝐾3

𝐾1
 휁1 =

𝑇0𝛽1
2

𝐾1𝜌
 휁2 =

𝑇0𝛽1𝛽3

𝐾1𝜌
 

 

The initial and regularity conditions are given by 

𝑢1(𝑥1, 𝑥3, 0)  =  0 =  𝑢1̇ (𝑥1, 𝑥3, 0) 

𝑢3(𝑥1, 𝑥3, 0)  =  0 = 𝑢3̇ (𝑥1, 𝑥3, 0) 

𝑇(𝑥1, 𝑥3, 0) =  0 = �̇�(𝑥1, 𝑥3, 0)   

 𝑓𝑜𝑟  𝑥3 ≥ 0,−∞ < 𝑥1 < ∞  

𝑢1(𝑥1, 𝑥3, 𝑡) = 𝑢3(𝑥1, 𝑥3, 𝑡) = 𝑇(𝑥1, 𝑥3, 0) = 0 

 𝑓𝑜𝑟  𝑡 > 0 𝑤ℎ𝑒𝑛  𝑥3 → ∞ 

(22) 

Applying Laplace and Fourier transformation defined by 

𝑓(𝑥1, 𝑥3,𝑠) = ∫ 𝑓
∞

0

(𝑥1, 𝑥3,𝑡)𝑒
−𝑠𝑡𝑑𝑡 (23) 

𝑓(𝜉, 𝑥3,𝑠) = ∫ 𝑓(𝑥1, 𝑥3,𝑠)𝑒
ἰ𝜉𝑥1𝑑

∞

−∞

𝑥1 (24) 

to the equation (16)-(21), we obtain system of three 

homogeneous equations from equations (16)-(18). These 

resulting equations have non trivial solution if the 

determinant of the coefficient  (�̂�1,�̂�3,�̂�) vanishes, which 

yields the following characteristic equation 

𝑃
𝑑8

𝑑𝑥3
8
+ 𝑄

𝑑6

𝑑𝑥3
6
+ 𝑅

𝑑4

𝑑𝑥3
4
+ 𝑆

𝑑2

𝑑𝑥3
2
+ 𝑇)(�̂�1,�̂�3,𝑇) = 0 (25) 

where 

𝑃 = 𝑝3𝑐1𝛿4
𝑙2
2𝐺2

4𝐿2𝑐11
, 

𝑄

= −(휁2𝑠𝐿𝑝5
𝑙2
2𝐺2

4𝐿2𝑐11

+ 𝑝3𝑐1

(

 
 

(𝛿1 +
𝑙2
2𝐺2

4𝐿2𝑐11
𝜉2) 𝛿4

+
−𝑙2

2𝐺2
4𝐿2𝑐11

(−𝑠2) + 2𝜉2(𝛿1 + 𝛿2)
𝑙2
2𝐺2

4𝐿2𝑐11)

 
 

 

+𝛿4
𝑙2
2𝐺2

4𝐿2𝑐11
(𝑐1𝜉

2 + 휁3𝑐1𝑠
2)) 

𝑅 = −𝜉2휁1𝑠𝐿
𝑝5

4𝐿2𝑐11

− 𝑝3𝑐1 (−𝛿4(𝜉
2 + 𝑠2)

− 𝜉2 (𝛿1
2 − 𝛿2

2 + 2(𝛿1 + 𝛿2)
𝑙2
2𝐺2

4𝐿2𝑐11
𝜉2)

− 𝜉2(𝜉2 + 𝑠2)
𝑙2
2𝐺2

4𝐿2𝑐11

+ (𝛿1 +
𝑙2
2𝐺2

4𝐿2𝑐11
𝜉2) (−𝑠2)) 

+(𝑐1𝜉
2 + 휁3𝑐1𝑠

2) ((𝛿1 +
𝑙2
2𝐺2

4𝐿2𝑐11
𝜉2) 𝛿4 +

𝑙2
2𝐺2

4𝐿2𝑐11
(𝑠2)

+ 2𝜉2(𝛿1 + 𝛿2)
𝑙2
2𝐺2

4𝐿2𝑐11
) 

+휁2𝑠𝐿 (𝑝5 (𝛿1 +
𝑙2
2𝐺2

4𝐿2𝑐11
𝜉2) − 𝜉2

𝑙2
2𝐺2

4𝐿2𝑐11
) 

