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1. Introduction 
 

In piezoelectric materials, mechanical deformations may 

occur when electric loads are applied. Accordingly, electric 

fields can be produced under the action of mechanical 

forces. Owing to their unique mechanical and electric 

coupling characteristics, piezoelectric materials are 

extensively used in various modern technological fields, 

such as aerospace, high-speed automobile,  civil 

engineering, navigation, nuclear  and infrastructure 

industries. Usually utilized as the surface-bonded or 

embedded layers,  piezoelectric materials can be 

conveniently integrated into laminated plates to fulfill 

specific requirements, which are known as smart plate 

structures. In order to effectively and adequately take 

advantage of the laminated composite plate structures 

composed of piezoelectric materials in engineering 
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applications, an accurate description of the static bending 

responses and free vibration behaviors is necessary. 

Due to the characteristics of the interconversion between 

the mechanical and electric variables, laminated 

piezoelectric plates have attracted the attention of many 

engineers and researchers. Numerous models and theories 

to predict the static bending behaviors have been proposed. 

Detailed literature reviews and systematic presentation of 

laminated plates with piezoelectric laminae can be found in 

literatures (Saravanos and Heyliger 1999, Benjeddou 2000, 

Wang and Yang 2000, Mackerle 2003, Kapuria et al. 2010). 

Heyliger (1994) offered an accurate solution to a four 

layered hybrid composite plate composed of elastic and 

piezoelectric materials subjected to mechanical loads and 

surface electric potential. Heyliger (1997) presented closed-

form solutions of mechanical and electric fields along the 

thickness in the single layer, two and three layered 

piezoelectric plates. The analytical solutions of simply 

supported angle-ply multilayered plates with thermo-

piezoelectric materials in the cylindrical bending were 

provided by Dube et al. (1998). Cheung and Jiang (2001) 

took advantage of the semi-analytical finite layer and spline 

finite layer approach to explore the bending behaviors of 

composite plates containing piezoelectric materials. Cen et 
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Abstract.  This paper provides a semi-analytical approach to investigate the variations of 3D displacement components, electric 

potential, stresses, electric displacements and transverse vibration frequencies in laminated piezoelectric composite plates based on 

the scaled boundary finite element method (SBFEM) and the precise integration algorithm (PIA). The proposed approach can 

analyze the static and dynamic responses of multilayered piezoelectric plates with any number of laminae, various geometrical 

shapes, boundary conditions, thickness-to-length ratios and stacking sequences. Only a longitudinal surface of the plate is 

discretized into 2D elements, which helps to improve the computational efficiency. Comparing with plate theories and other 

numerical methods, only three displacement components and the electric potential are set as the basic unknown variables and can be 

represented analytically through the transverse direction. The whole derivation is built upon the three dimensional key equations of 

elasticity for the piezoelectric materials and no assumptions on the plate kinematics have been taken. By virtue of the equilibrium 

equations, the constitutive relations and the introduced set of scaled boundary coordinates, three-dimensional governing partial 

differential equations are converted into the second order ordinary differential matrix equation. Furthermore, aided by the introduced 

internal nodal force, a first order ordinary differential equation is obtained with its general solution in the form of a matrix exponent. 

To further improve the accuracy of the matrix exponent in the SBFEM, the PIA is employed to make sure any desired accuracy of 

the mechanical and electric variables. By virtue of the kinetic energy technique, the global mass matrix of the composite plates 

constituted by piezoelectric laminae is constructed for the first time based on the SBFEM. Finally, comparisons with the exact 

solutions and available results are made to confirm the accuracy and effectiveness of the developed methodology. What’s more, the 

effect of boundary conditions, thickness-to-length ratios and stacking sequences of laminae on the distributions of natural 

frequencies, mechanical and electric fields in laminated piezoelectric composite plates is evaluated. 
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al. (2002) put forward a four nodded quadrilateral element 

to investigate the deformation rules of composite plates 

with surface bonded or embedded piezoelectric layers. 

Garção et al. (2004) made a comparison between several 

layerwise plate theories to solve mechanical and electric 

solutions in multilayered plates including composite and 

piezoelectric laminae. Lage et al. (2004) established a 

layerwise mixed finite element model to predict the change 

regulations of mechanical and electric variables in three and 

five layered piezoelectric composite square plates. Kapuria 

(2004) utilized the third order theory and the layerwise 

linear zig-zag approximation to examine the static 

responses of a hybrid cross-ply plate containing 

piezoelectric layers. Based on the first order shear 

deformation plate theory, Wu et al. (2004) investigated the 

bending behaviors of the three-layered square piezoelectric 

composite plates under the simply supported boundary 

condition. Based on the mixed variational statement, 

Carrera and Nali (2009) proposed a new kind of plate 

element to evaluate the static behaviors of laminated plates 

with bonded piezoelectric sensor or actuator layers. With 

the help of the improved third order zig-zag plate theory, 

Kapuria and Kulkarni (2009) further extended the 

quadrilateral element proposed by Kapuria and Kulkarni 

(2008) to carry out the static analysis of hybrid composite 

plates containing piezoelectric laminae under the action of 

pressure and electric potential. By virtue of the Reissner 

mixed variational theorem, a new plate model was proposed 

by Carrera et al. (2010a) to analyze the cross-thickness 

distributions of mechanical and electric variables in 

piezoelectric composite plates. With the aid of the unified 

formulation, Carrera and Robaldo (2010b) exploited a 

hierarchical plate element to study the bending behaviors of 

three-layer piezoelectric plates. Torres and Mendonça 

(2010a) incorporated the third order shear deformation 

theory and the layerwise plate theory to estimate the static 

responses of composite plates with piezoelectric actuators 

or sensors. Aided by a higher order shear and normal 

deformation theory and layerwise plate theory to model 

mechanical quantities and electric potential, Shiyekar and 

Kant (2011) investigated the distributions of mechanical 

and electric fields in laminated piezoelectric composite 

plates. Torres et al. (2011) combined the third order shear 

deformation plate theory and the layerwise theory to 

simulate the static responses of multilayered plates coated 

or embedded piezoelectric sensors or actuators. Moleiro et 

al. (2012) utilized a new layerwise mixed least-squares 

model to study the flexural bending responses of laminated 

piezoelectric composite plates subjected to pressures and 

potential forces. Khandelwal et al. (2013) derived two-

dimensional finite element plate model to investigate the 

static behaviors of laminated composite plates covered by 

piezoelectric materials. Kulikov and Plotnikova (2013) 

applied the sampling surfaces method to conduct the static 

analysis of laminated piezoelectric orthotropic plates, 

piezoelectric plates in cylindrical bending and 

antisymmetric piezoelectric angle-ply plates. By dint of the 

Mindlin’s first order shear deformation theory, Rezaiee-

Pajand and Sadeghi (2013) introduced a new triangular 

finite element to solve the bending problem of laminated 

composite plates containing piezoelectric layers. Built upon 

the third order shear deformation plate theory of Reddy, Li 

et al. (2014) used the bidirectional B-spline finite element 

method to study the parameter identification problem of 

laminated composite plates with piezoelectric materials. 

Moleiro et al. (2014) further developed the works of 

Heyliger (1994, 1997) and offered more benchmark 

examples on the static analysis of two, three and four 

layered piezoelectric composite plates with PVDF 

materials. Based on the least squares formulation, Moleiro 

et al. (2015) compared results of displacements, stresses, 

electric potential and electric displacements in three and 

four layered piezoelectric plates between two layerwise 

mixed models. Pendhari et al. (2015) gave out a simple 

two-dimensional semi-analytical solutions for the bending 

analysis of piezoelectric laminate under the cylindrical 

bending subjected to mechanical and electric loads. 

Plagianakos and Papadopoulos (2015) took advantage of 

the two and three-dimensional layerwise plate theories to 

analyze the static deformations of composite plates bonded 

with piezoelectric materials. Sawarkar et al. (2016) 

developed a semi-analytical model to analyze the through-

thickness variations of mechanical and electric variables in 

multilayered piezoelectric plates under the simply supported 

boundary condition. With the help of the variable separation 

method, Vidal et al. (2016) carried out a study on the 

bending analysis of laminated piezoelectric composite 

plates subjected to mechanical pressure or electric potential. 

The dynamic responses of structures are crucial for the 

design and performance evaluation (Li et al 2018, Li et al. 

2019). So many studies focus on the free vibration 

behaviors of laminated piezoelectric plates. Heyliger and 

Brooks (1995a) acquired the vibration frequencies and 

mode shapes of single layer, two layered, three-ply hybrid 

and three layered piezoelectric plates under the cylindrical 

bending. Built upon the linear theory, exact solutions of 

natural frequencies and modes for laminated piezoelectric 

composite plates were obtained by Heyliger and Saravanos 

(1995b). Saravanos et al. (1997) applied laminate theories 

to present the vibration characteristics of laminated 

composite plates containing piezoelectric layers. By means 

of the state space method and the finite Hankel transform, 

the eigenvalues of a laminated circular plate with 

transversely isotropic and piezoelectric materials were 

evaluated by Ding et al. (1997). Heyliger and Ramirez 

(2000) took advantage of the discrete layer method to 

present the free vibration behaviors of a multilayered 

circular plate containing elastic and piezoelectric layers. 

Based on the Mindlin plate theory, Benjeddou and Deü 

(2002a) obtained the elastic solutions of natural frequencies 

for laminated piezoelectric composite plates under the 

simply supported boundary condition. Benjeddou et al. 

(2002b) utilized the layerwise first order shear deformation 

theory in conjunction with the quadratic non-uniform 

electric potential to analyze the dynamic behaviors of 

simply-supported piezoelectric adaptive composite plates. 

Vel et al. (2004) made use of the Stroh formalism to 

determine the cylindrical bending vibration frequencies and 

mode shapes of layered plates with either surface mounted 

or embedded piezoelectric patches. With the aid of 

748



 

Bending and free vibration analysis of laminated piezoelectric composite plates 

Kirchhoff and Mindlin plate theory, Duan et al. (2005) 

made a research on the free vibration characteristics of three 

layered piezoelectric annular plate. Bian et al. (2006) took 

advantage of the state space formulations to study the static 

and dynamic responses of composite plates comprised by 

the functionally graded surface layers and homogeneous 

piezoelectric core layer and utilized the spring layer model 

to simulate the weak interfaces. Based on the differential 

quadrature, Zhang et al. (2006) proposed a three 

dimensional model to solve the natural frequencies of 

laminated piezoelectric plates. With the help of Lagrangian 

polynomials, Akhras and Li (2007) employed a finite layer 

method to study the static, free vibration and stability 

responses of the multilayered plate containing elastic and 

piezoelectric lamina. Balamurugan and Narayanan (2007) 

brought forward a higher order, field consistent and shear 

flexible plate model to investigate the static and dynamic 

behaviors of piezoelectric laminates. Liu et al. (2008) 

introduced a finite element model to simulate the three 

dimensional axisymmetric and non-axisymmetric free 

vibration responses of multilayered circular and annular 

plates with piezoelectric layers. Hashemi et al. (2010) 

applied a new model based on the Levinson plate theory to 

analyze the free vibration behaviors of three layered 

piezoelectric annular plate under kinds of boundary 

conditions and further demonstrated the effect of plate 

parameters and piezoelectric layer on natural frequencies. 

Hosseini-Hashemi et al. (2010) exploited the third order 

shear deformation plate theory of Reddy, Hamiltonian and 

minimum potential energy principles to gain analytical 

solutions of transverse vibration for thick piezoelectric 

annular plates. Torres and Paulo (2010b) mixed the 

equivalent single layer and the layerwise plate theory to 

carry out the static bending and free vibration analysis of 

hybrid composite plates with piezoelectric layers. By virtue 

of the Kirchhoff plate theory and the Maxwell equation, Wu 

et al. (2010) developed an accurate and efficient model to 

compute vibration frequencies and mode shapes of a 

laminated piezoelectric circular plate with the open circuit 

electric surface boundary condition. Akhras and Li (2011) 

took advantage of a spline finite strip approach coupled 

with the Reddy’s third order shear deformation theory to 

provide the eigensolutions and buckling loads of hybrid 

piezoelectric plates. Khandelwal et al. (2014) employed a 

new C0 two dimensional finite element plate model to study 

the static and dynamic responses of composite plates 

including piezoelectric laminae under the action of 

mechanical loads or electric potential. Based on the 

systematic power series expansion method, Mauritsson and 

Folkow (2015) provided dispersion curves and vibration 

frequencies of single and laminated piezoelectric plates 

with various thickness-to-length ratios. Messina and Carrera 

(2015) made use of a displacement-based variational 

statement and the transfer matrix approach to study the free 

vibration behaviors of laminated piezoelectric composite 

plates under different boundary conditions. Aided by a set 

of adaptive global piecewise smooth functions, Messina and 

Carrera (2016) conducted a study on the vibration responses 

of laminated piezoelectric composite plates. By virtue of the 

first order shear deformation theory, Ghasemabadian and 

Saidi (2017) solved the critical buckling loads and mode 

number of multilayered rectangular plates with the 

piezoelectric laminae. Moleiro et al. (2017) derived the 

exact solutions of natural frequencies and through-thickness 

distributions of mode shapes for three and four layered 

piezoelectric composite plates. Kulikov and Plotnikova 

(2017) adopted the sampling method to analyze the free 

vibration behaviors of single and hybrid four layered 

piezoelectric square plates. Singh et al. (2017) studied the 

influences of the interface imperfection on the propagation 

behaviors of the Love-type wave in the fiber-reinforced 

half-space bonded with the piezoelectric layer. Askari et al. 

(2018) employed the Mindlin plate theory to investigate the 

dynamic responses of rectangular porous composite plates 

coated with piezoelectric layers. By means of the first order 

shear deformation theory and the Hamilton’s principle, 

Baghaee et al. (2019) utilized the Legendre polynomial 

series and the Lagrange multipliers to solve the 

eigensolutions of multilayered rectangular piezoelectric 

composite plates under different boundary conditions. With 

the help of the equivalent single layer plate theory, 

Tanzadeh and Amoushahi (2019) applied the finite strip 

method to conduct the free vibration and buckling analysis 

of multilayered composite plates with piezoelectric 

materials. 

Alternatively, as a semi-analytical approach, the 

SBFEM is utilized to study the static and dynamic 

responses of laminated piezoelectric composite plates in 

this work. As a promising numerical method, the SBFEM 

proposed by Wolf and Song (1997, 2000a,b) only needs to 

discretize the boundary of the research domain, which is 

similar with the boundary element method (BEM) and 

contributes to improving the computational effectiveness. 

However, the fundamental solutions are not necessary in the 

SBFEM. Moreover, the SBFEM is analytical along the 

radial direction and can obtain solutions of the finite 

element method (FEM) sense in the circumferential 

direction. Until now, the SBFEM has been applied to many 

research areas, such as the soil-structure-interaction (Song 

2009, Chen et al. 2014), heat transfer (Song 1999, Birk and 

Song 2009) and cracked problems (Song et al. 2010, Li et 

al. 2014). Recently, researchers have successfully exploited 

the SBFEM to analyze the bending behaviors and dynamic 

characteristics of beams (Li et al. 2017), elastic plates (Man 

et al. 2012, 2013), laminated composite plates (Lin et al. 

