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1. Introduction 
 

Piezoelectric material that has coupling between 

mechanical and electrical properties, is known as smart 

material. This material is used broadly in many nano-

applications, such as in nanogenerators (Wang and Song 

2006), nanoresonators (Tanner et al. 2007) biosensors 

(Murmu and Adhikari 2012), micro/nanoelectromechanical 

systems (MEMS/NEMS) (Lazarus et al. 2012). These 

devices help the novel technological developments in many 

fields and cause industrial revolution. The exceedingly 

small sizes nanostructures (i.e. beams, sheets and plates) 

those are used as components in NEMS devices, present a 

significant challenge to researchers of nanomechanics, 

Eltaher et al. (2019a).  

The dimensions of nanostructures are very close to their 

interatomic distances. Thus, the size-effects are recognized 

to become more significant as the dimensions of structures 

reach to the nanoscale. The scale-independent concept of 

the classical continuum models causes some deficiencies 

and inaccurate results if they applied on those small-scale 

nanostructures. Micro-continuum field theories such as 

nonlocal theory, strain gradient theory, couple stress theory, 

Micromorphic theory, and surface energy are the extensions  
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of the classical field theories including micro/nanoscopic 

space and time scales, Chen and Liew (2004). Nonlocal 

continuum theory has obtained much popularity among the 

researchers, because of its efficiency as well as simplicity to 

analyze the behavior of various nanostructures. This work is 

concerned with models developed according to the widely 

used nonlocal elasticity theory of Eringen and Edelen 

(1972), Eringen (1983), Eringen (1984). Otherwise, 

perforation is a very common process in (MEMS/NEMS) 

fabrication. Perforations can affect on the mechanical 

properties of sensors by both increasing the surface exposed 

and decreasing their volume (Rottenberg et al. 2013). Zand 

and Ahmadian (2009) investigated the vibrational behavior 

of electrostatically actuated microstructures subjected to 

nonlinear squeeze film damping and in-plane forces. 

Juntarasaid et al. (2012) developed the nonlocal elasticity to 

study bending and buckling of nanowires including the 

effects of surface stress by using the analytical and 

numerical solutions. Eltaher et al. (2014) presented 

modified nonlocal functionally graded (FG) Timoshenko 

beam model to study static and buckling behaviors of 

nanobeams. Eltaher et al. (2016) illustrated effects of 

thermal load and shear force on critical buckling and post-

buckling loads of higher-order shear deformation nonlocal 

nanobeam. 

 Malikan (2018) investigated the buckling of a thick 

sandwich plate under the biaxial non-uniform compression 

using the modified couple stress theory. Zarei et al. (2018) 
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studied buckling and free vibration analysis of a circular 

tapered nanoplate subjected to in-plane forces. Eltaher et al. 

(2018a&b) simulated the mechanical behaviors of the 

perforated nonlocal nanobeams. The formulation was based 

on the Euler– Bernoulli beam and Timoshenko beam with a 

nonlocal differential form of Eringen model. The effects of 

perforation size, number of cutouts and nonlocal parameter 

on the bending, buckling and vibration behaviors of 

perforated nanobeams were investigated. Eltaher et al. 

(2018c) presented a modified continuum model to 

investigate the vibration behavior of CNTs by using both 

couple stress and enrgy equivalent models. Eltaher et al. 

(2018d) analyzed crack of FG pipe under unsteady pressure 

and temperature in a natural gas facility by using finite 

element model. Faraji-Oskouie et al. (2019) derived the 

numerical solutions of original integral and differential 

formulations of Eringen’s nonlocal model for static bending 

of Timoshenko beams. Hamed et al. (2019) presented 

effects of porosity models on static behavior of size 

dependent functionally graded beam. Eltaher et al. (2019a) 

presented the influence of periodic (sine and cosine) and 

nonperiodic imperfections modes on buckling, postbuckling 

and dynamics of beam rested on nonlinear elastic 

foundations. Abdalrahmaan et al. (2019) and Almitani et al. 

(2019) presented a unified analytical model to investigate 

free and forced vibration responses of perforated thin and 

thick beams. Eltaher et al. (2019b) exploited an energy 

equivalent model and finite element method to evaluate the 

equivalent Young’s modulus of SWCNTs at any orientation 

angle by using tensile test. Mohamed et al. (2020) studied 

buckling and post-buckling behaviors of higher order 

carbon nanotubes using energy equivalent model. Eltaher 

and Mohamed (2020) exploited doublet mechanics theory 

to investigate analytically nonlinear stability and vibration 

of imperfect CNTs. 