 

𝑆 = 𝜉2휁1𝑠𝐿(𝑝5(𝛿2 −
𝑙2
2𝐺2

4𝐿2𝑐11
𝜉2) 

+(𝛿4 +
𝑙2
2𝐺2

4𝐿2𝑐11
𝜉2)) − 휁2𝑠𝐿(𝑝5(𝜉

2 + 𝑠2) 

−𝜉2(𝛿2 −
𝑙2
2𝐺2

4𝐿2𝑐11
𝜉2))  

+ (𝑐1𝜉
2 + 휁3𝑐1𝑠

2) ( −𝛿4(𝜉
2 + 𝑠2)

− 𝜉2(𝜉2 + 𝑠2)
𝑙2
2𝐺2

4𝐿2𝑐11

+ (𝛿1 +
𝑙2
2𝐺2

4𝐿2𝑐11
𝜉2) (−𝑠2)

− 𝜉2 (𝛿1
2 − 𝛿2

2

+ 2(𝛿1 + 𝛿2)
𝑙2
2𝐺2

4𝐿2𝑐11
𝜉2)) 

−𝑝3𝑐1((𝜉
2 + 𝑠2)𝑠2 + (𝜉2 + 𝑠2)𝜉2 (𝛿1 +

𝑙2
2𝐺2

4𝐿2𝑐11
𝜉2)) 

 

𝑇 = (𝑐1𝜉
2 + 휁3𝐿𝑠) ((𝜉

2 + 𝑠2)𝑠2

+ (𝜉2 + 𝑠2)𝜉2 (𝛿1 +
𝑙2
2𝐺2

4𝐿2𝑐11
𝜉2))

+ 𝜉2휁1𝑠𝐿 (𝑠
2 + 𝜉2 (𝛿1 +

𝑙2
2𝐺2

4𝐿2𝑐11
𝜉2)) 

The roots of the equation (25) are ±λi(i =
 1, 2, 3, 4),using the radiation condition that 𝑢1̂, 𝑢3̂,  �̂� → 0 

as 𝑥3 → ∞ the solution of equation (24) may be written as 

𝑢1̂ = 𝐴1𝑒
−𝜆1𝑥3 + 𝐴2𝑒

−𝜆2𝑥3 + 𝐴3𝑒
−𝜆3𝑥3 + 𝐴4𝑒

−𝜆4𝑥3  (26) 

𝑢3̂ = 𝑑1𝐴1𝑒
−𝜆1𝑥3 + 𝑑2𝐴2𝑒

−𝜆2𝑥3  

+𝑑3𝐴3𝑒
−𝜆3𝑥3 + 𝑑4𝐴4𝑒

−𝜆4𝑥3  
(27) 

�̂� = 𝑔1𝐴1𝑒
−𝜆1𝑥3 + 𝑔2𝐴2𝑒

−𝜆2𝑥3 + 𝑔3𝐴3𝑒
−𝜆3𝑥3

+ 𝑔4𝐴4𝑒
−𝜆4𝑥3  (28) 

where         
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4. Boundary conditions 
 

 For boundary conditions we suppose that the boundary 

plane𝑥3 = 0 is subjected to 1. Vanishing of normal stress 

𝜎33 = 0 (29) 

2.  Vanishing of tangential stress 

𝜎31 = 0 (30) 

3. Vanishing of tangential couple stress 

𝑚32 = 0 (31) 

4. Condition of temperature change 

𝑇(𝑥, 𝑡) = 𝐺(𝑡)𝛿(𝑥) (32) 

where 𝛿(𝑥)Dirac delta function and 𝐺(𝑡)  is a function 

defined as 

𝐺(𝑡) =   {

0         𝑡 ≤ 0     

𝑇1
𝑡

𝑡0
     0 < 𝑡 ≤ 𝑡0

𝑇1           𝑡 > 𝑡0

 (33) 

where 𝑡0 indicates the length of time to rise the heat and 

𝑇1 is a constant, this means that the boundary of the half-

space, which is initially at rest and has a fixed temperature 

𝑡0, is suddenly raised to a temperature equal to the function 

𝐺(𝑡)𝛿(𝑥) and is maintained at this temperature afterwards.  