2018), functionally graded plates (Xiang et al. 2014, Zhang 

et al. 2020), piezoelectric (Man et al. 2014) and magneto-

electric-elastic plates (Zhang et al. 2019).  
From the preceding literature overview, it can be seen 

that the SBFEM has many advantages over the traditional 
FEM and BEM. But to the best of the authors’ knowledge, 
there is no paper concerning the bending and free vibration 
analysis of multilayered piezoelectric plates utilizing the 
SBFEM. This is where the present article comes to fill this 
gap. And its accuracy still needs to be improved in solving 
the matrix exponent. To further increase the accuracy of the 
matrix exponent in the SBFEM, the PIA (Zhong et al. 2004) 
is utilized to make sure any desired accuracy. Meanwhile, 
for the first time this article provides the global mass matrix 
of the laminated piezoelectric composite plates based on the 
SBFEM.  
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In the SBFEM, only a surface parallel with the bottom 

or top plane is demanded to be discretized with two 

dimensional elements, which is helpful to improve the 

computational efficiency. The high order spectral elements 

are adopted to accurately simulate the plates with curved 

boundaries. Moreover, only three elastic displacements and 

the electric potential are selected as the primary unknown 

variables and can be formulated analytically along the 

transverse direction. To improve the accuracy of natural 

frequencies, mechanical and electric quantities, the PIA is 

exploited to solve the matrix exponent to make sure high 

accuracy. The paper is organized as follows. The detailed 

theoretical derivations of the SBFEM governing equation 

are shown in Section 2. The Section 3 mainly introduces the 

solution procedure of the global stiffness matrix for the 

composite plate. The Section 4 establishes the global mass 

matrix of the laminated piezoelectric plate. Several 

numerical examples of three, four and five layered 

piezoelectric plates are provided in Section 5. Finally, the 

conclusion is presented in Section 6.  

 

 

2. Governing equation of the laminated piezoelectric 
plate 

 

In this section, detailed derivations of the governing 

equation for the laminated piezoelectric plates based on the 

SBFEM are presented. Only a longitudinal surface of the 

multilayered piezoelectric plate needs to be discretized with 

2D elements, which helps to improve the computational 

efficiency. Meanwhile, the 3D displacement field and the 

electric potential along the thickness are expressed 

analytically. The PIA is introduced to make sure any desired 

accuracy. The geometry of a two layered piezoelectric plate 

and one of the laminae are shown in Fig. 1. In piezoelectric 

plates, the translational displacements along the x, y and z 

directions and the electric potential are selected as the 

fundamental unknown quantities. Expressions of 

ux=ux(x,y,z), uy=uy(x,y,z) and uz=uz(x,y,z) are elastic 

displacement components and Φ=Φ(x,y,z) is the electric 

potential of a point (x,y,z) in the piezoelectric plate. In order 

to facilitate the analysis, a generalized variable {𝑢̄} =
{𝑢̄(𝑥, 𝑦, 𝑧)} = [𝑢𝑧 𝑢𝑥 𝑢𝑦 𝛷]𝑇 i s  d e f in ed .  I t  i s 

necessary to indicate that the piezoelectric plate is meshed 

by the spectral elements. In the spectral element, the Gauss-

Lobatto-Legendre (GLL) quadrature instead of the  

 

 

conventional Gauss quadrature is utilized. Integration points 

coincide with the locations of the field nodes, which 

contributes to simplifying some coefficient matrices into 

lumped ones. Utilization of the high-order spectral elements 

is helpful to increase the computational efficiency.  

The relationships between the elastic strain εij, the 

electric field Ei and the displacement field, the electric 

potential in the tensor form are shown as 

( ), ,
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,i iE− =   (2) 

By introducing the differential operator [L] 

0 0 0 0 0 0

0 0 0 0 0 0

[ ]=

0 0 0 0

z y x

x y z
L

y x z

  
                                                        

  

  
                                                        

  

  
                                         

  
0 0

0 0 0 0 0 0

T

z x y

 
 
 
 
 
 
 

                
 
   

                                                             
   

 

(3) 

the strain and electric field {𝜀̄} = {𝜀̄(𝑥, 𝑦, 𝑧)}  is 

expressed as 
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(4) 

The constitutive law of the piezoelectric material with 

reference to the local fiber coordinate system (3-1-2) as 

shown in Fig. 1 can be formulated as 
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(5) 

in which [σ33 σ11 σ22 τ12 τ23 τ13 D3 D1 D2] represent the 

stresses and electric displacements; cij, eij, νij stand for 

  

(a) A typical two layered piezoelectric plate (b) (1,2,3) reference axes and (x,y,z) reference axes 

Fig. 1 A model of the laminated piezoelectric composite plate 

750



 

Bending and free vibration analysis of laminated piezoelectric composite plates 

elastic stiffness, piezoelectric and dielectric coefficients in 

the local fiber coordinate system (3-1-2). 
Transforming stresses, electric displacements, strains, 

electric fields from the local fiber coordinate system (3-1-2) 

to the Cartesian coordinate system z–x–y, the constitutive 

relations in the Cartesian coordinate system can be written 

as 
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(7) 

[σzz σxx σyy τxy τyz τxz Dz Dx Dy]T and [εzz εxx εyy γxy γy

z γxz -Ez -Ex -Ey]T are the stress, electric displacement, 

strain and electric field components referred to the 

Cartesian coordinate system. What’s more, [Q] is the 

converted stiffness matrix of the piezoelectric material in 

the global coordinate system z–x–y. The detailed conversion 

from [C] to [Q] are illustrated in the appendix (Akhras and 

Li 2007). 

The key equilibrium equations ignoring the body force 

and electric charge for piezoelectric materials can be 

formulated as 

0
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Aided by the differential operator [L], Eqs. (8-11) can be 

simplified as 

    0
T

L  =  (12) 

A set of the scaled boundary coordinates η and ζ is 

introduced to convert the governing partial differential 

equations into an ordinary differential matrix one. In the 

process, only a longitudinal surface of the laminated 

piezoelectric plate needs to be discretized with two-

dimensional spectral elements. For example, the nodal 

locations of the third order spectral element in a typical 

two-layered plate are plotted in Fig. 1. The scaling center O 

is set at the infinity. {x} and {y} in the global coordinate 

system are employed to represent the nodal coordinates of 

the discretized mesh. The coordinates (x(η,ζ), y(η,ζ)) of any 

node in the discretized plane can be interpolated utilizing 

the shape function [N]=[N(η,ζ)]=[N1((η,ζ)) N2((η,ζ)) …]. 
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The transformation from the scaled boundary 

coordinates to the Cartesian coordinate system can be 

expressed as 
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=   

      
J  (14) 

The Jacobian matrix is denoted as 

       

       
, , , ,

, ,, ,

( , )
N x N y x y

x yN x N y

   

  

 
   
 = =  
    

J  (15) 

and its determinant is formulated as 

, , , ,( , ) x y y x     = −J  (16) 

By virtue of {
𝜕/𝜕𝑥
𝜕/𝜕𝑦

} = 𝑱(𝜂, 𝜁)−1 {
𝜕/𝜕𝜂
𝜕/𝜕𝜁

} and with 

respect to the scaled boundary coordinates η and ζ, the 

differential operator [L] in Eq. (3) can be rewritten as 

1 2 3[ ] [ ] [ ] [ ]L b b b
z  

  
= + +

  
 (17) 

where coefficient matrices [b1], [b2] and [b3] are denoted as 
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

 

(18) 

The vector of the elastic displacements and electric 

potential {𝑢̄(𝑧, 𝜂, 𝜁)} at any point in the discretized plane 

can be acquired with the help of the shape function matrix 
[𝜨]. 

( )

       
       
       
       

 

 

 
 

  ( ) 

( )0 0 0

( )0 0 0
{ , , } =

( )0 0 0

0 0 0 ( )

z

x

y

u zN

u zN
u z u z

u zN

N z

 

  
  
  =   
  
      

Ν
 
(19) 

From Eqs. (4), (17) and (19), the following formulation 

can be obtained. 
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  ( )  ( ) 1 2

,z
B u z B u z    = +     (20) 

in which [B1] and [B2] are expressed as [𝐵1] = [𝑏1][𝑵] 
and [𝐵2] = [𝑏2][𝑵],𝜂 + [𝑏3][𝑵],𝜁 . 

According to Eqs. (6) and (20), the stress field for the 

piezoelectric material is denoted as 

  1 2

,{ } ( { ( )} { ( )})zQ B u z B u z    = +     (21) 

Built upon the virtual work principle and a series of 

relevant derivations, the SBFEM governing ordinary 

differential equation with respect to {𝑢̄(𝑧)}  for the 

laminated piezoelectric composite plates can be gained. 

     0 1 1 2

, ,
[ ] ( ) ([ ] [ ]) ( ) [ ] ( ) 0T

zz z
E u z E E u z E u z+ − − =  (22) 

where [E0], [E1] and [E2] are coefficient matrices. 

1 1
0 1 1

1 1
[ ] [ ] [ ][ ]TE B Q B J d d 

− −
=    (23) 

1 1
1 2 1

1 1
[ ] [ ] [ ][ ]TE B Q B J d d 

− −
=    (24) 

1 1
2 2 2

1 1
[ ] [ ] [ ][ ]TE B Q B J d d 

− −
=    (25) 

In the above derivation, only the necessary formulae 

related to the process of derivation are introduced. Further 

details are listed in articles (Man et al. 2012, Man et al. 

2013). To facilitate the exhibition of the derivation process, 

only one element of the SBFEM is shown as an example. It 

is essential to assemble all elements similar with the FEM 

to model the whole plate. 
 

 

3. Solution procedure of the SBFEM governing 
equation 

 

Except for the Taylor series and Padé expansion, this 

article introduces a new method named the PIA to present 

the solution procedure of the SBFEM governing equation. 

As a highly accurate method, the PIA is utilized to make 

sure any desired accuracy of the mechanical and electric 

variables in the laminated piezoelectric plates. 

At first, an internal nodal force served as the dual vector 

of {𝑢̄(𝑧)} is proposed. 

( )  ( )  ( ) 0 1

,

T

z
q z E u z E u z   = +     (26) 

By dint of the vector {𝑋(𝑧)} = {{𝑢̄(𝑧)} {𝑞̄(𝑧)}}𝑇 , a 

reduced first order ordinary differential equation can be 

obtained. 

( )    ( ) 
,z

X z Z X z= −  (27) 

in which the matrix [Z] is denoted as  

 

1 1
0 1 0

1 1
2 1 0 1 1 0

T

T

E E E
Z

E E E E E E

− −

− −

      −      =
 

           − + −             

 
(28) 

It’s convenient to solve Eq. (27) and its general solution 

is formulated as 

( )     Z z
X z e c

−
=  (29) 

In Eq. (29), e-[Z]z is a matrix exponent which is 

calculated by the PIA in this paper. {c} is the integration 

constant vector, which is determined by the boundary 

conditions. 

The ith lamina with the thickness ti in the multilayered 

piezoelectric plate is shown as an example and the 

following expression can be acquired. 

           ( )       expiZ t

B T iX c X e c Z t c
−

= = = −  (30) 

in which {XB} and {XT} represent the dual vectors at the 

bottom and top planes of the ith lamina. 

Meanwhile, Eq. (30) can be expressed as  

 

 

 

 

 

 

 

 

 

 
 ( )

 

 
1 1

2 2

= exp  
B B T T

i

B B T T

u u c u u c
Z t

q F c q F c

                      
=     = = −           

−                      

 
(31) 

where {FB} and {FT} are the external forces applied on the 

bottom and top planes of this lamina. 

By virtue of the PIA, the thickness ti of this lamina is 

divided into 2N sub-layers with the equal thickness ξ. The 

thickness of a sub-layer ξ is extremely small and the 

corresponding matrix exponent can be formulated in terms 

of the fourth order Taylor’s expansion to ensure enough 

accuracy. 

   ( )    ( )  

   

2 2

2

exp 2 exp

         

N N

N

N

T iX Z t c Z c

c c

= − = −

= =T T

 (32) 

with 𝑻 = 𝑒𝑥𝑝(−[𝑍]𝜉) and 𝑻̄ = 𝑻2
𝑁

. 

In the above formulation, 𝑻 can be computed by 

 ( )

 ( )  ( )  ( )  ( )
2 3 4

exp

1 1 1

2! 3! 4!

a

a

Z

Z Z Z Z



   

= −  +     

= − + − + − + −

T I T

T

 
(33) 

in which 𝑰 is a unit matrix 

The estimation of 𝑻̄  is conducted by the following 

successive factorization. 

( ) ( ) ( )
1 12 2 2N N N

N

a a a r

− −

= + = +  + = +T I T I T I T I T  (34) 

Through the recursive formulation N times as follows, 

𝑻𝑟
𝑁 can be denoted as 

( )1 1 1

0

2 1,2,...,i i i i

r r r r

r a

i N− − −= +     =

=

T T T T

T T
 (35) 

in which 𝑻𝑎  is estimated by Eq. (33). In the above 

computations, the standard algebraic matrix operations are 

adopted, which helps to reduce the calculation time. 

From Eqs. (31) and (32), the following expression can 

be gained. 
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T T
T

T T
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T T

 (36) 

Grouping the unknown variables and the imposed 

external forces to each side of the Eq. (36), the stiffness 

equation for the ith piezoelectric lamina is formulated as  

 
 

 

 

 
     

B B

T T

u F
k

u F

      
=   

      
 (37) 

where the stiffness matrix [k] is shown as 

 
1 1

12 11 12

1 1

21 22 12 11 22 12

 k
− −

− −

 −
=  

− 

T T T

T T T T T T
 (38) 

Similar with the foregoing derivations, it’s convenient to 

obtain the stiffness matrix of each lamina. In view of the 

compatible and continuous boundary conditions at 

interfaces in the laminated piezoelectric composite plates, 

the global stiffness equation of the N-layered piezoelectric 

plate can be assembled in the following. 
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(39) 

in which the matrix elements 𝑘11
𝑖 , 𝑘12

𝑖 , 𝑘21
𝑖  and 𝑘22

𝑖  

demonstrate the stiffness of the ith-lamina (i=1,2,...N) in the 

multilayered piezoelectric plate.  

Eq. (39) can be abbreviated as 

    F K U=  (40) 

with the global stiffness matrix [K]. 
 

 

4. Mass Matrix of the laminated piezoelectric plate 
 

To investigate the free vibration characteristics, for the 

first time the global mass matrix of the laminated 

piezoelectric composite plates is given out based on the 

SBFEM in this paper. Following the solution procedure of 

the stiffness matrix, the mass matrix for the ith-lamina is 

shown as an example. 