Recently, the application of piezoelectric materials has 

been broadly spread in nano-structures including nonlocal 

elasticity and surface energy effects. Yan and Jiang (2011) 

used the Euler–Bernoulli beam theory to study the influence 

of surface effects, and surface piezoelectricity on the 

vibrational and buckling behaviors of piezoelectric 

nanobeams. Mahmoud et al. (2012) investigated static 

bending behavior of nanobeams including surface effects by 

nonlocal finite element. Sedighi (2014a) studied the 

influence of small scale on the pull-in behavior of nonlocal 

nanobridges considering surface effect, Casimir and Van der 

Waals attractions. Sedighi (2014b) presented the impact of 

vibrational amplitude on the dynamic pull-in instability and 

fundamental frequency of actuated microbeams Jandaghian 

(2016) analyzed analytically the problems of free vibration 

behavior of piezoelectric nanobeams with Eringen’s 

nonlocal theory. Kheibari and Beni (2017) studied the free 

vibration of piezoelectric nanotubes by using Love’s 

cylindrical thin-shell model. Effect of size, 

electromechanical, and geometric were investigated for the 

natural frequency of piezoelectric nanotubes including the 

Euler–Bernoulli and consistent couple stress theories.  
Shishesaz et al. (2018) presented an analytical magneto-

electro-mechanical model of a novel magneto-electro-
elastic vibration-based energy harvesting system. 
Mahinzare et al. (2018) developed a formulation for the free 

vibration analysis of functionally graded circular nanoplate 
in two directions. It had shown that the angular velocity, 
external electric voltage, size dependency and power-law 
index had significant effects on the natural frequency. 
Moory-Shirbani et al. (2018) analyzed experimentally and 
numerically a piezoelectrically actuated multilayered 
imperfect microbeam subjected to applied electric potential. 
Kerid et al. (2019) investigated the magnetic field, thermal 
loads and small-scale effects on the vibration of a 
perforated nanobeam structure based on Euler–Bernoulli 
beam model. Candelas et al. (2019) illustrated the Talbot 
effect using ultrasonic waves transmitted through a periodic 
perforated plate. Eltaher et al. (2019c) demonstrated the 
coupling effects of nonlocal elasticity and surface properties 
on static and vibration characteristics of piezoelectric 
nanobeams with Eular-Bernolli beam theory. Ansari et al. 
(2019) presented vibration analysis of functionally graded 
carbon nanotube-reinforced composite plates with cutout by 
using variational differential quadrature finite element 
method. Mohamed et al. (2019) studied mechanical 
behaviors of SWCNTs beam by using energy equivalent 
model. Ouakad and Sedighi (2019) studied static response 
and free vibration of MEMS arches assuming out-of-plane 
actuation pattern. Eltaher and Mohamed (2020) derived the 
frequency equation of free vibration of nonlocal perforated 
nanobeams under general boundary conditions by using 
analytical method. Eltaher et al. (2020) illustrated the effect 
of nonlocal elasticity on bending and vibration of 
nanobeams with geometrical cutouts. Bourouina et al. 
(2020) exploited non-local elasticity theory to present the 
influence of hole networks on the adsorption-induced 
frequency shift of a perforated nanobeam. Almitani et al. 
(2020) studied analytically the buckling behavior of 
perforated nanobeams incorporating surface energy effects.  

 The objective of the current work is to present a 
modified model capable of predicting the static bending and 
vibration behavior of perforated piezoelectric nanobeams 
including surface energy, which not be studied elsewhere. 
Analytical formulas for the equivalent geometrical 
characteristics of regularly squared perforated shape are 
developed. Kinematic assumption of thin Euler–Bernoulli 
thin beam theory is proposed. The size effect of 
nanostructure beam is considered by nonlocal Eringen 
elasticity and Gurtin–Murdoch surface theories. The 
manuscript is organized as follows: Section 2 presented 
geometrical adaptation for perforation, nonlocal and surface 
energy constitutive equations, and proposed mathematical 
detail. Section 3 contains numerical solution techniques by 
using finite element procedure. Section 4 presents 
numerical results and discusses influences of length-scale 
effect, surface parameters, perforation parameters, and 
electrical force on static and dynamic vibrations of 
piezoelectric nanobeam with cutouts. Finally, the main 
conclusions are summarized and listed in Section 5. 
 