Applying the Laplace and Fourier transforms to both 

sides of (33), we obtain 

�̃̅�(𝜉, 𝑠) = �̃�(𝑠) 

where �̃�(𝑠) = 𝑇1
(1−𝑒−𝑠𝑡0)

𝑡0𝑠
2  

 

Substituting the values of 𝑢1̂,𝑢3̂, �̂� from equations(26)- 

(28) in the boundary conditions(29)-(33) and with the aid of 

(1), (5)-(8),(23)-(24),(19)-(21), we obtain the components 

of displacement, normal stress, tangential stress, tangential 

couple stress and temperature change as 

𝑢1̂ =
𝐺(𝑠)̃

∆
  (𝐵41𝑒

−𝜆1𝑥3 + 𝐵42𝑒
−𝜆2𝑥3 + 𝐵43𝑒

−𝜆3𝑥3

+ 𝐵44𝑒
−𝜆4𝑥3  

(34) 

𝑢3̂ =
𝐺(𝑠)̃

∆
(𝑑1𝐵41𝑒

−𝜆1𝑥3 + 𝑑2𝐵42𝑒
−𝜆2𝑥3

+ 𝑑3𝐵43𝑒
−𝜆3𝑥3 + 𝑑4𝐵44𝑒

−𝜆4𝑥3) 
(35) 

 

�̂� =
𝐺(𝑠)̃

∆
(𝑔1𝐵41𝑒

−𝜆1𝑥3 + 𝑔2𝐵42𝑒
−𝜆2𝑥3 + 𝑔3𝐵43𝑒

−𝜆3𝑥3

+ 𝑔4𝐵44𝑒
−𝜆4𝑥3) 

(36) 

𝜎33̂ =
𝐺(𝑠)̃

∆
(𝐵41 (

𝑐13

𝜌𝑐1
2 ἰ𝜉 − 𝑑1𝜆1

𝑐33

𝜌𝑐1
2 − 𝑝5𝑔1) 𝑒

−𝜆1𝑥3 

+𝐵42 (
𝑐13

𝜌𝑐1
2 ἰ𝜉 − 𝑑2𝜆2

𝑐33

𝜌𝑐1
2 − 𝑝5𝑔2) 𝑒

−𝜆 2𝑥3 

+𝐵43 (
𝑐13

𝜌𝑐1
2 ἰ𝜉 − 𝑑3𝜆3

𝑐33

𝜌𝑐1
2 − 𝑝5𝑔3) 𝑒

−𝜆3𝑥3

+ 𝐵44 (
𝑐13

𝜌𝑐1
2 ἰ𝜉 − 𝑑4𝜆4

𝑐33

𝜌𝑐1
2

− 𝑝5𝑔4) 𝑒
−𝜆4𝑥3) 

(37) 

𝜎31̂

=
𝐺(𝑠)̃

𝜌𝑐1
2∆
(𝐵41(−𝜆1𝑐44 + ἰ𝜉𝑑1

+
1

4𝐿2
((𝑙1

2𝐺1 − 𝑙2
2𝐺2)(−𝜉

2𝜆1 − ἰ𝜉
3𝑑1) + (𝑙3

2𝐺3

− 𝑙2
2𝐺2)(𝜆1

3 + ἰ𝜉𝜆1
2𝑑1)))𝑒

−𝜆1𝑥3 + 𝐵42(−𝜆2𝑐44 + ἰ𝜉𝑑2

+
1

4𝐿2
((𝑙1

2𝐺1 − 𝑙2
2𝐺2)(−𝜉

2𝜆2 − ἰ𝜉
3𝑑2) + (𝑙3

2𝐺3

− 𝑙2
2𝐺2)(𝜆2

3 + ἰ𝜉𝜆2
2𝑑2)))𝑒

−𝜆2𝑥3 + 𝐵43(−𝜆3𝑐44 + ἰ𝜉𝑑3

+
1

4𝐿2
(
(𝑙1
2𝐺1 − 𝑙2

2𝐺2)(−𝜉
2𝜆3 − ἰ𝜉

3𝑑3) +

(𝑙3
2𝐺3 − 𝑙2

2𝐺2)(𝜆3
3 + ἰ𝜉𝜆3

2𝑑3)
))𝑒−𝜆3𝑥3

+ 𝐵44(−𝜆4𝑐44 + ἰ𝜉𝑑4

+
1

4𝐿2
((𝑙1

2𝐺1 − 𝑙2
2𝐺2)(−𝜉

2𝜆4 − ἰ𝜉
3𝑑4) + (𝑙3

2𝐺3

− 𝑙2
2𝐺2)(𝜆4

3 + ἰ𝜉𝜆4
2𝑑4)))𝑒

−𝜆4𝑥3) 