The kinetic energy δK for the ith-lamina is denoted as 

( )   ( )   ( )

1

1

1

0

TT i

V
K u z u z dV  

 
 
 =
 
 
 

 N N
 

(41) 

in which ρ(i) is the mass density and 𝑢̈̄(𝑧)  is the 

acceleration vector. 

Substituting 𝑑𝑉 = |𝐽|𝑑𝜂𝑑𝜁𝑑𝑧  into Eq. (41), the 

following formula can be obtained 

( )   ( )   ( )

1

1

1

0

TT i

S
K u z J d d u z dz    
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  
   

  

  N N

 

(42) 

According to Eq. (42), the mass matrix for the ith-

lamina is established as 

0
 

0

i

i B

i

T

m
m

m

 
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 

 (43) 

where 𝑚𝐵
𝑖  and 𝑚𝑇

𝑖  are derived as 
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(44) 

By virtue of the compatible and continuous boundary 

conditions, the global mass matrix for the multilayered 

piezoelectric plate is constructed as 
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(45) 

Aided by the global mass matrix [M] and stiffness 

matrix [K] depicted in Eqs. (40) and (45) respectively, it’s 

convenient to acquire the natural frequencies of the 

laminated piezoelectric composite plates. 
 
 

5. Numerical examples 
 

This section provides seven numerical examples to 

verify the accuracy and effectiveness of the proposed 

technique and discuss the influence of boundary 

conditions, thickness-to-length ratios and stacking sequence 

of laminae on the distributions of elastic displacements, 

electric potential, stresses, electric displacements and 

natural frequencies in laminated piezoelectric composite 

plates. The first four examples examine the static bending 

behaviors of the multilayered piezoelectric plates. The next 

three examples pay attention to the free vibration responses 

of the layered composite plates. In the first example, the 

plate is constituted by three cross-ply laminae. The second 

and third examples investigate the deformable responses of 

four layered piezoelectric plates. The fourth example 

studies the bending behaviors of a perforated plate. In the 

last three examples, the present procedure is utilized to 

evaluate the eigenvalues of three and five layered hybrid 

piezoelectric composite plates. All examples are conducted 

753



 

Pengchong Zhang, Chengzhi Qi, Hongyuan Fang and Xu Sun 

Table 1 Material properties 

 PVDF PZT-4 Graphite-epoxy 

c11 (GPa) 238.0 139.0 134.86 

c22 (GPa) 23.6 139.0 14.352 

c33 (GPa) 10.6 115.0 14.352 

c12 (GPa) 3.98 77.8 5.1563 

c13 (GPa) 2.19 74.3 5.1563 

c23 (GPa) 1.92 74.3 7.1329 

c45 (GPa) 6.43 30.6 5.6537 

c56 (GPa) 2.15 25.6 3.6060 

c46 (GPa) 4.40 25.5 5.6537 

e15 (C/m2) -0.01 12.72 0 

e24 (C/m2) -0.01 12.72 0 

e31 (C/m2) -0.13 -5.20 0 

e32 (C/m2) -0.14 -5.20 0 

e33 (C/m2) -0.28 15.08 0 

ν11/ν0 12.50 1475 3.5 

ν22/ν0 11.98 1475 3.0 

ν33/ν0 11.98 1300 3.0 

 

 

Fig. 2 Three layered piezoelectric plate model 
 
 

with a consistent set of units. Properties of three different 

piezoelectric materials are listed in Table 1, in which ν0 

represents the vacuum dielectric constant and is set as 

ν0=8.58×10-12 (F/m). To facilitate the analysis, the same 

unit mass density is employed for all three materials in the 

following dynamic examples.  
 

5.1 Static analysis 
 

The following four numerical exercises will explore the 

variations of mechanical and electric fields in laminated 

piezoelectric plates. Plates are subjected to the sinusoidal 

pressure in the form of p(x,y)=p0sin(πx/l)sin(πy/b) with the 

amplitude p0=1N/m2 on the top plane. It is essential to point 

out that the solutions at specific in-plane locations are 

presented in the following tables. These specific locations 

are (l/2, b/2) for uz, Φ, σzz, σxx, σyy and Dz; (0, b/2) for ux, τxz 

and Dx; (l/2, 0) for uy, τyz and Dy; (0, 0) for τxy. 

 

5.1.1 Three-layer cross-ply (0°/90°/0°) plate 
In order to validate the accuracy and effectiveness of the

 proposed approach for laminated piezoelectric composite p

lates, exact solutions provided by Moleiro et al. (2014) of 

Table 2 Variations of the elastic displacements through the 

thickness with t/l=0.1 

z/t 

ux×1012 uz×1011 

2nd 
order 

4th order 6th order Exact 
2nd 

order 
4th order 6th order Exact 

1/2 -9.4643 -6.9272 -6.9498 -6.9373 8.0012 7.0642 7.0776 7.0691 

1/3 -4.8822 -3.7091 -3.7101 -3.7051 7.9994 7.0638 7.0774 7.0690 

1/6 -1.2640 -1.1000 -1.0912 -1.0897 7.9935 7.0587 7.0725 7.0640 

1/6 -1.2640 -1.1000 -1.0912 -1.0897 7.9935 7.0587 7.0725 7.0640 

0 0.0307 0.0265 0.0266 0.0265 7.9859 7.0515 7.0652 7.0568 

-1/6 1.3172 1.1466 1.1379 1.1364 7.9778 7.0430 7.0567 7.0483 

-1/6 1.3172 1.1466 1.1379 1.1364 7.9778 7.0430 7.0567 7.0483 

-1/3 4.9187 3.7426 3.7436 3.7386 7.9680 7.0324 7.0460 7.0375 

-1/2 9.4753 6.9407 6.9631 6.9505 7.9542 7.0171 7.0305 7.0220 

 
 

three layered symmetric square plate with different 

thickness-span ratios are selected as benchmark examples. 

The piezoelectric plate consists of three cross-ply laminae 

(0°/90°/0°) with the material PVDF, as illustrated in Fig. 2. 

Fig. 3 displays that the plate is discretized with only one 

spectral element. Meanwhile, the elements with the second, 

fourth and sixth orders are utilized to investigate the 

structural responses of the layered piezoelectric plates. The 

corresponding material properties are listed in Table 1. 

Three thickness-span ratios t/l=0.01, 0.1 and 0.25 are under 

discussion in this example. The total thickness of the 

piezoelectric plate is set as t=0.01m and the thicknesses of 

the three laminae are equal. The simply supported boundary 

condition is prescribed at all four side faces: uz=ux=0 at y=0 

and y=b, uz =uy=0 at x=0 and x=l. Zero electric potential on 

both the top and bottom planes are also applied. The elastic 

displacements, electric potential, electric displacements and 

stresses under the sinusoidal transverse loadings for various 

thickness-span ratios are listed in Tables 2-15. To conduct 

the convergence analysis of the present approach, the 

deformable behaviors of the three layered plate with the 

thickness-span ratio t/l=0.1 are cited as an example, as 

depicted in Tables 2-9. From Tables 2-15, it is clear that the 

through-thickness mechanical and electric quantities 

obtained by SBFEM show high agreement with the exact 

solutions from Moleiro et al. (2014), which confirms the 

accuracy and effectiveness of the proposed method to 

analyze the static bending behaviors of laminated 

piezoelectric plates. Moreover, it is necessary to indicate 

that increasing the element orders results in the convergent 

solutions calculated by the SBFEM and PIA to the exact 

solutions. It is believed that further refinement should lead 

to better results. At the same time, it is evident that only the 

variable Dz gets the maximum amplitude when the 

thickness-span ratio of the plate is t/l=0.25. However, the 

largest magnitudes of other mechanical and electrical 

variables are obtained in the thin piezoelectric plate. When 

the plate is thin, the deflections along the transverse 

direction are almost constants. With the increase of the 

thickness-span ratios, through-thickness distributions of the 

elastic transverse displacements tend to monotonically 

decrease. 
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Table 3 Variations of the electric potential through the 

thickness with t/l=0.1 

z/t 
Φ×103 

2nd order 4th order 6th order Exact 

1/2 0.0000 0.000 0.0000 0.0000 

1/3 0.6071 0.6525 0.6606 0.6602 

1/6 0.9573 1.0297 1.0426 1.0420 

1/6 0.9573 1.0297 1.0426 1.0420 

0 1.0598 1.1411 1.1555 1.1548 

-1/6 0.9567 1.0290 1.0419 1.0413 

-1/6 0.9567 1.0290 1.0419 1.0413 

-1/3 0.6064 0.6515 0.6597 0.6593 

-1/2 0.0000 0.0000 0.0000 0.0000 

 

Table 4 Variations of the electric displacement Dz through 

the thickness with t/l=0.1 

z/t 
Dz×1011 

2nd order 4th order 6th order Exact 

1/2 -1.5312 -1.5443 -1.5506 -1.5499 

1/3 -1.5008 -1.5112 -1.5166 -1.5161 

1/6 -1.4280 -1.4321 -1.4352 -1.4350 

1/6 -1.4280 -1.4321 -1.4352 -1.4350 

0 -1.3033 -1.2999 -1.2997 -1.2997 

-1/6 -1.1785 -1.1676 -1.1641 -1.1644 

-1/6 -1.1785 -1.1676 -1.1641 -1.1644 

-1/3 -1.1060 -1.0888 -1.0830 -1.0835 

-1/2 -1.0756 -1.0557 -1.0491 -1.0498 

 

Table 5 Variations of the electric displacement Dx through 

the thickness with t/l=0.1 

z/t 
Dx×1011 

2nd order 4th order 6th order Exact 

1/2 0.0000 0.0000 0.0000 0.0000 

1/3 -1.0838 -0.7294 -0.7367 -0.7416 

1/6 -1.5949 -1.1027 -1.0976 -1.1102 

1/6 -2.8030 -1.8575 -1.8700 -1.8778 

0 -2.8797 -1.9236 -1.9317 -1.9423 

-1/6 -2.8064 -1.8600 -1.8725 -1.8804 

-1/6 -1.5964 -1.1038 -1.0987 -1.1113 

-1/3 -1.0832 -0.7291 -0.7363 -0.7412 

-1/2 0.0000 0.0000 0.0000 0.0000 

 

Table 6 Variations of the normal stress σzz through the 

thickness with t/l=0.1 

z/t 
σzz×10 

2nd order 4th order 6th order Exact 

1/2 10.0000 10.0000 10.0000 10.0000 

1/3 9.2045 9.2045 9.2106 9.2587 

1/6 7.3679 7.3631 7.3702 7.4071 

1/6 7.3679 7.3631 7.3702 7.4071 

0 4.9964 4.9958 4.9959 5.0000 

-1/6 2.6225 2.6303 2.6234 2.5929 

-1/6 2.6225 2.6303 2.6234 2.5929 

-1/3 0.7934 0.7930 0.7871 0.7413 

-1/2 0.0000 0.0000 0.0000 0.0000 

 

Table 7 Variations of the normal stress σxx through the 

thickness with t/l=0.1 

z/t 
σxx 

2nd order 4th order 6th order Exact 

1/2 46.2166 52.2397 53.1516 53.127 

1/3 24.0597 28.0564 28.6059 28.584 

1/6 6.4939 8.4534 8.6694 8.6559 

1/6 1.0588 1.2765 1.3036 1.3021 

0 0.0734 0.0677 0.0673 0.0673 

-1/6 -0.9080 -1.1363 -1.1640 -1.1626 

-1/6 -6.5455 -8.5967 -8.8184 -8.8049 

-1/3 -24.0314 -28.1017 -28.6556 -28.633 

-1/2 -46.0654 -52.1338 -53.0484 -53.023 

 

Table 8 Variations of the shear stress τxz through the 

thickness with t/l=0.1 

z/t 
τxz 

2nd order 4th order 6th order Exact 

1/2 0.0000 0.0000 0.0000 0.0000 

1/3 3.5865 2.1864 2.2720 2.2528 

1/6 5.1532 3.2373 3.3076 3.2905 

1/6 5.1532 3.2373 3.3076 3.2905 

0 5.2246 3.2968 3.3651 3.3483 

-1/6 5.1611 3.2433 3.3136 3.2965 

-1/6 5.1611 3.2433 3.3136 3.2965 

-1/3 3.5854 2.1864 2.2715 2.2524 

-1/2 0.0000 0.0000 0.0000 0.0000 

   

(a) The second order (b) The fourth order (c) the sixth order 

Fig. 3 The plate is meshed with one spectral element of different orders 
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Table 9 Variations of the shear stress τxy through the 

thickness with t/l=0.1 

z/t 
τxy×10 

2nd order 4th order 6th order Exact 

1/2 -60.7478 -33.7171 -34.6571 -34.013 

1/3 -36.0482 -20.2540 -20.9173 -20.423 

1/6 -15.0036 -8.6170 -8.9120 -8.6860 

1/6 -15.0036 -8.6170 -8.9120 -8.6860 

0 0.1600 0.1096 0.1158 0.1118 

-1/6 15.2975 8.8204 9.1270 8.8934 

-1/6 15.2975 8.8204 9.1270 8.8934 

-1/3 36.2851 20.4220 21.0964 20.594 

-1/2 60.8613 33.8100 34.7593 34.108 

 