 

2. Mathematical formulation 
 

2.1 Geometrical parameters 
 

A piezoelectric nanobeam with regular square holes is 

illustrated in Fig.1. As shown, the beam has length L, width 

b, and thickness h, with a pattern of regular square holes. 
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The spatial period between holes is 𝑙𝑠 and with hole side 

 𝑙𝑠 − 𝑡𝑠 . The number of holes along the section is defined 

by N. So, the filling ratio of the beam can be depicted by 

(Abdelrahmaan et al. 2019 and Almitani et al. 2019) 

𝛼 =
𝑡𝑠

𝑙𝑠

          0 ≤ 𝛼 ≤ 1 (1) 

As governing from previous equation, the beam is filled 

at filling ratio α = 1 and completely perforated at a filling 

ratio 𝛼 = 0. The normal stress will be abridged in the parts 

between holes, which will be under stressed with respect to 

the full beam case and will be over-stressed in the 

remaining parts. By assuming that the total stress along the 

cross section is the same for both complete beam and 

perforated one and assuming a linear continuous stress 

distribution in the filled segments, the equivalent bending 

stiffness can be defined (Luschi and Pieri 2014, Almitani et 

al. 2019, and Eltaher and Mohamed 2020) 

 (𝐸𝐼)𝑒𝑞 = 𝐸𝐼 

∗
𝛼(𝑁 + 1)(𝑁2 + 2𝑁 + 𝛼2)

(1 − 𝛼2 + 𝛼3)𝑁3 + 3𝛼𝑁2 + (3 + 2𝛼 − 3𝛼2 + 𝛼3)𝛼2𝑁 + 𝛼3
 

(2) 

By integrating over the beam segment, the average mass 

of the perforated beam per unit length can be written as 

(Eltaher and Mohamed 2020, Bourouina et al. 2020) 

 (𝜌𝐴)𝑒𝑞 =  𝜌𝐴 ∗
[1 − 𝑁(𝛼 − 2)]𝛼

𝑁 + 𝛼
 (3) 

 

2.2 Nonlocal perforated piezoelectric nanobeam 
including a surface effect 

 

Based on the Euler–Bernoulli beam theory (EBT), the 

displacement filed of any point of the beam is given by 

Alshorbagy et al. (2011) 

𝑢(𝑥, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) − 𝑧
𝜕𝑤0(𝑥, 𝑡)

𝜕𝑥
 (4) 

 𝑤(𝑥, 𝑧, 𝑡) =  𝑤0(𝑥, 𝑡) (5) 

where 𝑡  is the time and 𝑢0(𝑥, 𝑡)  and  𝑤0(𝑥, 𝑡)  are 

displacement components in the mid-plane along the x and 

z. The nonzero strain 𝜀𝑥𝑥  of the Euler-Bernoulli beam 

theory is 

 𝜀𝑥𝑥 =
𝜕𝑢0

𝜕𝑥
− 𝑧

𝜕2𝑤0(𝑥, 𝑡)

𝜕𝑥2
= 𝜀𝑥𝑥

0 − 𝑧𝑘0 (6) 

Like the displacement field, the distribution of electric 

potential for the piezoelectric nanobeam model is assumed 

to vary as a combination of a cosine and linear variation, 

which satisfies the Maxwell’s equation as (Jandaghian and 

Rahmani 2016),  

∅(𝑥,𝑧,𝑡) = − 𝑐𝑜𝑠(𝛽𝑧)𝜑(𝑥, 𝑡) + 
2𝑉

ℎ
𝑧 (7) 

The non-zero components of electric field  Ex , Ez can 

be obtained as: 

Ex = −
∂φ

∂X
= cos(βz)

∂φ

∂X
 (8) 

 
 

 
Fig. 1 Geometry of a perforated piezoelectric nanobeam 

with coordinate system (Luschi and Pieri 2016) 
 

 

Ez = −
∂φ

∂Z
=  − sin(βz)φ −

2V

h
 (9) 

in which β = π/h, φ(x, t) is the electric potential function 

in the x−direction that must satisfy the electric boundary 

conditions, z is measured from the mid-plane of the 

nanobeam in the transverse direction, h is the thickness of 

the piezoelectric nanobeam,  𝑉 is the external electric 

voltage. The constitutive relation of the one-dimensional 

piezoelectric beam can be written as  

σx = C11εx − e31Ez (10) 

 Dz = e33 εx + K33 Ez (11) 

where  σx is axial stress, Dz is electric displacement, 

and  C11 , e31  and K33  are elastic, piezoelectric and 

dielectric constants for the bulk medium.   

In relation to the atomic features of nanostructures, there 

are always interactions between the elastic surface and the 

bulk material. To take the surface stress effects into account, 

Gurtin and Murdoch model is proposed, Ansari et al. 