(38) 

𝑚32̂ =
1

2

𝐺(𝑠)̃

𝜌𝑐1
2𝐿2∆

(𝑙2
2𝐺2

− 𝑙3
2𝐺3)( 𝐵41𝑒

−𝜆1𝑥3(𝜆1
2 + ἰ𝜉𝜆1𝑑1)

+ 𝐵42𝑒
−𝜆2𝑥3(𝜆2

2 + ἰ𝜉𝜆2𝑑2)

+ 𝐵43𝑒
−𝜆3𝑥3(𝜆3

2 + ἰ𝜉𝜆3𝑑3)

+ 𝐵44𝑒
−𝜆4𝑥3(𝜆4

2 + ἰ𝜉𝜆4𝑑4)) 

(39) 

 

𝑑𝑖 =
−𝜆𝑖

6𝑝3𝑐1 𝐴 + 𝜆𝑖
4(−𝑝3𝑐1 ∈1+ 𝑐1(𝜉

2 + 휁3𝑠
2)𝐴) + 𝜆𝑖

2((𝜉2 + 𝑠2)𝑝3𝑐1 + 𝑐1 ∈1 (𝜉
2 + 휁3𝑠

2)) − 𝑐1 (𝜉
2 + 𝑠2)(𝜉2 + 휁3𝑠

2) − 𝜉2휁1𝑠𝐿

−𝜆𝑖
4𝑝3𝑐1 (𝛿4 − 𝐴𝜉

2) + 𝜆𝑖
2(𝑝3𝑐1 (𝑠

2 + 𝜉2 ∈1) + 𝑐1 (𝜉
2 + 휁3𝑠

2)(𝛿4 − 𝐴𝜉
2) + 휁2𝑠𝐿𝑝5)) − 𝑐1 (𝑠

2 + 𝜉2 ∈1 (𝜉
2 + 휁3𝑠

2))
 

𝑔𝑖 =

𝜆𝑖
6(𝜉2𝐴2+𝐴(𝛿4−𝐴𝜉

2))+𝜆𝑖
4(∈1(𝛿4−𝐴𝜉

2)+𝐴(𝑠2+𝜉2∈1)−2𝜉
2(𝛿2+𝐴𝜉

2)𝐴)+𝜆𝑖
2(−(𝜉2+𝑠2)(𝛿4−𝐴𝜉

2)

+∈1(𝑠
2+𝜉2∈1)+𝜉

2(𝛿2+𝐴𝜉
2)2)+(𝜉2+𝑠2)(𝑠2+𝜉2∈1)

−𝜆𝑖
4𝑝3𝑐1 (𝛿4−𝐴𝜉

2)+𝜆𝑖
2((𝑠2+𝜉2∈1)𝑝3𝑐1 +𝑐1(𝜉

2+𝜁3𝑠
2)(𝛿4−𝐴𝜉

2)+𝜁2𝑠𝐿𝑝5))−𝑐1(𝑠
2+𝜉2∈1(𝜉

2+𝜁3𝑠
2))

, 

A = −
𝑙2
2𝐺2

4𝐿2𝑐11
,          ∈1= (𝛿1 − 𝐴𝜉

2) 
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where 

𝐵41 = −𝐴12(𝐴23𝐴34 − 𝐴33𝐴24)
+ 𝐴13(𝐴22𝐴34 − 𝐴32𝐴24)
− 𝐴14(𝐴22𝐴33 − 𝐴32𝐴23) 

𝐵42 = 𝐴11(𝐴23𝐴34 − 𝐴33𝐴24)
− 𝐴13(𝐴21𝐴34 − 𝐴31𝐴24)
+ 𝐴14(𝐴21𝐴33 − 𝐴31𝐴23) 

𝐵43 = −𝐴11(𝐴22𝐴34 − 𝐴33𝐴24)
+ 𝐴12(𝐴21𝐴34 − 𝐴31𝐴24)
− 𝐴14(𝐴21𝐴32 − 𝐴31𝐴22) 