Table 10 Distributions of the displacements and electric 

potential along the thickness with t/l=0.01 

z/t 
ux×109 uz×107 Φ×102 

Exact SBFEM Exact SBFEM Exact SBFEM 

1/2 -6.5871 -6.5871 4.2221 4.2220 0.0000 0.0000 

1/3 -4.3811 -4.3810 4.2222 4.2221 4.1299 4.1300 

1/6 -2.1819 -2.1818 4.2223 4.2222 6.6062 6.6064 

1/6 -2.1819 -2.1818 4.2223 4.2222 6.6062 6.6064 

0 0.0002 0.0002 4.2223 4.2222 7.4300 7.4302 

-1/6 2.1822 2.1822 4.2223 4.2222 6.6062 6.6065 

-1/6 2.1822 2.1822 4.2223 4.2222 6.6062 6.6065 

-1/3 4.3814 4.3814 4.2222 4.2221 4.1299 4.1300 

-1/2 6.5875 6.5874 4.2221 4.2220 0.0000 0.0000 
 

Table 11 Distributions of electric displacements and the 

shear stress τxz along the thickness with t/l=0.01 

z/t 
Dz×1011 Dx×1010 τxz 

Exact SBFEM Exact SBFEM Exact SBFEM 

1/2 -1.5217 -1.5217 0.0000 0.0000 0.0000 0.0000 

1/3 -1.4946 -1.4946 -0.6647 -0.6648 22.926 22.9310 

1/6 -1.4269 -1.4269 -1.0626 -1.0628 36.645 36.6530 

1/6 -1.4269 -1.4269 -1.9247 -1.9250 36.645 36.6530 

0 -1.3005 -1.3005 -1.9855 -1.9859 37.363 37.3702 

-1/6 -1.1740 -1.1740 -1.9247 -1.9251 36.646 36.6536 

-1/6 -1.1740 -1.1740 -1.0626 -1.0628 36.646 36.6536 

-1/3 -1.1063 -1.1063 -0.6647 -0.6648 22.926 22.9314 

-1/2 -1.0792 -1.0792 0.0000 0.0000 0.0000 0.0000 
 

Table 12 Distributions of normal and shear stresses along 

the thickness with t/l=0.01 

z/t 
σzz×10 σxx τxy 

Exact SBFEM Exact SBFEM Exact SBFEM 

1/2 10.0000 10.0000 4992.8 4992.8658 -266.86 -266.8676 

1/3 9.2587 9.2587 3320.8 3320.8708 -177.67 -177.6737 

1/6 7.4071 7.4071 1654.0 1654.0190 -88.660 -88.6629 

1/6 7.4071 7.4071 182.24 185.2475 -88.660 -88.6629 

0 5.0000 5.0000 0.0747 0.0747 0.0090 0.0090 

-1/6 2.5929 2.5929 -185.10 -185.0980 88.678 88.6809 

-1/6 2.5929 2.5929 -1654.0 -1654.0678 88.678 88.6809 

-1/3 0.7413 0.7413 -3320.9 -3320.9185 177.69 177.6917 

-1/2 0.0000 0.0000 -4992.8 -4992.9120 266.88 266.8856 

Table 13 Through-thickness variations of elastic 

displacements and the electric potential with t/l=0.25 

z/t 
ux×1013 uz×1012 Φ×104 

Exact SBFEM Exact SBFEM Exact SBFEM 

1/2 -5.7283 -5.7375 5.0933 5.1093 0.0000 0.0000 

1/3 -1.2418 -1.2525 4.9786 4.9943 2.5141 2.5201 

1/6 1.4199 1.4150 4.8663 4.8819 3.8883 3.8979 

1/6 1.4199 1.4150 4.8663 4.8819 3.8883 3.8979 

0 0.2516 0.2514 4.7740 4.7897 4.2520 4.2629 

-1/6 -1.0419 -1.0372 4.7103 4.7260 3.8405 3.8501 

-1/6 -1.0419 -1.0372 4.7103 4.7260 3.8405 3.8501 

-1/3 1.3862 1.3969 4.6666 4.6824 2.4553 2.4613 

-1/2 5.4625 5.4737 4.6257 4.6418 0.0000 0.0000 

 

Table 14 Through-thickness variations of electric 

displacements and the shear stress τxz with t/l=0.25 

z/t 
Dz×1011 Dx×1012 τxz×10 

Exact SBFEM Exact SBFEM Exact SBFEM 

1/2 -1.6473 -1.6486 0.0000 0.0000 0.0000 0.0000 

1/3 -1.5895 -1.5899 -4.2728 -4.1645 9.1824 9.0198 

1/6 -1.4608 -1.4608 -5.5659 -5.4287 9.6155 9.5345 

1/6 -1.4608 -1.4608 -7.7130 -7.5615 9.6155 9.5345 

0 -1.2875 -1.2874 -8.0344 -7.8734 9.6547 9.5889 

-1/6 -1.1152 -1.1151 -7.7042 -7.5538 9.6822 9.6039 

-1/6 -1.1152 -1.1151 -5.5395 -5.4029 9.6822 9.6039 

-1/3 -0.9903 -0.9898 -4.1414 -4.0369 8.8293 8.6804 

-1/2 -0.9349 -0.9339 0.0000 0.0000 0.0000 0.0000 

 

Table 15 Through-thickness variations of normal and shear 

stresses with t/l=0.25 

z/t 
σzz×10 σxx τxy×10 

Exact SBFEM Exact SBFEM Exact SBFEM 

1/2 10.0000 10.0000 11.236 11.2770 -8.7963 -8.8454 

1/3 9.0349 9.0314 2.6940 2.7124 -3.9107 -3.9780 

1/6 7.1771 7.1764 -2.4042 -2.3906 -0.9642 -0.9878 

1/6 7.1771 7.1764 -0.0324 -0.0306 -0.9642 -0.9878 

0 4.9296 4.9296 0.0392 0.0391 0.1897 -0.1897 

-1/6 2.7041 2.7048 0.1349 0.1330 1.2667 1.2899 

-1/6 2.7041 2.7048 1.8960 1.8828 1.2667 1.2899 

-1/3 0.9128 0.9162 -2.7631 -2.7823 4.0644 4.1322 

-1/2 0.0000 0.0000 -10.526 -10.5707 8.5379 8.5947 
 

 

Fig. 4 Four layered (PZT-4/0°/90°/PZT-4) piezoelectric 

square plate 
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Table 16 Cross-thickness variations of displacements and electric potential with t/l=0.25 

z/t 
uy×1012 Φ×10 

Exact SBFEM RMVT Exact SBFEM RMVT 2D 

1/2 -47.549 -47.5880 -45.893 0.0000 0.0000 0.0000 0.0000 

9/20 -35.424 -35.3995 -33.891 0.0358 0.0353 0.0340 0.0440 

2/5 -23.732 -23.8238 -22.225 0.0598 0.0599 0.0575 0.0770 

2/5 -23.732 -23.8238 -22.225 0.0598 0.0599 0.0575 0.0770 

1/5 0.1413 0.1300 0.1555 0.0589 0.0590 0.0567 0.0720 

0 20.392 20.1685 17.260 0.0611 0.0612 0.0590 0.0700 

0 20.392 20.1685 17.260 0.0611 0.0612 0.0590 0.0700 

-1/5 29.110 29.1173 27.448 0.0665 0.0667 0.0645 0.0720 

-2/5 39.309 39.3192 38.208 0.0756 0.0758 0.0734 0.0770 

-2/5 39.309 39.3192 38.208 0.0756 0.0758 0.0734 0.0770 

-9/20 49.772 50.0046 48.979 0.0425 0.0426 0.0415 0.0440 

-1/2 60.678 61.0341 60.118 0.0000 0.0000 0.0000 0.0000 

Table 17 Cross-thickness variations of the electric displacement and stress with t/l=0.25 

z/t 
Dz×1013 σyy 

Exact SBFEM RMVT Exact SBFEM RMVT 2D 

1/2 160.58 164.7009 147.89 6.5643 6.5698 6.2798 6.3538 

9/20 117.23 119.9839 118.20 5.0855 5.0855 4.8373 5.2403 

2/5 -0.3382 -0.3382 -0.311 3.6408 3.6457 3.4547 3.8602 

2/5 -0.3382 -0.3382 -0.311 2.8855 2.8807 3.8732 2.9312 

1/5 0.0813 0.0817 0.099 0.2879 0.2892 0.3008 0.2803 

0 0.5052 0.5063 0.505 -1.9266 -1.9085 -2.4166 -1.9801 

0 0.5052 0.5063 0.505 0.0991 0.1002 0.0522 -0.1247 

-1/5 0.9563 0.9558 0.953 -0.1280 -0.1278 -0.2168 -0.2242 

-2/5 1.4587 1.4552 1.433 -0.3616 -0.3626 -0.5260 -0.3685 

-2/5 1.4587 1.4552 1.433 -4.2348 -4.2403 -4.0013 -4.3178 

-9/20 -103.66 -106.3463 -103.84 -5.5337 -5.5496 -5.2799 -5.3752 

-1/2 -142.46 -146.4667 -128.99 -6.8658 -6.8872 -6.6163 -6.8069 
 

Table 18 Cross-thickness variations of normal and shear stresses with t/l=0.25 

z/t 
σzz×10 τxy×10 

Exact SBFEM Exact SBFEM 

1/2 10.0000 10.0000 -2.4766 -2.5134 

19/40 9.9657 9.9656 -2.1824 -2.2144 

9/20 9.8682 9.8680 -1.8942 -1.9219 

17/40 9.7154 9.7153 -1.6114 -1.6349 

2/5 9.5151 9.5155 -1.3332 -1.3528 

2/5 9.5151 9.5155 -0.2463 -0.2460 

3/10 8.5199 8.5201 -0.1534 -0.1551 

1/5 7.3747 7.3718 -0.0817 -0.0831 

1/10 6.1686 6.1673 -0.0212 -0.0214 

0 4.9831 4.9832 0.0369 0.0358 

-1/10 3.8045 3.8058 0.0965 0.0995 

-1/5 2.6137 2.6173 0.1529 0.1567 

-3/10 1.4821 1.4883 0.2139 0.2174 

-2/5 0.4868 0.4835 0.2882 0.2889 

-2/5 0.4868 0.4835 1.5603 1.5890 

-17/40 0.2845 0.2832 1.8105 1.8428 

-9/20 0.1312 0.1309 2.0651 2.1011 

-19/40 0.0340 0.0340 2.3246 2.3649 

-1/2 0.0000 0.0000 2.5899 2.6347 
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5.1.2 Four-layer (PZT-4/0°/90°/PZT-4) composite 
plate 

In this example, the mechanical behaviors of a four 

layered composite plate are investigated, as plotted in Fig. 4. 

The corresponding material of the inner two layer-ups is 

Graphite-epoxy, whose material properties are listed in 

Table 1. Similar with the foregoing example in Section 

5.1.1, the boundary condition of the four layered 

piezoelectric plate is simply supported. The thickness of the 

coated piezoelectric and cross-ply lamina is 0.1t and 0.4t 

respectively. The thickness-to-length ratio t/l=0.25 is 

discussed, which means that a thick piezoelectric plate is 

studied. Through-thickness variations of the mechanical and 

electric variables in the four layered piezoelectric plate are 

delineated in Tables 16-18. From all tables, it is apparent 

that good agreement is achieved between the obtained 

results from the proposed technique and exact solutions of 

Heyliger (1994). The produced solutions are within less 

than 3.11% of error for all mechanical and electrical 

quantities and better than those from Carrera et al. (2010a) 

based on the Reissner mixed variational theorem (RMVT) 

and the 2D finite element solutions obtained by Khandelwal 

et al. (2013). In the available works of Carrera et al. (2010a) 

and Khandelwal et al. (2013), the distributions of 

mechanical and electric fields through the transverse 

direction are assumed to obey mathematical functions in 

terms of the thickness coordinate. Moreover, Carrera et al. 

(2010a) made use of the elastic displacements, electric 

potential, stress components and the electric displacement 

as the primary unknowns. Several parameters including 

multiple displacements and electric potential are selected as 

the unknown variables in the paper of Khandelwal et al. 

(2013). However, the derivation of the SBFEM governing 

equation is based on the three dimensional key equations of 

elasticity without importing any assumption on the plate 

kinematics. Meanwhile, only three elastic displacements 

and the electric potential are set as the basic unknowns, 

which is advantageous to improve the computational 

accuracy and efficiency. Throughout Tables 16-18, it can 

be found that the through-thickness distributions of the 

stresses τxy and σyy bring out the discontinuous nature at the 

laminae interfaces where mechanical and electrical 

properties abruptly change in the thickness direction. 

However, owing to the enforced compatibility and 

equilibrium boundary conditions at the interfaces of the 

laminated piezoelectric plate, the in-plane displacement uy, 

the electric potential Φ, the normal stresses σzz and the 

electric displacement Dz do meet the requirement of the 

interlaminar continuity. 

 

Fig. 5 Four layered (PVDF/0°/90°/PVDF) square plate 

model 

Table 19 Variations of the displacements and electric 

potential along the thickness with t/l=0.01 

z/t 
ux×109 uz×107 Φ×102 

Exact SBFEM Exact SBFEM Exact SBFEM 

1/2 -11.543 -11.5377 6.1398 6.1454 0.0000 0.0000 

9/20 -10.580 -10.5744 6.1399 6.1454 1.8917 1.8933 

2/5 -9.6175 -9.6126 6.1399 6.1455 3.5671 3.5701 

2/5 -9.6175 -9.6126 6.1399 6.1455 3.5671 3.5701 

1/5 -5.7750 -5.7712 6.1402 6.1458 3.7320 3.7353 

0 -1.9334 -1.9344 6.1403 6.1459 3.8972 3.9009 

0 -1.9334 -1.9344 6.1403 6.1459 3.8972 3.9009 

-1/5 1.9138 1.9150 6.1401 6.1457 4.0627 4.0668 

-2/5 5.7631 5.7628 6.1398 6.1453 4.2286 4.2331 

-2/5 5.7631 5.7628 6.1398 6.1453 4.2286 4.2331 

-9/20 6.7260 6.7253 6.1397 6.1453 2.2225 2.2248 

-1/2 7.6899 7.6888 6.1397 6.1452 0.0000 0.0000 

 

Table 20 Variations of electric displacements and the shear 

stress τxz along the thickness with t/l=0.01 

z/t 
Dz×1011 Dx×1012 τxz 

Exact SBFEM Exact SBFEM Exact SBFEM 

1/2 2.1723 2.1760 0.0000 0.0000 0.0000 0.0000 

9/20 2.1764 2.1800 -37.547 -37.5572 13.626 13.6424 

2/5 2.1880 2.1916 -71.597 -71.6159 26.044 26.0757 

2/5 2.1880 2.1916 -2.9767 -2.9788 26.044 26.0757 

1/5 2.1921 2.1957 -3.1143 -3.1171 28.998 29.0151 

0 2.1964 2.2001 -3.2521 -3.2557 30.075 30.0877 

0 2.1964 2.2001 -3.7942 -3.7983 30.075 30.0877 

-1/5 2.2010 2.2046 -3.9553 -3.9599 29.298 29.3164 

-2/5 2.2057 2.2093 -4.1169 -4.1218 17.361 17.3853 

-2/5 2.2057 2.2093 -54.163 -54.1933 17.361 17.3853 

-9/20 2.2162 2.2198 -28.830 -28.8464 9.2845 9.2975 

-1/2 2.2199 2.2235 0.0000 0.0000 0.0000 0.0000 

 

Table 21 Variations of normal and shear stresses along the 

thickness with t/l=0.01 

z/t 
σzz×10 σxx τxy 

Exact SBFEM Exact SBFEM Exact SBFEM 

1/2 10.0000 10.0000 8692.3 8696.2207 -366.94 -367.2000 

9/20 9.8798 9.8797 7962.0 7965.5076 -327.99 -328.2165 

2/5 9.5336 9.5333 7232.7 7235.8921 -289.08 -289.2687 

2/5 9.5336 9.5333 365.23 365.3824 -254.18 -250.2962 

1/5 7.2884 7.2876 203.25 203.3206 -117.46 -115.6143 

0 4.7132 4.7132 41.299 41.2844 19.226 19.0360 

0 4.7132 4.7132 783.44 783.4941 19.226 19.0360 

-1/5 2.2529 2.2537 -855.56 -856.2785 156.00 153.7693 

-2/5 0.3518 0.3521 -2495.4 -2496.6451 292.83 288.5575 

-2/5 0.3518 0.3521 -4424.3 -4427.0450 333.04 333.4876 

-9/20 0.0916 0.0917 -5154.1 -5157.1935 371.98 372.4444 

-1/2 0.0000 0.0000 -5884.6 -5888.0738 410.91 411.4304 
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Table 22 Through-thickness distributions of elastic 

displacements and electric potential with t/l=0.1 

z/t 
ux×1012 uz×1011 Φ×104 

Exact SBFEM Exact SBFEM Exact SBFEM 

1/2 -11.005 -11.0094 7.7151 7.7195 0.0000 0.0000 

9/20 -9.8676 -9.8756 7.7166 7.7210 3.0586 3.0625 

2/5 -8.8696 -8.8786 7.7175 7.7218 5.8423 5.8494 

2/5 -8.8696 -8.8786 7.7175 7.7218 5.8423 5.8494 

1/5 -5.4703 -5.4727 7.7351 7.7388 5.4790 5.4869 

0 -2.1850 -2.1737 7.7357 7.7392 5.1626 5.1712 

0 -2.1850 -2.1737 7.7357 7.7392 5.1626 5.1712 

-1/5 1.6168 1.6225 7.7137 7.7174 4.8904 4.8996 

-2/5 5.6002 5.6012 7.6724 7.6768 4.6600 4.6697 

-2/5 5.6002 5.6012 7.6724 7.6768 4.6600 4.6697 

-9/20 6.6515 6.6529 7.6661 7.6707 2.4652 2.4705 

-1/2 7.8004 7.7996 7.6592 7.6638 0.0000 0.0000 

 