(2015). As nanostructures submit in-plane loads in various 

directions, the stresses are created on the surfaces of the 

bulk of nanobeams. The constitutive relations of the surface 

layer can be expressed as 

σαβ
s = τsδαβ + (τs + λs)εγγδαβ + 2(μs − τs)εαβ

+ τsuα,β
s   ,       (α, β = x, y)   & 

σαz
s = τsuz,α

s  

(12) 

Therefore, the surface stress components can be derived 

with respect to the displacement constituents and can be 

written as   
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   σxx
s = τs + (λs + 2μs)

∂u

∂x
  ,       σxz

s =  τs

∂w

∂x
 (13) 

where λs and  μs  as Lame’s surface constants and the 

surface residual tension τs . According to the surface 

elasticity model, the constitutive equations for the surface 

layer of the piezoelectric nanobeam (PNB) can be obtained 

as, Huang and Yu (2006): 

 σx
s = σx

0 + C11
s εx − e31

s EZ (14) 

Dx
s = Dx

0 (15) 

where σx
s  and DX

S  are axial surface stress and surface 

electric displacement; σx
0  and DX

0   are residual surface 

stress and residual surface electric displacement without 

applied strain and electric field; and C11
s  and e31

s  are 

surface elastic and surface piezoelectric constants. In the 

absence of free electric charges using Gauss’s law:  

𝜕𝐷𝑧

   𝜕𝑋
= 0 (16) 

Substituting Eq. (11) into Eq. (16) and using Eq. (6) and 

(9), and considering φ(−h/2) = 0 and  φ (h/2) = V as the 

electrical boundary conditions, the electric potential is 

expressed as, Eltaher et al. (2019c): 

                  𝜑(𝑥,𝑧) = −
𝑒31

 2𝑘33

  
 𝜕2 𝑤(𝑥, 𝑡)

𝜕𝑋2
 (𝑍2 −

ℎ2

4
)

+ 𝑉 (
𝑍

ℎ
+

1

2
) 

(17) 

The axial stresses for the bulk and the surface in Eq. 

(10) and (11) can be written as  

  𝜎𝑥 = 𝑐 11𝜀0 − 𝑧 (𝑐11 +
𝑒31

2

𝑘33

)
 𝜕2 𝑤(𝑥, 𝑡)

𝜕𝑋2
+ 𝑒31

𝑉

ℎ
 (18) 

𝜎𝑥
𝑠 = 𝜎𝑥

0 + 𝑐11
𝑠  𝜀0 − 𝑧 (𝑐11

𝑠 +
𝑒31

𝑠  𝑒31

𝑘33

)
 𝜕2 𝑤(𝑥, 𝑡)

𝜕𝑋2

+  𝑒31
𝑠  

𝑉

ℎ
 

(19) 

To impose the size effect of nanostructure, nonlocal 

piezoelectricity theory is proposed. This theory assumed 

that the stress tensor and the electric displacement at a 

reference point depend not only on the strain components 

and electric-field components at same position but also on 

all other points of the body Eltaher et al. (2019c), the 

nonlocal constitutive relation can be written as 

 𝜎𝑖𝑗 − (𝑒0𝑎)2𝛻2𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 − 𝑒𝑘𝑖𝑗𝐸𝐾  (20) 

𝐷𝑖 − (𝑒0𝑎)2𝛻2𝐷𝑖 = 𝑒𝑖𝑗𝑘𝑙𝜀𝑘𝑙 + 𝜖𝑖𝑗𝐸𝐾  (21) 

where σij ,  εij ,  Di  and Ei are the stress, strain, electric 

displacement and electric field, respectively; Cijkl, ekij, ϵij 

are the fourth-order elasticity tensor, piezoelectric 

constants, dielectric constants.  

The governing equation for the piezoelectric beam 

considering surface effects can be written as, Liu & 

Rajapakse (2009) : 

   −
𝜕𝑄

𝜕𝑥
+ ∫ 𝑇𝑧𝑆

 𝑑𝑠 −  𝑚𝑜
𝜕2𝑤

𝜕𝑡2  = 0                               

          (22) 

   −
𝜕𝑀

𝜕𝑥
+ 𝑄 + ∫ 𝑇𝑥 𝑧 𝑑𝑠

𝑆
+ 𝑁

𝜕𝑤

𝜕𝑥
= 0 

(22) 

 

(23) 

where Q is the shear force and S is the perimeter of the 

cross section, respectively. By differentiating Eq. (22) and 

substituting it into Eq. (23), we obtain the following Euler-

Lagrange equation: 

𝜕2𝑀

𝜕𝑥2
−

𝜕

𝜕𝑥
(𝑁

𝜕𝑤

𝜕𝑥
) +  𝑚𝑜

𝜕2𝑤

𝜕𝑡2
−

𝜕

𝜕𝑥
∫𝑇𝑥  𝑧 𝑑𝑠

𝑆

− ∫𝑇𝑧
𝑆

 𝑑𝑠 = 0 
(24) 

in which, M is the bending moment and N is the axial 

normal force including the induced forces by the applied 

axial strain 𝜀0  and the applied electrical load,   𝑁 =

∫ 𝜎𝑥𝑑𝐴 
.