𝐵44 = 𝐴11(𝐴22𝐴33 − 𝐴23𝐴32)
− 𝐴12(𝐴21𝐴33 − 𝐴31𝐴23)
+ 𝐴13(𝐴21𝐴32 − 𝐴31𝐴22) 

𝐴11 =
ἰ𝜉𝑐13

𝜌𝑐1
2 −

𝑐33𝜆1𝑑1

𝜌𝑐1
2 − 𝑝5𝑔1 

𝐴12 =
ἰ𝜉𝑐13

𝜌𝑐1
2 −

𝑐33𝜆2𝑑2

𝜌𝑐1
2 − 𝑝5𝑔2 

𝐴13 =
ἰ𝜉𝑐13

𝜌𝑐1
2 −

𝑐33𝜆3𝑑3

𝜌𝑐1
2 − 𝑝5𝑔3 

𝐴14 =
ἰ𝜉𝑐13

𝜌𝑐1
2 −

𝑐33𝜆4𝑑4

𝜌𝑐1
2 − 𝑝5𝑔4 

𝐴21 = 𝑐44(−𝜆1
1

𝜌𝑐1
2 + ἰ𝜉𝑑1

1

𝜌𝑐1
2)

+
1

4𝜌𝑐1
2𝐿2

((𝑙1
2𝐺1 − 𝑙2

2𝐺2)(−𝜉
2𝜆1

− ἰ𝜉3𝑑1)
+ (𝑙3

2𝐺3 − 𝑙2
2𝐺2)(−𝜆1

3 + ἰ𝜉𝜆1
2𝑑1))  

𝐴22 = 𝑐44(−𝜆2
1

𝜌𝑐1
2 + ἰ𝜉𝑑2

1

𝜌𝑐1
2)

+
1

4𝜌𝑐1
2𝐿2

((𝑙1
2𝐺1 − 𝑙2

2𝐺2)(−𝜉
2𝜆2

− ἰ𝜉3𝑑2)
+ (𝑙3

2𝐺3 − 𝑙2
2𝐺2)(−𝜆2

3 + ἰ𝜉𝜆2
2𝑑2)) 

𝐴23 = 𝑐44(−𝜆3
1

𝜌𝑐1
2 + ἰ𝜉𝑑3

1

𝜌𝑐1
2)

+
1

4𝜌𝑐1
2𝐿2

((𝑙1
2𝐺1 − 𝑙2

2𝐺2)(−𝜉
2𝜆3

− ἰ𝜉3𝑑3)
+ (𝑙3

2𝐺3 − 𝑙2
2𝐺2)(−𝜆3

3 + ἰ𝜉𝜆3
2𝑑3)) 

𝐴24 = 𝑐44(−𝜆4
1

𝜌𝑐1
2 + ἰ𝜉𝑑4

1

𝜌𝑐1
2)

+
1

4𝜌𝑐1
2𝐿2

((𝑙1
2𝐺1 − 𝑙2

2𝐺2)(−𝜉
2𝜆4

− ἰ𝜉3𝑑4)
+ (𝑙3

2𝐺3 − 𝑙2
2𝐺2)(−𝜆4

3 + ἰ𝜉𝜆4
2𝑑4)) 

𝐴31 =
1

2𝜌𝑐1
2𝐿2

(𝑙2
2𝐺2 − 𝑙3

2𝐺3)(𝜆1
2 + ἰ𝜉𝜆1𝑑1)  

𝐴32 =
1

2𝜌𝑐1
2𝐿2

(𝑙2
2𝐺2 − 𝑙3

2𝐺3)(𝜆2
2 + ἰ𝜉𝜆2𝑑2) 

 

𝐴33 =
1

2𝜌𝑐1
2𝐿2

(𝑙2
2𝐺2 − 𝑙3

2𝐺3)(𝜆3
2 + ἰ𝜉𝜆3𝑑3)  

𝐴34 =
1

2𝜌𝑐1
2𝐿2

(𝑙2
2𝐺2 − 𝑙3

2𝐺3)(𝜆4
2 + ἰ𝜉𝜆4𝑑4)  