Table 23 Through-thickness distributions of electric 

displacements and the shear stress τxz with t/l=0.1 

z/t 
Dz×1013 Dx×1013 τxz 

Exact SBFEM Exact SBFEM Exact SBFEM 

1/2 -6.9318 -6.9285 0.0000 0.0000 0.0000 0.0000 

9/20 -6.4704 -6.4642 -40.056 -39.8268 1.2944 1.3141 

2/5 -5.1500 -5.1396 -76.104 -75.8615 2.4546 2.4928 

2/5 -5.1500 -5.1396 -4.8753 -4.8701 2.4546 2.4928 

1/5 -4.5047 -4.4952 -4.5721 -4.5885 2.7647 2.8035 

0 -3.9033 -3.8926 -4.3081 -4.3371 2.8865 2.9240 

0 -3.9033 -3.8926 -5.0261 -5.0600 2.8865 2.9240 

-1/5 -3.3327 -3.3234 -4.7611 -4.7996 2.8795 2.9084 

-2/5 -2.7906 -2.7830 -4.5368 -4.5693 1.7394 1.7626 

-2/5 -2.7906 -2.7830 -55.739 -56.3811 1.7394 1.7626 

-9/20 -1.6670 -1.6626 -29.909 -30.2984 0.9388 0.9529 

-1/2 -1.2712 -1.2726 0.0000 0.0000 0.0000 0.0000 

 

Table 24 Through-thickness distributions of normal and 

shear stresses with t/l=0.1 

z/t 
σzz×10 σxx τxy 

Exact SBFEM Exact SBFEM Exact SBFEM 

1/2 10.000 10.0000 83.255 83.3634 -3.7953 -3.7807 

9/20 9.8836 9.8837 74.628 74.7203 -3.3247 -3.3124 

2/5 9.5512 9.5524 67.039 67.1129 -2.8891 -2.8790 

2/5 9.5512 9.5524 3.9285 3.9327 -2.5403 -2.5166 

1/5 7.3338 7.3310 2.2947 2.2946 -1.1308 -1.1182 

0 4.7586 4.7583 0.6915 0.6879 0.2371 0.2321 

0 4.7586 4.7583 9.0138 8.9757 0.2371 0.2321 

-1/5 2.2954 2.2964 -7.3129 -7.3363 1.6816 1.6852 

-2/5 0.3625 0.3638 -24.390 -24.4033 3.1818 3.1720 

-2/5 0.3625 0.3638 -43.202 -43.2242 3.6187 3.6000 

-9/20 0.0949 0.0954 -51.183 -51.2185 4.0579 4.0370 

-1/2 0.0000 0.0000 -59.895 -59.9490 4.5273 4.5041 

Table 25 Distributions of elastic displacements and electric 

potential through the thickness with t/l=0.25 

z/t 
ux×1013 uz×1012 Φ×104 

Exact SBFEM Exact SBFEM Exact SBFEM 

1/2 -6.1636 -6.1867 4.1492 4.1787 0.0000 0.0000 

9/20 -4.8010 -4.8236 4.1158 4.1452 1.4573 1.4591 

2/5 -3.8982 -3.8928 4.0812 4.1104 2.8257 2.8286 

2/5 -3.8982 -3.8928 4.0812 4.1104 2.8257 2.8286 

1/5 -2.4154 -2.4121 4.0000 4.0284 2.2036 2.2080 

0 -1.6898 -1.6400 3.9221 3.9501 1.6998 1.6951 

0 -1.6898 -1.6400 3.9221 3.9501 1.6998 1.6951 

-1/5 0.5556 0.5669 3.8345 3.8630 1.2873 1.2931 

-2/5 3.2144 3.2101 3.7372 3.7667 0.9439 0.9499 

-2/5 3.2144 3.2101 3.7372 3.7667 0.9439 0.9499 

-9/20 4.0579 4.0640 3.7240 3.7537 0.5125 0.5185 

-1/2 5.2880 5.3010 3.7099 3.7397 0.0000 0.0000 

 

Table 26 Distributions of electric displacements and the 

shear stress τxz through the thickness with t/l=0.25 

z/t 
Dz×1013 Dx×1013 τxz×10 

Exact SBFEM Exact SBFEM Exact SBFEM 

1/2 -12.195 -12.2071 0.0000 0.0000 0.0000 0.0000 

9/20 -11.414 -11.4123 -22.675 -22.5152 4.4022 4.3428 

2/5 -9.1882 -9.1965 -42.551 -42.5059 7.9127 7.9214 

2/5 -9.1882 -9.1965 -5.8951 -5.8795 7.9127 7.9214 

1/5 -7.4106 -7.3948 -4.5972 -4.6061 9.4753 9.4678 

0 -6.031 -6.0366 -3.5462 -3.5695 10.217 10.1847 

0 -6.031 -6.0366 -4.1372 -4.1645 10.217 10.1847 

-1/5 -4.9752 -4.9675 -3.1332 -3.1692 10.820 10.6816 

-2/5 -4.1866 -4.1878 -2.2974 -2.3369 6.9496 6.8397 

-2/5 -4.1866 -4.1878 -23.993 -23.8927 6.9460 6.8397 

-9/20 -2.8632 -2.8774 -13.272 -13.1764 3.8792 3.8021 

-1/2 -2.3863 -2.4213 0.0000 0.0000 0.0000 0.0000 

 

Table 27 Distributions of normal and shear stresses through 

the thickness with t/l=0.25 

z/t 
σzz×10 σxx τxy×10 

Exact SBFEM Exact SBFEM Exact SBFEM 

1/2 10.000 10.0000 11.949 11.9808 -7.1052 -7.0663 

9/20 9.8918 9.8914 9.3611 9.3878 -5.6523 -5.6217 

2/5 9.5973 9.5989 7.6326 7.5689 -4.5643 -4.5122 

2/5 9.5973 9.5989 0.9113 0.9097 -3.9869 -3.9043 

1/5 7.4425 7.4414 0.5847 0.5841 -1.2867 -1.2600 

0 4.8594 4.8606 0.3151 0.3122 0.7711 0.7819 

0 4.8594 4.8606 1.8700 1.8411 0.7711 0.7819 

-1/5 2.4028 2.4034 -0.6341 -0.6365 3.3006 3.2824 

-2/5 0.3940 0.3932 -3.5654 -3.5744 6.2640 6.1771 

-2/5 0.3940 0.3932 -6.3010 -6.3167 7.1241 7.1389 

-9/20 0.1053 0.1055 -7.9109 -7.9168 8.0687 8.0738 

-1/2 0.0000 0.0000 -10.246 -10.2564 9.3495 9.3450 
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5.1.3 Four-layer (PVDF/0°/90°/PVDF) composite 

plate 
To further demonstrate the soundness of the present 

approach in dealing with the mechanical behaviors of a four 

l a y e r e d  p i e z o e l e c t r i c  p l a t e ,  a  p l a t e  u s i n g 

(PVDF/0°/90°/PVDF) as the make-ups is taken as an 

example, as illustrated in Fig. 5. The material of the middle 

part is Graphite-epoxy and its relevant material constants 

are listed in Table 1. Three different thickness-to-length 

ratios t/l=0.01, 0.1 and 0.25 are considered, which are 

corresponding to thin, moderately thick and thick plates, 

respectively. The entire thickness of the piezoelectric plate 

is t=0.01m. The thickness of the first and fourth PVDF 

lamina is 0.1t and the two core layers have the equal 

thickness 0.4t. The same simply supported boundary 

constraints as the foregoing examples are imposed on the 

four boundary edge surfaces. Tables 19-27 reveal the 

variations of elastic displacements, electric potential, 

stresses and electric displacements along the thickness 

direction. From Tables 19-27, it is obvious that the 

introduced methodology can provide excellent results when 

compared with the 3D exact solutions of Moleiro et al. 

(2014). The maximum difference is only 2.95% for the in-

plane elastic displacement ux in the thick plate. In Table 19, 

the distribution curve of the deflections through the 

thickness tends to a vertical straight line in the thin plate, 

which is consistent with the conclusion from the foregoing 

example. What’s more, it is observed that the maxima of the 

shear stress τxz appear in the middle of the plate. However, 

magnitudes of the in-plane displacement ux, normal stress 

 

 

Fig. 8 Cross-thickness distributions of the electric potential 

 

 

σxx and the electric displacement Dz will peak at the upper 

or lower surface. 
 

5.1.4 Three-layer square plate with a circular hole 
In order to display the effectiveness of the introduced 

method in examining the bending problem of the laminated 

piezoelectric plates with more complex shapes, a three 

layered cross-ply square plate with a central circular hole is 

shown as an example, as illustrated in Fig. 6. The plate is 

composed of three cross ply laminae (0°/90°/0°) using the 

material PZT-4. The length of the square plate is l=b=1m 

and the radius of the inner circular hole is set as R=l/4. A 

wide range of thickness-to-length ratios t/l=0.01, 0.02 and 

0.05 is under consideration. In the laminated composite 

plate, each lamina has the equal thickness. All the four side 

faces of the square plate are clamped, which means that 

  

(a) The plate model (b) Meshed with eight fourth-order spectral elements 

Fig. 6 Three-layer piezoelectric perforated plate 

  

(a) uz (b) ux 

Fig. 7 Cross-thickness distributions of the elastic displacements 
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uz=ux=uy=Φ=0 at x=0, x=l, y=0 and y=b. However, the inner 

circular boundary is completely free. Different from the 

above examples, this section pays attention to the variations 

of mechanical and electrical variables at the point 

𝐴 (
√2𝑅

2
,
√2𝑅

2
). Figs. 7-11 exhibit the distributions of elastic 

displacements, electric potential, stresses and electric 

displacements along the thickness of the multilayered 

piezoelectric plate with a circular hole. From Fig. 7, it is 

obvious that the magnitudes of the elastic displacements in 

z and x directions decrease with the increase of the 

thickness-to-length ratios, which means that increasing the 

thickness-to-length ratios may increase the stiffness of the 

piezoelectric plates and thus leads to lower displacements. 

The similar phenomenon can also be found for the electric 

potential in Fig. 8. But the maxima of the electric potential 

appear at the middle surface of the plate. As to the normal 

stresses σxx in Fig. 9, it can be found that σxx are tensile in 

the first laminate, compressive in the third layer and reach 

zero at the mid-plane of the second layer. Moreover, it is 

noticed that the normal stress σxx and shear stress τxy vary 

linearly along the thickness. However, the variations of the 

normal stress σzz, shear stress τxz, electric displacements Dz 

and Dx present the pattern of curve changes. Regarding the 

shear stress τxz and electric displacement Dx, it is observed 

that the variation curves of the aspect ratio t/l=0.01 show 

greatly different trends compared with those of other aspect 

ratios. A conclusion can be drawn that the thickness-to-

length ratio significantly influences the distributions of the 

mechanical and electric quantities. 

 

 

 

5.2 Free vibration analysis 

 
Due to the fact that the dynamic responses of laminated 

piezoelectric composite plates are vital for design and 

application in many practical applications, it is important 

and essential to investigate the transverse vibration 

characteristics. In this section, three examples are provided 

to demonstrate the effectiveness of the proposed technique 

to evaluate the vibration frequencies. The three and five 

layered square and rhombic piezoelectric plates are under 

consideration. The natural frequencies in these three 

examples are normalized as 𝜔̄ =
𝜔

100
, in which ω is the 

circular vibration parameters. 

 
5.2.1 Three layered symmetric plate 
This example carries out the free vibration analysis of a 

three layered simply supported symmetric piezoelectric 

plate composed of the transversely isotropic materials PZT-

4 and PVDF. The stacking sequences of the laminated plate 

are PZT-4/PVDF/PZT-4 and PVDF/PZT-4/PVDF with the 

material properties listed in Table 1. The total thickness of 

the layered piezoelectric plate is t=0.01m. The thickness of 

the top and bottom layer is 0.25t, as shown in Fig. 12. The 

free vibration responses of the piezoelectric plates with two 

thickness-to-length ratios t/l=0.02 and 0.25 are considered. 

The thickness-to-length ratios t/l=0.02 and 0.25 are 

corresponding to thin and thick plates, respectively. Two 

different boundary conditions of Case 1: zero electric 

potential Φ on both the top and bottom planes and Case 2: 

 

  

(a) σzz (b) σxx 

Fig. 9 Cross-thickness distributions of the normal stresses 

  

(a) τxy (b) τxz 

Fig. 10 Cross-thickness distributions of the shear stresses 
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zero electric displacement Dz on the upper and lower 

surfaces are studied. The vibration frequencies of the 

simply supported piezoelectric plate are presented in Tables 

28-35. The exact eignsolutions from Heyliger and 

Saravanos (1995b) and the 2D closed form results obtained 

by Benjeddou and Deü (2002a) are also provided in these 

tables for comparison. Investigations of the normalized 

natural frequencies in Tables 28-35 reveal that the proposed 

approach is able to predict highly accurate results which are 

in very good matching with those of Heyliger and 

Saravanos (1995b) under different stacking sequences, 

boundary conditions and thickness-to-length ratios for both 

thin and thick piezoelectric plates. Additionally, it should 

be noted that with the increase of the spectral element 

orders the transverse vibration parameters acquired by the 

SBFEM and PIA converge to the exact solutions. Therefore, 

the accuracy of the present semi-analytical technique in 

determining natural frequencies of laminated piezoelectric 

plates can be confirmed. Comparing with the 2D solutions 

form Benjeddou and Deü (2002a), the non-dimensional 

eigenvalues evaluated by the introduced method are closer 

to the exact solutions. Benjeddou and Deü (2002a) adopted 

the first order shear deformation plate theory to model a 

linearly-varied displacement field along the thickness in a 

layer and assumed the through-thickness electric potential 

according to a quadratic function of z-coordinates. However, 

the displacement components and electric potential through 

the transverse direction can be analytically formulated and 

no assumptions have been added in the SBFEM. From 

Tables 28-35, it can be seen that the great differences of 

 

 

vibration frequencies under the two types of stacking 

sequences have happened when the boundary condition and 

thickness-to-length ratio are same. In other words, the 

stacking sequences play an important role in estimating the 

eigenvalues of laminated piezoelectric plates. 