𝐴
, 𝑀 = − ∫ 𝜎𝑥𝑍𝑑𝐴 

.

𝐴
, the translated mass inertia of 

perforated beam is  𝑚0 = ∫ 𝜌 𝑑𝐴 = (𝜌𝐴)𝑒𝑞 .
.

𝐴
 

The constitutive equation based on the nonlocal Euler-

Bernoulli theory reads  

 𝑀(𝑥,𝑡) − 𝜇
𝜕2𝑀(𝑥,𝑡)

𝜕𝑥2
= −(𝐸𝐼)𝑒𝑓𝑓

𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2
 (25) 

Direct substitution of Eq. (24) into Eq. (25), leads to the 

final expression for the non-local bending moment: 

 𝑀(𝑥,𝑡) = −(𝐸𝐼)𝑒𝑓𝑓

𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2

+ 𝜇 [(𝜌𝐴)𝑒𝑞

𝜕2𝑤

𝜕𝑡2

−
𝑑

𝑑𝑥
((N)𝑒𝑓𝑓

 𝜕𝑤(𝑥,𝑡) 

𝜕𝑥
)] 

(26) 

using Eq. (26) and Eq. (24), leads to the nonlocal equation 

of motion for perforated piezoelectric nanobeams with 

surface effect: 

        (𝐸𝐼)𝑒𝑓𝑓

𝜕4𝑤(𝑥,𝑡)

𝜕𝑥4

+ [1 − 𝜇
𝜕2

𝜕𝑥2
] [(𝜌𝐴)𝑒𝑞  

𝜕2𝑤(𝑥,𝑡)

𝜕𝑡2

−
𝑑

𝑑𝑥
((𝑁)𝑒𝑓𝑓 

 𝜕𝑤(𝑥,𝑡) 

𝜕𝑥
)] = 0 

(27) 

where (𝐸𝐼)𝑒𝑓𝑓  and (𝑁)𝑒𝑓𝑓  are the effective bending 

rigidity and the effective axial load of the perforated 

piezoelectric nanobeam. 𝐴𝑡 , A𝑡
𝑠  are the area of the bulk 

and surface of the cross section. 𝐼𝑡𝑜𝑡 , 𝐼𝑡𝑜𝑡
𝑠  are the moment 

of inertia expressed as  

(𝐸𝐼) 𝑒𝑓𝑓

= {[ 𝐼𝑡𝑜𝑡 (𝐶11 +
𝑒31 

2

 𝑘33
) + (

𝑒31
𝑠 𝑒31

𝑘33
+ 𝐶11

𝑠 ) 𝐼𝑡𝑜𝑡
𝑠 ]

∗
𝛼(𝑁 + 1)(𝑁2 + 2𝑁 + 𝛼2)

(1 − 𝛼2 + 𝛼3)𝑁3 + 3𝛼𝑁2 + (3 + 2𝛼 − 3𝛼2 + 𝛼3)𝛼2𝑁 + 𝛼3
} 

(28) 
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  (𝑁)𝑒𝑓𝑓 = 𝐴𝑡  𝜀0 𝑐11 + (A𝑡
𝑠/2) 𝑉 𝑒31 + A𝑡

𝑠(𝜎𝑥
0 + 𝐶11

𝑠 𝜀0

+ 𝑒31
𝑠

𝑉

ℎ
) 

(29) 

  𝐴𝑡 = (𝑊. ℎ) − 𝑁(ℎ𝑠. ℎ)      ,   𝐴𝑡
𝑠 = 2𝑊 − 𝑁(2ℎ) (30) 

𝐼𝑡𝑜𝑡 =
W. ℎ3

12
− 𝑁 (

ℎ𝑠. ℎ3

12
)     ,     𝐼𝑡𝑜𝑡

𝑠

= ( 
W. ℎ2

2
+

ℎ3

6
 )

− 𝑁 ( 
 ℎ𝑠. ℎ2

2
+

 ℎ3

6
) 

(31) 

 
 