𝐴41 = 𝑔1𝑒
−𝜆1𝑥3 

𝐴42 = 𝑔2𝑒
−𝜆2𝑥3 

𝐴43 = 𝑔3𝑒
−𝜆3𝑥3 

𝐴44 = 𝑔4𝑒
−𝜆4𝑥3 

∆= ∆1 − ∆2 + ∆3 − ∆4 

∆1= 𝐴11𝐴22(𝐴33𝐴44 − 𝐴43𝐴34)
− 𝐴11𝐴23(𝐴32𝐴44 − 𝐴42𝐴34)
+ 𝐴11𝐴24(𝐴32𝐴43 − 𝐴42𝐴33) 

∆2= 𝐴12𝐴21(𝐴33𝐴44 − 𝐴43𝐴34)
− 𝐴12𝐴23(𝐴31𝐴44 − 𝐴41𝐴34)
+ 𝐴24𝐴12(𝐴31𝐴43 − 𝐴41𝐴33) 

∆3= 𝐴13𝐴21(𝐴32𝐴44 − 𝐴42𝐴34)
− 𝐴22𝐴13(𝐴31𝐴44 − 𝐴41𝐴34)
+ 𝐴13𝐴24(𝐴31𝐴42 − 𝐴41𝐴32) 

∆4= 𝐴14𝐴21(𝐴32𝐴43 − 𝐴42𝐴33)
− 𝐴22𝐴14(𝐴31𝐴43 − 𝐴41𝐴33)
+ 𝐴14𝐴23(𝐴31𝐴42 − 𝐴41𝐴32) 

and 𝐴𝑖 =
1

∆
𝐵4𝑖𝐺(𝑠)̃ 

 
 
5. Inversion of the transformations: 

 

To obtain the solution of the problem in physical domain, 

we must invert the transforms in Eqs. (34)-(39). Here the 

displacement components, normal and tangential stresses 

and  temperature change, couple stress are functions of 𝑥3, 

the parameters of Laplace and Fourier transforms 𝑠 and 

𝜉 respectively and hence are of the form 𝑓 (𝜉 , 𝑥3, 𝑠). To 

obtain the function 𝑓(𝑥, 𝑥3, 𝑡) in the physical domain, we 

first invert the Fourier transform using 

𝑓(̅𝑥, 𝑥3, 𝑡) =
1

2𝜋
∫ 𝑒−ἰ𝜉𝑥1𝑓(𝜉 , 𝑥3 , 𝑠)

∞

−∞

𝑑𝜉

=
1

2𝜋
∫  |𝑐𝑜𝑠 (𝜉 𝑥)𝑓𝑒

∞

−∞

−  𝑖𝑠𝑖𝑛(𝜉 𝑥)𝑓0|𝑑𝜉 . 

(40) 

where 𝑓𝑒and 𝑓0 are respectively the odd and even parts 

of𝑓(𝜉 , 𝑥3 , 𝑠). Thus the expression (40) gives the Laplace 

transform 𝑓(̅ξ , 𝑥3, s). of the function𝑓(𝑥, 𝑥3, 𝑡). Following 

Honig and Hirdes (1984), the Laplace transform 

function𝑓(̅ξ , 𝑥3, s)  can be inverted to 𝑓(𝑥, 𝑥3, 𝑡).  

The last step is to calculate the integral in Eq. (40). The 

method for evaluating this integral is described in Press et 

al. (1986). It involves the use of Romberg’s integration with 

adaptive step size. This also uses the results from successive  
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Fig. 1 variation of displacement component 𝑢1  with the 

displacement x 

Fig. 2 variation of displacement component 𝑢3 with the 

displacement x 
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Fig. 3 variation of temperature 𝑇 with the displacement x 
Fig. 4 variation of normal stress 𝜎33  with the 

displacement x 
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Fig. 5 variation of tangential stress 𝜎31 with the displacement x 
Fig. 6 variation of couple stress  𝑚32  with the 

displacement x 
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refinements of the extended trapezoidal rule followed by 

extrapolation of the results to the limit when the step size 

tends to zero. 