 

 

Table 28 Natural frequencies of the PZT-4/PVDF/PZT-4 

plate with t/l=0.02 and Case 1 

Mode 2nd order 3rd order 4th order Exact 2D 

1 768.1424 726.5187 725.2111 725.219 725.230 

2 16450.2730 16430.9891 16430.1786 16430.2 16436.9 

3 28068.9538 28530.0591 28532.5264 28535.7 28540.4 

4 160389.2075 159801.5404 159607.0203 159732 161063.6 

5 226167.7985 226515.0906 226193.0474 226218 228455.9 

6 346648.4124 350738.9276 352725.9532 353386  

 

Table 29 Natural frequencies of the PZT-4/PVDF/PZT-4 

plate with t/l=0.02 and Case 2 

Mode 2nd order 3rd order 4th order Exact 2D 

1 768.2215 726.5450 725.2331 725.241 725.252 

2 16459.1845 16439.6399 16438.8257 16438.8 16445.6 

3 28960.7796 28549.3683 28551.8806 28555.1 28559.9 

4 160566.6366 159905.5123 159963.8162 159865 161204.3 

5 226763.0985 226777.3730 226322.3173 226643 228903.6 

6 355354.3340 355350.5560 362188.8956 363810  

  

(a) Dz (b) Dx 

Fig. 11 Cross-thickness distributions of the electric displacements 

  

(a) PZT-4/PVDF/PZT-4 (b) PVDF/PZT-4/PVDF 

Fig. 12 Three layered piezoelectric plate 
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Table 30 Vibration frequencies of the PVDF/PZT-4/PVDF 

plate with t/l=0.02 and Case 1 

Mode 2nd order 3rd order 4th order Exact 2D 

1 684.3101 635.1891 633.4267 633.417 633.666 

2 16451.2218 16431.9303 16431.1200 16431.1 16432.5 

3 28947.8667 28529.5948 28532.0538 28535.2 28537.6 

4 265099.4804 268119.6752 268044.0103 268118 292031.9 

5 351025.4710 351617.9737 353090.1385 353079 379316.5 

6 361063.2252 363760.0350 371636.4879 369396  

 

Table 31 Vibration frequencies of the PVDF/PZT-4/PVDF 

plate with t/l=0.02 and Case 2 

Mode 2nd order 3rd order 4th order Exact 2D 

1 684.4257 635.2611 633.4963 633.487 633.735 

2 16461.2645 16441.7115 16440.8977 16440.9 16442.3 

3 28084.6838 28549.6534 28553.1530 28555.3 28557.7 

4 268155.8460 271115.5912 271133.3232 271222 295866.2 

5 362560.0676 362085.1930 362572.6829 362248 390810.4 

6 367871.4845 369412.2875 368663.8606 369397  

 

Table 32 Eigenvalues of the PZT-4/PVDF/PZT-4 plate with 

t/l=0.25 with Case 1 

Mode 2nd order 3rd order 4th order Exact 2D 

1 58581.7699 58114.6111 58045.1001 58248.7 58339.5 

2 193033.9026 192180.7132 192622.9051 192408 204629.8 

3 268054.0397 268976.8833 269192.8820 271757 275428.9 

4 331423.5820 330629.6936 329097.9333 329584 355778.2 

5 366304.5435 362884.9588 363549.4557 363048 413006.4 

6 401421.5918 404941.6802 406183.3792 406665  

 

Table 33 Eigenvalues of the PZT-4/PVDF/PZT-4 plate with 

t/l=0.25 with Case 2 

Mode 2nd order 3rd order 4th order Exact 2D 

1 58706.5146 58217.9831 58146.1878 58354 58445.4 

2 192671.8861 192209.8394 192062.1027 192436 204650 

3 272627.4168 273962.2880 271686.8661 271758 275429.3 

4 331433.0502 330806.8748 329135.8457 329593 356148.2 

5 366304.5445 363161.4604 368200.0755 364072 414334.3 

6 403386.9150 409271.3724 406307.8570 407771  

 

Table 34 Eigenvalues of the PVDF/PZT-4/PVDF plate with 

t/l=0.25 with Case 1 

Mode 2nd order 3rd order 4th order Exact 2D 

1 72756.1580 71895.8442 71796.6695 72174.4 73969.5 

2 194379.3950 194522.7834 194944.3910 194760 197165 

3 303820.0080 306140.7494 306236.8137 306209 329399.5 

4 339915.9597 338682.4932 338936.0431 337107 345026.8 

5 423722.3171 424618.9436 424456.2620 424602 459653.3 

6 528137.8067 529499.8391 529143.1088 529129  

Table 35 Eigenvalues of the PVDF/PZT-4/PVDF plate with 

t/l=0.25 with Case 2 

Mode 2nd order 3rd order 4th order Exact 2D 

1 72776.2770 71912.4058 71813.090 72191.5 74006 

2 195066.1362 194643.0069 194500.1067 194881 197279.6 

3 303924.0051 306305.0203 306320.7014 306539 329861.6 

4 339966.8598 336268.4825 338964.9135 337196 345226 

5 424618.9444 424741.3515 425816.6742 424664 459693.3 

6 530193.0248 530903.0926 529483.7342 529543  

 

 

Fig. 13 Five layered hybrid plate model 

 

 

5.2.2 Five layered hybrid composite plate 
To further demonstrate the effectiveness and feasibility 

of the proposed method in calculating the frequencies of 

laminated piezoelectric plate, a five layered hybrid 

composite plate is shown as an example, as exhibited in Fig. 

13. The hybrid piezoelectric plate is comprised by the 

laminae of PZT-4/0°/90°/0°/PZT-4, in which the material of 

the cross-ply layer is Graphite-epoxy. The material 

constants of PZT-4 and Graphite-epoxy are listed in Table 1. 

Similar with the foregoing section, two different aspect 

ratios t/l=0.02 and 0.25 are under consideration, in which t 

and l represent the whole thickness and length of the square 

plate. The thickness of each PZT-4 lamina on the top and 

bottom surfaces is 0.1t and the inner three laminae have 

equal thickness 8/30t. The same boundary condition as that 

used in Section 5.2.1 are applied. Eigensolutions of the five 

layered piezoelectric composite plate are released in Tables 

36-37. From these tables, it is apparent that the results 

obtained by the developed methodology are in excellent 

agreement with the exact solutions from Heyliger and 

Saravanos (1995) and better than the 2D solutions gained 

by Benjeddou and Deü (2002a) for all aspect ratios and 

boundary conditions. Regardless of the thin and thick 

piezoelectric plates, the errors between the present results 

and exact solutions are all less than 1%, which proves the 

accuracy of the proposed method once again. When the 

same boundary conditions are utilized on the piezoelectric 

plate, the vibration frequencies with the aspect ratio t/l=0.02 

are smaller than those with t/l=0.25. Meanwhile, the mode 

frequencies of the Case 1 and Case 2 are slightly different. 

It is believed that the aspect ratio as a key factor has 

outstanding influences on the free vibration responses of 

laminated hybrid piezoelectric composite plates. 
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Table 36 Mode frequencies of the five layered hybrid plate 

with t/l=0.02 

Mode 
Case 1 Case 2 

Exact SBFEM 2D Exact SBFEM 2D 

1 618.118 618.1059 618.435 618.12 618.1081 618.437 

2 15681.6 15681.3704 15684 15681 15681.3097 15684 

3 21492.8 21492.4224 21499.4 21493 21493.1419 21499.6 

4 209704 209746.5343 214834 209707 209746.5343 214865.6 

5 210522 210566.1593  210573 210585.3105  

6 378104 378204.6020  378105 378017.3330  

 

Table 37 Eigensolutions of the five layered hybrid plate 

with t/l=0.25 

Mode 
Case 1 Case 2 

Exact SBFEM 2D Exact SBFEM 2D 

1 57074.5 56981.2327 58216.1 57089.3 56995.8915 58231 

2 191301 191174.0700 196017.7 191304 191176.8511 196019.9 

3 250769 251046.6369 268650 250770 250271.8062 268650.2 

4 274941 273698.7633 283754.1 274941 273912.1467 283754.1 

5 362492 362466.0009  362522 361802.8699  

6 381036 381117.9701  381049 381131.0903  

 

Table 38 Eigensolutions of the five-layer rhombic plate 

with α=15° 

 CCCC SSSS FCFC SCSC SSFF SCFC 

1 4066.8900 3206.6941 1731.8236 3227.7207 83.9103 1761.6093 

2 5786.8816 4390.1308 1787.2733 4425.1927 377.7869 3105.4758 

3 8116.2557 6349.0242 3052.1791 6401.0033 787.8980 4072.1538 

4 9683.6105 8312.5389 3774.8619 8346.0654 948.6738 5398.6100 

5 11108.5146 9100.4150 4898.0658 9248.6732 1049.6613 6811.0465 

6 13096.4869 11394.3917 6031.8603 11432.7184 2055.3737 7656.8325 

 

Table 39 Eigenvalues of the five-layer rhombic plate with 

α=30° 

 CCCC SSSS FCFC SCSC SSFF SCFC 

1 1220.1741 907.7389 568.9829 924.0585 68.7098 593.1793 

2 1879.0026 1382.7243 620.4998 1410.2592  274.9775 965.5458 

3 2817.0902 2125.9105 1014.3595 2163.3160 497.0205 1431.5244 

4 3048.7471 2481.1295 1407.3079 2518.4455 608.8749 1775.7855 

5 4108.0128 3184.0898 1758.2974 3252.6420 999.0912 2346.5497 

6 4415.1259 3665.0410 1894.5401 3708.2028 1095.7946 2599.3070 

 

Table 40 Vibration frequencies of the five-layer rhombic 

plate with α=45° 

 CCCC SSSS FCFC SCSC SSFF SCFC 

1 636.8413 461.1480 329.4893 475.2592 60.5584 348.2790 

2 1047.5409 789.7239 381.4994 816.0823 225.9525 546.3823 

3 1534.4277 1206.4718 619.2026 1243.0933 345.4604 881.9924 

4 1587.9417 1225.8199 882.7574 1259.7124 463.6601 987.1463 

5 2292.4984 1814.8409 1042.0526 1875.7964 754.0493 1379.8601 

6 2324.2062 1913.9768 1049.5979 1957.7032 804.2129 1409.6630 

 
 

5.2.3 Five-layer composite rhombic plate 
To exhibit the versatility and applicability of the 

employed technique in studying the free vibration responses 

of multilayered angle-ply piezoelectric plates, a five layered 

hybrid rhombic plate (0°/30°/45°/60°/90°) constituted by 

the Graphite-epoxy material with different skew angles and 

boundary constraints is shown as an example, as displayed 

in Fig. 14. Fig. 15 depicts the six different kinds of 

boundary conditions CCCC, SSSS, FCFC, SCSC, SSFF and 

SCFC, in which S stands for the simply supported 

constraint, C represents the clamped boundary and F means 

the free boundary. In this section, the simply supported and 

clamped boundary conditions are the same as those used in 

  

(a) The rhombic plate model (b) Meshed with fourth order spectral elements 

Fig. 14 Five-layer composite piezoelectric plate 

  

      

(a) CCCC (b) SSSS (c) FCFC (d) SCSC (e) SSFF (f) SCFC 

Fig. 15 The six types of boundary conditions for the rhombic plate 
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the foregoing examples. The geometric parameters of the 

plate are set as l=1m, t=0.02m. Each layer has the equal 

thickness. Four different skew angles α=15°, 30°, 45° and 

60° are under consideration. In all situations, zero electric 

potentials are imposed on both the top and bottom planes. 

Natural frequencies of the five layered angle-ply rhombic 

plate under different skew angles and boundary conditions 

are listed in Tables 38-41. From these tables, it is clear that 

with the increase of skew angles, the corresponding 

dimensionless vibration frequencies decrease when the 

same boundary constraints are applied, which is owing to 
the detraction of the flexural stiffness with the larger skew 

angle. What’s more, the decrease of the natural frequencies 

is significant when the skew angle increases from 15° to 

30°. However, there is a small change of eigenvalues with 

the skew angle increasing from 30° to 60°. Additionally, it 

is found that increasing the number of the clamped edge 

faces correspondingly leads the increase of the natural 

frequencies.  As expected, the multilayered CCCC 

piezoelectric plate produces the largest vibration 

frequencies over other boundary conditions, which is 

parallel with the former findings. When the rhombic 

piezoelectric plates with the same skew angle are under 

discussion, the distributions of dimensionless eigenvalues 

obey the following pattern 

CCCC>SCSC>SSSS>SCFC>FCFC>SSFF. It can be 

concluded that skew angles and boundary conditions make 

a great influence on the variations of eigensolutions in 

multilayered piezoelectric plates. 
 

 

6. Conclusions 
 

The distributions of elastic displacements, electric 

potential, stresses, electric displacements and transverse 

vibration frequencies in the laminated piezoelectric 

composite plates are investigated based on the SBFEM and 

PIA in this work. The proposed approach is applicable to 

multilayered piezoelectric plates with any number of laminae, 

various geometrical shapes, boundary constraints and thickness-to-

length ratios. Only a surface perpendicular to the thickness direction 

is discretized into 2D elements, which helps to improve the 

computational efficiency. Comparing with plate theories and other 

numerical methods, only three translational displacements and the 

electric potential are set as the basic unknowns and can be 

formulated analytically along the transverse direction. The whole 

derivation of the SBFEM governing equation is built upon the three 

dimensional key equations of elasticity for piezoelectric materials 

and no assumptions on the plate kinematics have been taken, which 

 

 

is unlike other methods enforcing the priori assumptions on the 

variations of the mechanical and electric quantities. The general 

solution of the governing equation is in the form of a matrix 

exponent. To further improve the accuracy of the matrix exponent, 

the PIA is employed to ensure any desired accuracy of the 

mechanical and electrical variables. By means of the kinetic 

energy technique, this article constructs the global mass 

matrix of the multilayered piezoelectric plate for the first 

time based on the SBFEM. 