3. Numerical Formulation 
 

Numerical solution procedure by using finite element 

method, is developed through this section to solve the 

mathematical model of perforated nonlocal nanobeam 

including a surface effect. The conventional Galerkin 

technique is employed to derive the weighted residual 

variation functional of the equilibrium. Denoting Galerkin’s 

weight function by X, the variational formulation can be 

deduced by Eltaher et al. (2013) as  

∫ ∑ (∫(𝐸𝐼)𝑒𝑓𝑓 

𝜕2𝑤0

𝜕𝑥2

𝜕2𝑋

𝜕𝑥2

𝐿

0

𝑛𝑒

𝑒=1

𝑇

0

+ [(𝜌𝐴)𝑒𝑞

𝜕𝑤0

𝜕𝑡

𝜕𝑋

𝜕𝑡
  

− ( (𝑁)𝑒𝑓𝑓 

𝜕𝑤0

𝜕𝑥

𝜕𝑋

𝜕𝑥
)]

− 𝜇(𝜌𝐴)𝑒𝑞

𝜕2𝑤0

 𝜕𝑥𝜕𝑡

𝜕2𝑋

 𝜕𝑥𝜕𝑡

+ 𝜇 (𝑁)𝑒𝑓𝑓 

𝜕2𝑤0

𝜕𝑥2

𝜕2𝑋

𝜕𝑥2
) 𝑑𝑥𝑑𝑡

+ ∫ [𝑁𝛿𝑢0 + �̅�𝛿𝑤0 + �̅�
𝜕𝛿𝑤0

𝜕𝑥
]

0

𝐿

𝑑𝑡

𝑡

0

= 0. 

(32) 

The displacement field along the beam element in a 

local coordinate system, is described in terms of the 

Hermite interpolation functions as 

�̅�(�̅�) = ∑ 𝑁𝑖𝑈𝑖

4

𝑖=1

 (33) 

where 𝑈𝑖  denotes the nodal degrees of freedom, 

representing the deflection and rotation at each terminal 

node of the element; and Ni, i = 1, 2, 3, 4, are the Hermite 

interpolation functions. By substituting Eq. (33) into the  

Table 1 Material properties of PZT-5H 

Bulk Properties Surface Properties 

𝑐11 ρ 𝑒31 𝜅33 𝑐𝑠11 𝑒𝑠31 

𝐺𝑃𝑎 𝑘𝑔  𝑚 −3 C m−2 C 𝑉−1 𝑚−1 𝑁 𝑚−1 𝐶 𝑚−1 

126 7.5 × 103 −6.5 1.3 × 10 −8 7.56 −3 × 10−8 

 

Table 2 Maximum non-dimensional deflection of S-S 

beams 

L/h µ 
Analytical Numerical 

Reddy (2007) Present results 

20 

0 1.313 1.3020 

1 1.4487 1.4270 

2 1.5844 1.5520 

3 1.7201 1.6770 

4 1.8558 1.8020 

5 1.9914 1.9270 

 
 

modified weak form, Eq. (32), and performing the 

integration, we get the following equilibrium equation: 

[[𝑀𝑙] + [𝑀𝑛𝑙]]{�̈̅�} + [[𝐾𝑙] + [𝐾𝑏]]{�̅�} = 0 (34) 

where  𝑀  and 𝐾 are the element mass and stiffness 

matrices, respectively. The subscripts 𝑙,𝑛𝑙, and 𝑏 donate 

the local, nonlocal, and buckling. 
 
 

4. Numerical results 
 

The static bending and free vibration of perforated 

piezoelectric nanobeams including a surface effect will be 

presented and discussed through this section. Influences of 

number of rows of holes, filling ratio, surface properties, 

nonlocal parameter, and external electric voltage on both 

static bending and natural frequency are presented and 

discussed. Assuming that the nanobeam is made of one kind 

of lead zirconate titanate material, PZT-5H with the bulk 

and surface material properties listed in Table.1, Yan and 

Jiang (2011). The length to thickness ratio of the nanobeam 

is fixed at L/h = 20, no initial axial strain exists (i. e, 𝜀0 = 

0), the beam thickness h=25 nm and the beam width b=h. 

The following parameters are used in computing the 

numerical values: 

 

4.1 Static Analysis  
 
To validate the proposed model, the deflection of simply 

supported (S-S) nonlocal nanobeam without any holes 

under uniform load and nonlocal parameter effect is 

compared with previously published results of Reddy 

(2007), as presented in Table 2. The nondimensional 

deflection is evaluated by �̅�𝑚𝑎𝑥 = 100 ∗ 𝛿𝑚𝑎𝑥 ∗
𝐸𝐼

𝑞0 𝐿
4. As 

shown, the obtained results for maximum deflection are 

very close with Reddy’s results.   