 
 
6. Numerical results and discussions: 

 

For numerical computations, we take the copper 

material which is transversely isotropic 

𝑐11 = 18.78 × 10
10 𝐾𝑔𝑚−1𝑠−2,   

 

𝑐12 = 8.76 × 10
10 𝐾𝑔𝑚−1𝑠−2 ,  

 𝑐13 = 8.0 × 10
10 𝐾𝑔𝑚−1𝑠−2𝑐33 = 17.2 ×

1010 𝐾𝑔𝑚−1𝑠−2,  

𝑐44 = 5.06 × 10
10 𝐾𝑔𝑚−1𝑠−2     𝐶𝐸 = 0.6331 ×

103𝐽𝐾𝑔−1𝐾−1𝛼1 = 2.98 × 10
−5𝐾−1,  

  𝛼3 = 2.4 × 10
−5𝐾−1, 𝜌 = 8.954 × 103𝐾𝑔𝑚−3,            

𝐾1 = 0.433 × 10
3𝑊𝑚−1𝐾−1,  

𝐾3 = 0.450 × 10
3𝑊𝑚−1𝐾−1,     

𝑇0 = 293𝐾,𝐺1 = 0.1 ,   

𝐺2 = 0.2 ,  𝐺3 = 0.3,  𝐿 = 1, 𝑡0 = .02𝑠 

 

Components of displacement, stress, temperature change 

and couple stress are computed numerically. Software 

Grapher 3 has been used to determine and compare the 

values of normal stress, tangential stress, couple stress, 

temperature change and components of displacement for 

transversely isotropic thermoelastic solid with distance 𝑥  
for two different values of length scale parameters 

graphically. In Figs. 1-6, dotted line with centre symbol 

(− − ◊ −−)  corresponds to 𝑙1 = 𝑙2 = 𝑙3 = .843  and 

dotted line with centre symbol (− −  𝑜 − −) corresponds 

to𝑙1 = 𝑙2 = 𝑙3 = .002. 

NM-CST for  𝑙1 = 𝑙2 = 𝑙3 = .843   and 𝑙1 = 𝑙2 =
𝑙3 = .002 

Figs 1-6 shows the variation of displacement 

component 𝑢1 , displacement component 𝑢3 , temperature 

change T, normal stress𝜎33 , tangential stress𝜎31 , couple 

stress 𝑚32with the displacement 𝑥 resp. for both the cases 

( 𝑙1 = 𝑙2 = 𝑙3 = .843 and 𝑙1 = 𝑙2 = 𝑙3 = .002 ). 

Displacement has oscillatory effect on all the physical 

components mentioned above. However not much change 

in the behaviors of curves has been noticed when compared 

for both the cases except at the amplitude of the curves. 

In fig. 1 value of displacement 𝑢1sharply decreases for 

0 ≤ 𝑥 ≤ 1.5   ,then sharply increases for1.5 ≤ 𝑥 ≤ 3.5 , 

decreases for 3.5 ≤ 𝑥 ≤ 5 , then increases for 5 ≤ 𝑥 ≤
7  ,again decreases for 7 ≤ 𝑥 ≤ 8.5  and increases for 

8.5 ≤ 𝑥 ≤ 10 for both cases  and value of 𝑢1 lies in the 

range (-6,6). Maximum amplitude is in the range    2.5 ≤
𝑥 ≤ 4.5. 

In fig. 2 value of displacement 𝑢3increases for 0 ≤
𝑥 ≤ 2  , then  decreases for  2 ≤ 𝑥 ≤ 3.5, increases for 

3.5 ≤ 𝑥 ≤ 5 , then decreases for 5 ≤ 𝑥 ≤ 7  ,again 

increases for 7 ≤ 𝑥 ≤ 8.5 and decreases for 8.5 ≤ 𝑥 ≤ 10   

and value of 𝑢3 lies in the range (-15,10). The amplitude is 

maximum near the origin and goes on decreasing as 𝑥 

increases for 0 ≤ 𝑥 ≤ 10. Also, the difference between the 

amplitudes of the curves reduces as we move along the 

displacement axes away from the origin. 

In fig. 3 value of temperature change  𝑇  decreases 

for  0 ≤ 𝑥 ≤ 1.5 , 3.5 ≤ 𝑥 ≤ 5.5 , 7 ≤ 𝑥 ≤ 8.5  and  

increases rapidly for1.5 ≤ 𝑥 ≤ 3.5,5.5 ≤ 𝑥 ≤ 7 and8.5 ≤
𝑥 ≤ 9.5 and value of 𝑇 lies in the range (-2, 2). Maximum 

and sharp peak amplitude is seen in the range2.5 ≤ 𝑥 ≤ 4.5. 