From all tables, it is apparent that solutions of the 

developed methodology are in excellent agreement with the 

exact solutions available in the literatures, which means that 

the accuracy and effectiveness of the introduced semi-

analytical technique can be confirmed. In the three layered 

plate, only the electric displacement Dz gets the maximum 

amplitude with the thickness-span ratio t/l=0.25. While the 

largest magnitudes of other mechanical and electrical 

variables are obtained in the thin plate. With regard to the 

(PZT-4/0°/90°/PZT-4) plate, it is found that the through-

thickness variations of the stresses τxy and σyy bring out the 

discontinuous nature at the laminae interfaces. In the four 

layered (PVDF/0°/90°/PVDF) plate, it is observed that the 

maxima of the shear stress τxz appear in the middle of the 

plate. However, amplitudes of the in-plane displacement ux, 

normal stress σxx and the electric displacement Dz will peak 

at the upper or lower plate surface. Regarding the three 

layered perforated piezoelectric plate, the thickness-to-

length ratio significantly influences the distributions of the 

mechanical and electric fields. As to the dynamic responses, 

it can be seen that the great differences of vibration 

frequencies have happened between the two plates with the 

stacking sequences PZT-4/PVDF/PZT-4 and PZT-

4/PVDF/PZT-4. In the plate constituted by the layer-ups 

PZT-4/0°/90°/0°/PZT-4, the eigensolutions of the aspect 

ratio t/l=0.02 are remarkably different from those of 

t/l=0.25. For the rhombic plate, it is found that with the 

increase of skew angles, the vibration frequencies decrease 

when the same boundary condition are applied. It can be 

concluded that boundary conditions, stacking sequences, 

thickness-to-length ratios and skew angles have significant 

influences on the static and dynamic responses of the 

laminated piezoelectric composite plates. More meaningful 

results will be explored in forthcoming papers.  
 

 

Acknowledgments 
 

This research is supported by Grants 2018M641168 

from China Postdoctoral Science Foundation, Grants 

Table 41 Natural frequencies of the five-layer rhombic plate with α=60° 

 CCCC SSSS FCFC SCSC SSFF SCFC 

1 444.9562 315.6181 257.5857 337.9601 54.3016 270.0494 

2 795.5229 597.6456 300.0200 629.7978 199.4142 409.7683 

3 1007.3163 779.6623 491.1773 836.2188 270.0046 714.9677 

4 1197.2115 934.9984 706.3885 981.7527 410.7979 740.5927 

5 1593.8819 1329.7819 783.5366 1375.0880 559.0693 965.2218 

6 1730.4171 1384.0465 829.0902 1455.5157 651.6003 1107.7211 

765



 

Pengchong Zhang, Chengzhi Qi, Hongyuan Fang and Xu Sun 

51908022, 2015CB57800 and 51774018 from the National 

Natural Science Foundation of China, Grant IRT_17R06 

from program for Changjiang Scholars and Innovative 

Research Team, Grants 19YJC630148 from the Humanity 

and Social Science Youth foundation of Ministry of 

Education of China, for which the authors are gratefully 

acknowledged. 

 

 

References 
 
Akhras, G., and Li, W.C. (2007), “Three-dimensional static, 

vibration and stability analysis of piezoelectric composite plates 

using a finite layer method”, Smart Mater. Struct., 16(3), 561-

569. http://dx.doi.org/10.1088/0964-1726/16/3/002. 

Akhras, G., and Li, W.C. (2007), “Three-dimensional static, 

vibration and stability analysis of piezoelectric composite plates 

using a finite layer method”, Smart Mater. Struct., 16(3), 561-

569. http://dx.doi.org/10.1088/0964-1726/16/3/002. 

Akhras, G., and Li, W.C. (2011), “Stability and free vibration 

analysis of thick piezoelectric composite plates using spline 

finite strip method”, Int. J. Mech. Sci., 53(8), 575-584. 

http://dx.doi.org/10.1016/j.ijmecsci.2011.05.004. 

Askari, M., Saidi, A.R., and Rezaei, A.S. (2018), “An investigation 

over the effect of piezoelectricity and porosity distribution on 

natural frequencies of porous smart plates”, J. Sandwich Struct. 

Mater.. http://dx.doi.org/10.1177/1099636218791092. 

Baghaee, M., Farrokhabadi, A., and Jafari-Talookolaei, R.A. 

(2019), “A solution method based on Lagrange multipliers and 

Legendre polynomial series for free vibration analysis of 

laminated plates sandwiched by two MFC layers”, J. Sound 

Vibr., 447, 42-60. https://doi.org/10.1016/j.jsv.2019.01.037. 

Balamurugan, V., and Narayanan, S. (2007), “A piezoelectric 

higher-order plate element for the analysis of multi-layer smart 

composite laminates”, Smart Mater. Struct., 16(6), 2026-2039. 

http://dx.doi.org/10.1088/0964-1726/16/6/005. 

Benjeddou, A. (2000) “Advances in piezoelectric finite element 

modeling of adaptive structural elements: a survey”, Comput. 

Struct., 76(1-3), 347-363. https://doi.org/10.1016/S0045-

7949(99)00151-0. 

Benjeddou, A., and Deü, J.F. (2002a), “A two-dimensional closed-

form solution for the free-vibrations analysis of piezoelectric 

sandwich plates”, Int. J. Solids Struct., 39(6), 1463-1486. 

https://doi.org/10.1016/S0020-7683(01)00287-6. 

Benjeddou, A., Deü, J.F., and Letombe, S. (2002b), “Free 

vibrations of simply-supported piezoelectric adaptive plates: an 

exact sandwich formulation”, Thin-Walled Struct., 40(7-8), 573-

593. https://doi.org/10.1016/S0263-8231(02)00013-7. 

Bian, Z.G., Ying, J., Chen, W.Q., and Ding, H.J. (2006), “Bending 

and free vibration analysis of a smart functionally graded plate”, 

Struct. Eng. Mech., 23(1), 97-113. 

https://doi.org/10.12989/sem.2006.23.1.097. 

Birk, C., and Song, C. (2009), “A continued-fraction approach for 

transient diffusion in unbounded medium”, Comput. Meth. Appl. 

Mech. Eng., 198(33-36), 2576-2590. 

https://doi.org/10.1016/j.cma.2009.03.002. 

Carrera, E., and Nali, P. (2009), “Mixed piezoelectric plate 

elements with direct evaluation of transverse electric 

displacement”, Int. J. Numer. Methods Eng., 80(4), 403-424. 

https://doi.org/10.1002/nme.2641. 

Carrera, E., Büttner, A., and Nali, P. (2010a), “Mixed elements for 

the analysis of anisotropic multilayered piezoelectric plates”, J. 

Intell. Mater. Syst. Struct., 21(7), 701-717. 

https://doi.org/10.1177/1045389X10364864. 

Carrera, E., and Robaldo, A. (2010b), “Hierarchic finite elements 

based on a unified formulation for the static analysis of shear 

actuated multilayered piezoelectric plates”, Multidiscipline 

Modeling in Mater. Struct., 6(1), 45-77. 

https://doi.org/10.1108/15736101011055266. 

Cen, S., Soh, A.K., Long, Y.Q., and Yao, Z. H. (2002), “A new 4-

node quadrilateral FE model with variable electrical degrees of 

freedom for the analysis of piezoelectric laminated composite 

plates”, Compos. Struct., 58(4), 583-599. 

https://doi.org/10.1016/S0263-8223(02)00167-8. 

Chen, D., Birk, C., Song, C., and Du, C. (2014), “A high-order 

approach for modelling transient wave propagation problems 

using the scaled boundary finite element method”, Int. J. Numer. 

Methods Eng., 97(13), 937-959. 

https://doi.org/10.1002/nme.4613. 

Cheung, Y.K., and Jiang, C.P. (2001), “Finite layer method in 

analyses of piezoelectric composite laminates”, Comput. Meth. 

Appl. Mech. Eng., 191(8-10), 879-901. 

https://doi.org/10.1016/S0045-7825(01)00285-7. 

Ding H.J., Xu R.Q., Chi Y.W., and Chen W.Q. (1999), “Free 

axisymmetric vibration of transversely isotropic piezoelectric 

circular plates”, Int. J. Solids Struct., 36(30), 4629-4652. 

https://doi.org/10.1016/S0020-7683(98)00206-6. 

Duan, W.H., Quek, S.T., and Wang, Q. (2005), “Free vibration 

analysis of piezoelectric coupled thin and thick annular plate”, J. 

Sound Vibr., 281(1-2), 119-139. 

https://doi.org/10.1016/j.jsv.2004.01.009. 

Dube, G.P., Upadhyay, M.M., Dumir, P.C., and Kumar, S. (1998), 

“Piezothermoelastic solution for angle-ply laminated plate in 

cylindrical bending”, Struct. Eng. Mech., 6(5), 529-542. 

https://doi.org/10.12989/SEM.1998.6.5.529. 

Garção, J.S., Soares, C.M., Soares, C.M., and Reddy, J.N. (2004), 

“Analysis of laminated adaptive plate structures using layerwise 

finite element models”, Comput. Struct., 82(23-26), 1939-1959. 

https://doi.org/10.1016/j.compstruc.2003.10.024. 

Ghasemabadian, M.A., and Saidi, A.R. (2017), “Stability analysis 

of transversely isotropic laminated Mindlin plates with 

piezoelectric layers using a Levy-type solution”, Struct. Eng. 

Mech., 62(6), 675-693. 

https://doi.org/10.12989/SEM.2017.62.6.675. 

Hashemi, S.H., Es’haghi, M., and Karimi, M. (2010), “Closed-

form solution for free vibration of piezoelectric coupled annular 

plates using Levinson plate theory”, J. Sound Vibr., 329(9), 

1390-1408. https://doi.org/10.1016/j.jsv.2009.10.043. 

Heyliger, P. (1994), “Static behavior of laminated 

elastic/piezoelectric plates”, AIAA J., 32(12), 2481-2484. 

https://doi.org/10.2514/3.12321. 

Heyliger, P., and Brooks, S. (1995a), “Free vibration of 

piezoelectric laminates in cylindrical bending”, Int. J. Solids 

Struct., 32(20), 2945-2960. https://doi.org/10.1016/0020-

7683(94)00270-7. 

Heyliger, P., and Saravanos, D.A. (1995b), “Exact free-vibration 

analysis of laminated plates with embedded piezoelectric layers”, 

J. Acoust. Soc. Am., 98(3), 1547-1557. 

https://doi.org/10.1121/1.413420. 

Heyliger, P. (1997), “Exact solutions for simply supported 

laminated piezoelectric plates”, J. Appl. Mech., 64(2), 299-306. 

https://doi.org/10.1115/1.2787307. 

Heyliger, P.R., and Ramirez, G. (2000), “Free vibration of 

laminated circular piezoelectric plates and discs”, J. Sound Vibr., 

229(4), 935-956. https://doi.org/10.1006/jsvi.1999.2520. 

Hosseini-Hashemi, S., Es’haghi, M., and Taher, H. R. D. (2010), 

“An exact analytical solution for freely vibrating piezoelectric 

coupled circular/annular thick plates using Reddy plate theory”, 

Compos. Struct., 92(6), 1333-1351. 

https://doi.org/10.1016/j.compstruct.2009.11.006. 

Kapuria, S. (2004), “A coupled zig-zag third-order theory for 

piezoelectric hybrid cross-ply plates”, J. Appl. Mech., 71(5), 

604-614. https://doi.org/10.1115/1.1767170. 

766

http://dx.doi.org/10.1088/0964-1726/16/3/002
http://dx.doi.org/10.1088/0964-1726/16/3/002
http://dx.doi.org/10.1016/j.ijmecsci.2011.05.004
file:///D:/SEM/75-5/원본/%20http:/dx.doi.org/10.1177/1099636218791092
https://doi.org/10.1016/j.jsv.2019.01.037
http://dx.doi.org/10.1088/0964-1726/16/6/005
https://doi.org/10.1016/S0045-7949(99)00151-0
https://doi.org/10.1016/S0045-7949(99)00151-0
https://doi.org/10.1016/S0020-7683(01)00287-6
https://doi.org/10.1016/S0263-8231(02)00013-7
https://doi.org/10.12989/sem.2006.23.1.097
https://doi.org/10.1016/j.cma.2009.03.002
https://doi.org/10.1002/nme.2641
https://doi.org/10.1177/1045389X10364864
https://doi.org/10.1108/15736101011055266
https://doi.org/10.1016/S0263-8223(02)00167-8


 

Bending and free vibration analysis of laminated piezoelectric composite plates 

Kapuria, S., and Kulkarni, S.D. (2008), “An efficient quadrilateral 

element based on improved zigzag theory for dynamic analysis 

of hybrid plates with electroded piezoelectric actuators and 

sensors”, J. Sound Vibr., 315(1-2), 118-145. 

https://doi.org/10.1016/j.jsv.2008.01.053. 

Kapuria, S., and Kulkarni, S.D. (2009), “Static electromechanical 

response of smart composite/sandwich plates using an efficient 

finite element with physical and electric nodes”, Int. J. Mech. 

Sci., 51(1), 1-20. https://doi.org/10.1016/j.ijmecsci.2008.11.005. 

Kapuria, S., Kumari, P., and Nath, J.K. (2010), “Efficient 

modeling of smart piezoelectric composite laminates: a review”, 

Acta Mech., 214(1-2), 31-48. https://doi.org/10.1007/s00707-

010-0310-0. 

Khandelwal, R.P., Chakrabarti, A., and Bhargava, P. (2013), “An 

efficient hybrid plate model for accurate analysis of smart 

composite laminates”, J. Intell. Mater. Syst. Struct., 24(16), 

1927-1950. https://doi.org/10.1177/1045389X13486713. 

Khandelwal, R.P., Chakrabarti, A., and Bhargava, P. (2014), 

“Static and dynamic control of smart composite laminates”, 

AIAA J., 52(9), 1896-1914. https://doi.org/10.2514/1.J052666. 

Kulikov, G.M., and Plotnikova, S.V. (2013), “Three-dimensional 

exact analysis of piezoelectric laminated plates via a sampling 

surfaces method”, Int. J. Solids Struct., 50(11-12), 1916-1929. 

https://doi.org/10.1016/j.ijsolstr.2013.02.015. 

Kulikov, G.M., and Plotnikova, S.V. (2017), “Benchmark solutions 

for the free vibration of layered piezoelectric plates based on a 

variational formulation”,  J. Intell. Mater. Syst. Struct., 

28(19), 2688-2704. https://doi.org/10.1177/1045389X17698241. 

Lage, R.G., Soares, C.M., Soares, C.M., and Reddy, J. N. (2004), 

“Modelling of piezolaminated plates using layerwise mixed 

finite elements”, Comput. Struct., 82(23-26), 1849-1863. 

https://doi.org/10.1016/j.compstruc.2004.03.068. 

Li, B., Fang, H., He, H., Yang, K., Chen, C., and Wang, F. (2019), 

“Numerical simulation and full-scale test on dynamic response 

of corroded concrete pipelines under Multi-field coupling”, 

Constr. Build. Mater., 200, 368-386. 

https://doi.org/10.1016/j.conbuildmat.2018.12.111. 

Li, C., Song, C., Man, H., Ooi, E.T., and Gao, W. (2014), “2D 

dynamic analysis of cracks and interface cracks in piezoelectric 

composites using the SBFEM”, Int. J. Solids Struct., 51(11-12), 

2096-2108. https://doi.org/10.1016/j.ijsolstr.2014.02.014. 

Li, G., Dong, Z.Q., and Li, H.N. (2018), “Simplified Collapse-

Prevention Evaluation for the Reserve System of Low-Ductility 

Steel Concentrically Braced Frames”, J. Struct. Eng., 144(7), 

04018071. https://doi.org/10.1061/(ASCE)ST.1943-

541X.0002062. 