The surface effects on the static deflection of 

piezoelectric nanobeam irrespective of the nonlocality and 

the electrical loads, where the beam thicknesses (h=25 nm) 
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(a) N=1 

 
(b) N=4 

 
(c) N=8  

Fig. 2 Variation of normalized deflections against the 

filling ratio for perforated piezoelectric nanobeam at 

(μ = 3 ×10−14) under different electrical loads, V 

 

Fig. 3 Maximum central deflection against the beam 

thickness for different nonlocal parameter with applied 

voltage V = - 0.1 v 

 

 

Fig. 4 Variation of normalized deflection against the 

nonlocal parameter for various filling ratios at (V=-0.1, 

N=4) 

 

 

are investigated. Fig. 2 explains the variation of the 

normalized deflection with the filling ratios under different 

electrical loads (V) at the number of holes along cross 

sectional (N=1,4,8) and the nonlocal parameter is (μ 

=3×10−14). It’s noted that, the maximum deflection 

increases by increasing the applied voltage for the 

perforated piezoelectric nanobeam. Also, the normalized 

deflection drops down with the increase of the filling ratio. 

The effects of number of holes become significant in the 

region 0.2 ≤ 𝛼 ≤ 0.8. With the increase of the number of 

holes, the max deflection increases.  
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Fig. 5 Maximum central deflection against the filling 

ratios for different number of holes 

 

 

Figure 3 illustrates the effect of the nonlocal parameter 

and surface effect on the non-dimensional deflection of the 

perforated piezoelectric nanobeam versus the thickness h 

with V = - 0.1 v, filling ratio α=0.5 and number of holes 

N=4. It is observed that an increasing in the nonlocal 

parameter tends to increase the deflection, and by 

increasing the beam thickness h, the deflection will be 

reduced, due to increasing the rigidity of beam structure.  

Figure 4 shows variation of the beam deflection with the 

nonlocal parameter for different values of the filling ratio at 

fixed value of the hole rows number N=4. Because of the 

beam softening resulting from increasing the nonlocal 

parameter, the max deflection increases with increasing the 

nonlocal parameter. Also, the deflection increases with 

decreasing the filling ratio due to the decrease of the 

bending stiffness. 

The variation of the static bending with respect to the 

filling ratio for different number of hole rows at (v=-0.1, 

µ=3*10-14) is presented in Fig. 5. It is observed that, for 

filling ratio greater than 0.8 the number of hole rows almost 

has no effect on the bending response of the perforated 

nanobeam. Also, it is noted, as the number of holes 

increased the maximum deflection increased. So that, the 

deflection is dependent on the coupling between the filling 

ratio and number of holes. 

 

4.2 Dynamic Analysis 
 

Through this section, the model validation in dynamic 

analysis is presented and then followed by parametric 

studies to figure out effects of size-scale and perforation 

parameters on the fundamental frequencies of piezoelectric 

nanobeam with holes. The following equation should be 

solved to calculate fundamental frequencies: 

[K][U̅] = ω2[M][U̅] (35) 

In which ω2 represents the fundamental frequency of 

perforated nanobeam, which has the nondimensional form 

Table 3 Non-dimensional frequencies of the S-S beams for 

different nonlocal parameters. 

L/h µ 
Analytical Numerical 

Reddy (2007) Present results 

20 

0 9.8696 9.8797 

1 9.4159 9.4238 

2 9.0195 9.0257 

3 8.6693 8.6741 

4 8.3569 8.3606 

5 8.0761 8.0788 

 

 
Fig. 6 Normalized frequency of the perforated 

piezoelectric nanobeams with various thicknesses for (V = 

0, µ=1×10−14). 

 

 

λ = ω ∗ L2 ∗ √ρA/EI . The first flexural non-dimensional 

frequencies of the simply supported beam for different 

values of a nonlocal parameter are studied and compared 

with the results of Reddy (2007) as presented in Table 3. It 

is noted that the frequency of nanobeam is reduced by 

increasing the nonlocal parameter. This assures the 

significance of the nonlocal effect on the vibrational 

response of beams. According to Table 3, the present results 

are very close to Reddy’s results. The validation of the full 

nanobeam including surface effect is present in previous 

work, Eltaher et al. (2019c).  

Figure 6 illustrates the effect of the first nondimensional 

frequency for simply supported perforated piezoelectric 

nanobeam with different thicknesses at filling ratio α=0.5 

and number of holes along cross-sectional is N=4. As 

shown in Fig.6 the effect of nanobeam thickness on 

normalized frequency for classical beam, surface effect 

(S.E), nonlocal effect (N.L) and the coupling effects of 

nonlocal theory and surface energy (S.E +N.L) of 

nanobeam. The effect of surface stresses becomes more 

significant as the thickness decreases in the range of  
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Fig. 7 Variation of the normalized frequency with the 

filling ratio for perforated piezoelectric nanobeam under 

different applied voltages, V 

 

 

nanometers. In the nano regime, the nonlocality effect and 

the surface effects tend to decrease the fundamental 

frequency as the beam thickness increase. In both cases of 

surface and coupling effects, as the beam thickness 

increases from nanometer to micrometer and larger, the 

influence of the surface effects disappears, and the results 

converge to the classical natural frequencies model. 