In fig. 4 value of normal stress 𝜎33 decreases for 0 ≤
𝑥 ≤ 1.5  , then increases for 1.5 ≤ 𝑥 ≤ 3.5, decreases for 

3.5 ≤ 𝑥 ≤ 5. , then increases for 5 ≤ 𝑥 ≤ 6.5  ,again 

decreases for 6.5 ≤ 𝑥 ≤ 8 and increases for 8 ≤ 𝑥 ≤ 9.5 

and value of 𝜎33 lies in the range (-4,6).Amplitudes of the 

curves are maximum at the origin, decreases gradually and 

slowly as 𝑥 increases from 0 to 10. 

In fig.5 value of normal stress  𝜎31 increases for 0 ≤
𝑥 ≤ 2,3.5 ≤ 𝑥 ≤ 5, 7 ≤ 𝑥 ≤ 8.5and decreases for 2 ≤ 𝑥 ≤
3.5, decreases for 5 ≤ 𝑥 ≤ 7 ,8.5 ≤ 𝑥 ≤ 10 and value of 

𝜎31 lies in the range (-400,400).Amplitude are maximum in 

the range 0 ≤ 𝑥 ≤ 3   and decrease afterwards. A sharp 

peak of amplitude can be seen in the range2.5 ≤ 𝑥 ≤ 4.5. 

In fig. 6 value of normal stress  𝑚32 increases for 0 ≤
𝑥 ≤ 1.5 , 3 ≤ 𝑥 ≤ 5.2 , 6.7 ≤ 𝑥 ≤ 8.5 and decreases for 

1.5 ≤ 𝑥 ≤ 3,5.2 ≤ 𝑥 ≤ 6.7 ,8.5 ≤ 𝑥 ≤ 10  and value of 

𝑚32  lies in the range (-.004,.004).But a noticeable 

difference between the amplitudes of both the curves drawn 

for both the cases for NM-CST is observed. Amplitude of 

the curve for 𝑙1 = 𝑙2 = 𝑙3 = .843 is greater as compared to 

curve for  𝑙1 = 𝑙2 = 𝑙3 = .241 . Peaks of amplitudes are 

sharper for upper cycles than the amplitude of down cycles. 

Amplitudes of oscillations are maximum in the range 4 ≤
𝑥 ≤ 6 . 

It is clear to see from the figs. that amplitudes of the 

curves sketched for displacement component 𝑢1 , stress 

components and couple stress magnifies reduces as the 

parameters 𝑙1 = 𝑙2 = 𝑙3 decreases and amplitude of curves 

drawn for variation of displacement component𝑢3 , and 

temperature change 𝑇 with the displacement reduces as the 

material parameters 𝑙1 = 𝑙2 = 𝑙3 decreases. But, variation 

of couple stress 𝑚32  with displacement x depicts clear 

difference among the amplitudes of the curves. Amplitude 

of the curve decreases sharply as length scale parameters 

decreases. 

 
 
7. Conclusions 
 

New modified couple stress theory for transverse 

isotropic thermoelastic solid is presented in this paper. Size 

effects are considered using length scale parameters. 

Analysis of stresses, temperature change and displacement 

components due to thermal and mechanical change in 

transversely isotropic material is a significant problem in 

solid mechanics. The interactions of a transversely isotropic 

thermoelastic material in the new modified couple stress 

theory have been investigated using Laplace transform and 
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Fourier transform technique. A numerical inversion 

technique has been used to recover the solutions in the 

physical domain. The expressions for components of stress, 

components of displacement, temperature change and 

couple stress have been derived successfully and shown 

graphically in the presence of material length parameter. 

The resulting quantities depicted graphically are observed 

to be very sensitive towards length scale parameters. All the 

analysis has been done by taking 𝑙1 = 𝑙2 = 𝑙3 =
𝑙(𝑠𝑎𝑦).Figures show that the length scale parameters have 

appreciable effects on the numerical values of the physical 

quantities obtained after computational process. As length 

scale parameters are varied, amplitude of the curve as 

sketched above also changes. Amplitudes of the curves 

sketched for displacement component𝑢1, stress components 

and couple stress magnifies reduces as the parameters 𝑙 are 

decreased and amplitude of curves drawn for variation of 

displacement component𝑢3, and temperature change 𝑇 with 

the displacement reduces as the material parameters 𝑙  are 

increased.The results obtained in the study should be 

beneficial for people working in medical science, 

thermomechanical, engineering, accelerometers, sensors, 

resonators and also in future work. 
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