Li, J., Shi, Z., and Ning, S. (2017), “A two-dimensional consistent 

approach for static and dynamic analyses of uniform beams”, 

Eng. Anal. Bound. Elem., 82, 1-16. 

https://doi.org/10.1016/j.enganabound.2017.05.009. 

Li, S., Huang, L., Jiang, L., and Qin, R. (2014), “A bidirectional 

B-spline finite point method for the analysis of piezoelectric 

laminated composite plates and its application in material 

parameter identification”, Compos. Struct., 107, 346-362. 

https://doi.org/10.1016/j.compstruct.2013.08.007. 

Lin, G., Zhang, P., Liu, J., and Li, J. (2018), “Analysis of 

laminated composite and sandwich plates based on the scaled 

boundary finite element method”, Compos. Struct., 187, 579-

592. https://doi.org/10.1016/j.compstruct.2017.11.001. 

Liu, C.F., Chen, T.J., and Chen, Y.J. (2008), “A modified 

axisymmetric finite element for the 3-D vibration analysis of 

piezoelectric laminated circular and annular plates” J. Sound 

Vibr., 309(3-5), 794-804. 

https://doi.org/10.1016/j.jsv.2007.07.048. 

Mackerle, J. (2003), “Smart materials and structures-a finite 

element approach-an addendum: a bibliography (1997–2002)”, 

Model. Simul. Mater. Sci. Eng., 11(5), 707-744. 

https://doi.org/10.1088/0965-0393/11/5/302. 

Man, H., Song, C., Gao, W., and Tin-Loi, F. (2012), “A unified 

3D-based technique for plate bending analysis using scaled 

boundary finite element method”, Int. J. Numer. Methods Eng., 

91(5), 491-515. https://doi.org/10.1002/nme.4280. 

Man, H., Song, C., Xiang, T., Gao, W., and Tin-Loi, F. (2013), 

“High-order plate bending analysis based on the scaled boundary 

finite element method”, Int. J. Numer. Methods Eng., 95(4), 331-

360. https://doi.org/10.1002/nme.4519. 

Man, H., Song, C., Gao, W., and Tin-Loi, F. (2014), “Semi-

analytical analysis for piezoelectric plate using the scaled 

boundary finite-element method”, Comput. Struct., 137, 47-62. 

https://doi.org/10.1016/j.compstruc.2013.10.005. 

Mauritsson, K., and Folkow, P.D. (2015), “Dynamic equations for 

a fully anisotropic piezoelectric rectangular plate”, Comput. 

Struct., 153, 112-125. 

https://doi.org/10.1016/j.compstruc.2015.02.023. 

Messina, A., and Carrera, E. (2015), “Three-dimensional free 

vibration of multi-layered piezoelectric plates through 

approximate and exact analyses”, J. Intell. Mater. Syst. Struct., 

26(5), 489-504. https://doi.org/10.1177/1045389X14529611. 

Messina, A., and Carrera, E. (2016), “Three-dimensional analysis 

of freely vibrating multilayered piezoelectric plates through 

adaptive global piecewise-smooth functions”, J. Intell. Mater. 

Syst. Struct., 27(20), 2862-2876. 

https://doi.org/10.1177/1045389X16642303. 

Moleiro, F., Soares, C.M., Soares, C.M., and Reddy, J.N. (2012), 

“Assessment of a layerwise mixed least-squares model for 

analysis of multilayered piezoelectric composite plates”, 

Comput. Struct., 108, 14-30. 

https://doi.org/10.1016/j.compstruc.2012.04.002. 

Moleiro, F., Soares, C.M., Soares, C.M., and Reddy, J.N. (2014), 

“Benchmark exact solutions for the static analysis of 

multilayered piezoelectric composite plates using PVDF”, 

Compos. Struct., 107, 389-395. 

https://doi.org/10.1016/j.compstruct.2013.08.019. 

Moleiro, F., Soares, C.M., Soares, C.M., and Reddy, J. N. (2015), 

“Layerwise mixed models for analysis of multilayered 

piezoelectric composite plates using least-squares formulation”, 

Compos. Struct., 119, 134-149. 

https://doi.org/10.1016/j.compstruct.2014.08.031. 

Moleiro, F., Araújo, A.L., and Reddy, J.N. (2017), “Benchmark 

exact free vibration solutions for multilayered piezoelectric 

composite plates”, Compos. Struct., 182, 598-605. 

https://doi.org/10.1016/j.compstruct.2017.09.035. 

Pendhari, S.S., Sawarkar, S., and Desai, Y.M. (2015), “2D semi-

analytical solutions for single layer piezoelectric laminate 

subjected to electro-mechanical loading”, Compos. Struct., 120, 

326-333. https://doi.org/10.1016/j.compstruct.2014.10.018. 

Plagianakos, T.S., and Papadopoulos, E.G. (2015), “Higher-order 

2-D/3-D layerwise mechanics and finite elements for composite 

and sandwich composite plates with piezoelectric layers”, 

Aerosp. Sci. Technol., 40, 150-163. 

https://doi.org/10.1016/j.ast.2014.10.015. 

Rezaiee-Pajand, M., and Sadeghi, Y. (2013), “A bending element 

for isotropic, multilayered and piezoelectric plates”, Lat. Am. J. 

Solids Struct., 10(2), 323-348. http://dx.doi.org/10.1590/S1679-

78252013000200006. 

Saravanos, D.A., Heyliger, P.R., and Hopkins, D.A. (1997), 

“Layerwise mechanics and finite element for the dynamic 

analysis of piezoelectric composite plates”, Int. J. Solids Struct., 

34(3), 359-378. https://doi.org/10.1016/S0020-7683(96)00012-1. 

Saravanos, D.A., and Heyliger, P.R. (1999), “Mechanics and 

computational models for laminated piezoelectric beams, plates, 

and shells”, Appl. Mech. Rev., 52(10), 305-320. 

https://doi.org/10.1115/1.3098918. 

Sawarkar, S., Pendhari, S., and Desai, Y. (2016), “Semi-analytical 

767



 

Pengchong Zhang, Chengzhi Qi, Hongyuan Fang and Xu Sun 

solutions for static analysis of piezoelectric laminates”, Compos. 

Struct., 153, 242-252. 

https://doi.org/10.1016/j.compstruct.2016.05.106. 

Shiyekar, S.M., and Kant, T. (2011), “Higher order shear 

deformation effects on analysis of laminates with piezoelectric 

fibre reinforced composite actuators”, Compos. Struct., 93(12), 

3252-3261. https://doi.org/10.1016/j.compstruct.2011.05.016. 

Singh, A.K., Chaki, M.S., Hazra, B., and Mahto, S. (2017), 

“Influence of imperfectly bonded piezoelectric layer with 

irregularity on propagation of Love-type wave in a reinforced 

composite structure”, Struct. Eng. Mech., 62(3), 325-344. 

https://doi.org/10.12989/SEM.2017.62.3.325. 

Song, C., and Wolf, J.P. (1997), “The scaled boundary finite-

element method-alias consistent infinitesimal finite-element cell 

method-for elastodynamics”, Comput. Meth. Appl. Mech. Eng., 

147(3-4), 329-355. https://doi.org/10.1016/S0045-

7825(97)00021-2. 

Song, C., and Wolf, J.P. (1999), “The scaled boundary finite 

element method-alias consistent infinitesimal finite element cell 

method-for diffusion”, Int. J. Numer. Methods Eng., 45(10), 

1403-1431. https://doi.org/10.1002/(SICI)1097-

0207(19990810)45:10<1403::AID-NME636>3.0.CO;2-E. 

Song, C., and Wolf, J.P. (2000), “The scaled boundary finite-

element method-a primer: solution procedures”, Comput. Struct., 

78(1-3), 211-225. https://doi.org/10.1016/S0045-7949(00)00100-

0. 

Song, C., and Vrcelj, Z. (2008), “Evaluation of dynamic stress 

intensity factors and T-stress using the scaled boundary finite-

element method”, Eng. Fract. Mech., 75(8), 1960-1980. 

https://doi.org/10.1016/j.engfracmech.2007.11.009. 

Song, C. (2009), “The scaled boundary finite element method in 

structural dynamics”, Int. J. Numer. Methods Eng., 77(8), 1139-

1171. https://doi.org/10.1002/nme.2454. 

Song, C., Tin-Loi, F., and Gao, W. (2010), “A definition and 

evaluation procedure of generalized stress intensity factors at 

cracks and multi-material wedges”, Eng. Fract. Mech., 77(12), 

2316-2336. https://doi.org/10.1016/j.engfracmech.2010.04.032. 

Tanzadeh, H., and Amoushahi, H. (2019), “Buckling and free 

vibration analysis of piezoelectric laminated composite plates 

using various plate deformation theories”, Eur. J. Mech. A-

Solids, 74, 242-256. 

https://doi.org/10.1016/j.euromechsol.2018.11.013. 

Torres, D.A.F., and Mendonça, P.T.R. (2010a), “Analysis of 

piezoelectric laminates by generalized finite element method and 

mixed layerwise-HSDT models”, Smart Mater. Struct., 19(3), 

035004. http://iopscience.iop.org/0964-1726/19/3/035004. 

Torres, D.A.F., and Paulo de Tarso, R.M. (2010b), “HSDT-

layerwise analytical solution for rectangular piezoelectric 

laminated plates”, Compos. Struct., 92(8), 1763-1774. 

https://doi.org/10.1016/j.compstruct.2010.02.007. 

Torres, D.A.F., Paulo de Tarso, R.M., and De Barcellos, C.S. 

(2011), “Evaluation and verification of an HSDT-Layerwise 

generalized finite element formulation for adaptive piezoelectric 

laminated plates”, Comput. Meth. Appl. Mech. Eng., 200(5-8), 

675-691. https://doi.org/10.1016/j.cma.2010.09.014. 

Vel, S.S., Mewer, R.C., and Batra, R.C. (2004), “Analytical 

solution for the cylindrical bending vibration of piezoelectric 

composite plates”, Int. J. Solids Struct., 41(5-6), 1625-1643. 

https://doi.org/10.1016/j.ijsolstr.2003.10.012. 

Vidal, P., Gallimard, L., and Polit, O. (2016), “Modeling of 

piezoelectric plates with variables separation for static analysis”, 

Smart Mater. Struct., 25(5), 055043. 

https://doi.org/10.1088/0964-1726/25/5/055043. 

Wang, J., and Yang, J. (2000), “Higher-order theories of 

piezoelectric plates and applications”, Appl. Mech. Rev., 53(4), 

87-99. https://doi.org/10.1115/1.3097341. 

Wolf, J.P., and Song, C. (2000), “The scaled boundary finite-

element method-a primer: derivations”, Comput. Struct., 78(1-3), 

191-210. https://doi.org/10.1016/S0045-7949(00)00099-7. 

Wu, L., Jiang, Z., and Feng, W. (2004), “An analytical solution for 

static analysis of a simply supported moderately thick sandwich 

piezoelectric plate”, Struct. Eng. Mech., 17(5), 641-654. 

https://doi.org/10.12989/SEM.2004.17.5.641. 

Wu, N., Wang, Q., and Quek, S.T. (2010), “Free vibration analysis 

of piezoelectric coupled circular plate with open circuit”, J. 

Sound Vibr., 329(8), 1126-1136. 

https://doi.org/10.1016/j.jsv.2009.10.040. 

Xiang, T., Natarajan, S., Man, H., Song, C., and Gao, W. (2014), 

“Free vibration and mechanical buckling of plates with in-plane 

material inhomogeneity-A three dimensional consistent 

approach”, Compos. Struct., 118, 634-642. 

https://doi.org/10.1016/j.compstruct.2014.07.043. 

Zhang, P., Qi, C., Fang, H., Ma, C., and Huang, Y. (2019), “Semi-

analytical analysis of static and dynamic responses for laminated 

magneto-electro-elastic plates”,  Compos. Struct., 222, 

110933. https://doi.org/10.1016/j.compstruct.2019.110933. 

Zhang, P., Qi, C., Fang, H., and He, W. (2020), “Three 

dimensional mechanical behaviors of in-plane functionally 

graded plates”, Compos. Struct., 112124. 

https://doi.org/10.1016/j.compstruct.2020.112124. 

Zhang, Z., Feng, C., and Liew, K.M. (2006), “Three-dimensional 

vibration analysis of multilayered piezoelectric composite 

plates”, Int. J. Eng. Sci., 44(7), 397-408. 

https://doi.org/10.1016/j.ijengsci.2006.02.002. 

Zhong, W.X., Lin, J.H., and Gao, Q. (2004), “The precise 

computation for wave propagation in stratified materials”, Int. J. 

Numer. Methods Eng., 60(1), 11-25. 

https://doi.org/10.1002/nme.952. 

 

 

CC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

768

https://doi.org/10.1016/S0045-7949(00)00100-
https://doi.org/10.1016/S0045-7949(00)00100-
https://doi.org/10.1016/j.compstruct.2019.110933


 

Bending and free vibration analysis of laminated piezoelectric composite plates 

Appendix. Coefficients of the matrix [Q] 
 

The coefficient conversions from the matrix [C] in the 

local fiber coordinate system to [Q] in the global Cartesian 

coordinate system are listed in the following: 

( )4 2 2 4

11 11 12 45 222 2Q c c c c s c c s= + + +  (A.1) 

( ) ( )4 4 2 2

12 12 11 22 454Q c c s c c c s c= + + + −  (A.2) 

2 2

13 13 23Q c c c s= +  (A.3) 

( ) ( )3 3

14 11 12 45 12 22 452 2Q c c c sc c c c cs= − − + − +  (A.4) 

( )4 2 2 4

22 11 12 45 222 2Q c s c c s c c c= + + +  (A.5) 

2 2

23 13 23Q c s c c= +  (A.6) 

( ) ( )3 3

24 11 12 45 12 22 452 2Q c c c s c c c c c s= − − + − +  (A.7) 

33 33Q c=  (A.8) 

( )34 13 23Q c c sc= −  (A.9) 

( ) ( )2 2 4 4

44 11 12 22 45 452 2Q c c c c c s c c s= − + − + +  (A.10) 

2 2

55 56 46Q c c c s= +  (A.11) 

( )56 46 56Q c c sc= −  (A.12) 

2 2

66 46 56Q c c c s= +  (A.13) 

2 2

31 31 32e e c e s= +  (A.14) 

2 2

32 31 32e e s e c= +  (A.15) 

33 33e e=  (A.16) 

( )34 31 32e e e sc= −  (A.17) 

( )15 15 24e e e sc= −  (A.18) 

2 2

16 15 24e e c e s= +  (A.19) 

2 2

25 24 15e e c e s= +  (A.20) 

( )26 15 24e e e sc= −  (A.21) 

2 2

11 22xx c s  = +  (A.22) 

2 2

11 22yy s c  = +  (A.23) 

( )11 22xy sc  = −  (A.24) 

33zz =  (A.25) 

in which c and s stand for c=cosα and s=sinα with the angle 

α measured anticlockwise from the x-axis to the 1-axis. 
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