Figure 7 shows the variation of the 1𝑠𝑡  natural 

frequency for simply supported piezoelectric nanobeam 

against the filling ratio under different electrical loads (V) 

for  (μ = 1 ∗ 10−14, N = 4) . It’s noted that, with the 

increase of the applied positive voltage, the normalized 

frequency decreases. In case of applied voltage (V=0.1, 

0.2), the natural frequencies increase, with the increase of 

the filling ratio. It is also observed, from this figure that the 

electromechanical coupling of piezoelectric materials can 

be explored for frequency tuning of nanobeams, as shown 

by the variation of the natural frequencies with the applied 

voltages.  

Figure 8 shows the dependence of fundamental 

frequency on the coupling between filling ratio and number 

of holes along cross sectional of perforated piezoelectric 

nanobeams at a specified value of nonlocal parameter. It is 

noted that, the normalized frequencies decrease nonlinearly 

by increasing the filling ratio or increasing the number of 

holes along the cross-sectional. In case of (µ=0.0), the 

normalized frequency increases with filling ratio at any the 

value of N expect 1.  Also, the normalized frequency is 

decreased with increasing a filling ratio from 0.2 to 1 at (µ 

≠ 0.0). In case of (µ=0.0), the normalized frequency 

increases with filling ratio at any the value of N expect 1. It 

is observed from Fig. 8 that, the effects of number of holes 

become insignificant in the region 0.8 ≤ 𝛼 ≤ 1.0. 

Figure 9 illustrates the effect of nonlocality on the 

fundamental frequency of perforated piezoelectric 

nanobeam at different boundary conditions BCs. The 

boundary conditions are (a) simply supported (S–S); (b) the  

 

 
Fig. 8 the non-dimensional frequencies for different 

number of holes and various filling ratios at a specified 

value of nonlocal parameter 

 
Fig. 9 The variation of the 1stfrequency with nonlocal 

parameter at applied voltage (V=0.0) 
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Fig. 10 The fundamental frequencies against the nonlocal 

parameter for various filling ratios 

 

 

clamped- clamped (C–C); and (c) the cantilever (C–F) 

nanobeams. The normalized frequency is calculated for the 

beam taking into accounts the surface effects but with a 

zero applied voltage, the number of holes along cross-

sectional N=2 and the filling ratio α=0.5. It can be 

concluded that, as the fundamental frequency decreases for 

all the cases of boundary conditions with the increase of 

nonlocal parameter. 

The following results are obtained at fixed values of the 

hole rows number N=2 and the electrical load V=0.1. Fig.10 

shows variation of the fundamental frequencies against the 

nonlocal parameter for different values of the filling ratio, 

respectively. It can be concluded that the natural 

frequencies decrease with increasing the nonlocal 

parameter. The normalized frequency increases with 

decreasing the filling ratio.  

 

 

5. Conclusions 
 

This work is exploited to present a novel modified 

continuum model to study mechanical behaviors (static and 

vibration) of perforated piezoelectric nanobeams. The 

proposed model is based on Euler-Bernoulli hypothesis 

with a nonlocal differential form of Eringen model. 

Numerical results illustrate the effects of perforation 

parameters (perforation size and a number of cutouts), 

nonlocal parameter, external electric voltage, and boundary 

conditions on the bending and dynamic characteristics of 

the perforated nanobeam. The main conclusions derived 

from the results are: 

From static Analysis: - 

•  The maximum deflection increases by increasing the 

applied voltage for the perforated piezoelectric nanobeam.  

•  The normalized deflection drops down with the 

increase of the filling ratio.  

•  The effects of number of holes become significant in 

the region 0.2 ≤ 𝛼 ≤ 0.8. For filling ratio greater than 0.8, 

the number of hole rows almost has no effect on the 

bending response of the perforated nanobeam.  

•  With the increasing of the number of holes, the max 

deflection will be increased. 

Form dynamic Analysis: - 

•  The effect of surface stresses becomes more 

significant as the thickness decreases in the range of 

nanometers.  

•  In the nano regime, the nonlocality effect and the 

surface effects tend to decrease the fundamental frequency 

as the beam thickness increase.  

•  In both cases of surface and coupling effects, as the 

beam thickness increases from nanometer to micrometer 

and larger, the influence of the surface effects disappears, 

and the results converge to the classical natural frequencies 

model.  

•  The normalized frequency increases with decreasing 

the filling ratio.  
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