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1. Introduction 
 

Over the last few years, the usage of composite 

materials has been rapidly increasing due to their beneficial 

properties, such as their high specific strength, high specific 

modulus, greater corrosion resistance and longer fatigue 

life. The use of composite materials in several industrial 

applications, i.e. automotive, aeronautical, marine, railway 

and civil engineering, has been growing over the past few 

years. Functionally graded materials (FGMs) are composite 

materials that result from the combination of two or more 

distinct components in a way to attain optimum physical 

and mechanical properties. In addition, some of these 

materials possess a number of advantages that make them 

attractive in potential applications. In particular, their 

electrical conductivity and thermal properties make them 

suitable as multifunctional materials. The development of 

multifunctional composite materials and structures is aimed 

at providing innovative functionalities to structures in 

addition to their load carrying capacity (Koizumi 1997).  

Nanostructured elements, which are emerging as a new 
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class of materials, have attracted great attention in the 

scientific community due to their attractive properties. 

Conducting experiments on nanoscale specimens turns out 

to be difficult and expensive (Eringen 1983, 2002). 

Therefore, the development of appropriate mathematical 

models for nanostructures is an important issue with regard 

to the applications of nanotechnology. The nonlocal 

mechanics theory has been developed to take into account 

details of nano/micro-structure in an implicit way. In this 

theory, a nonlocal parameter, which characterizes the 

internal length of such nanostructured objects, is 

introduced. During the past few years, a great deal of 

research has been carried out on the topic of vibration 

analysis of isotropic, orthotropic and FGM structures due to 

their significant importance in the field of in nanoscale 

engineering. Recently, several theories and models, in 

which beams are generally subjected to various types of 

mechanical loads, have been developed (Aydogdu 2009, 

Reddy 2007). A study realized by (Tahouneh et al. 2018) 

treated the effects of agglomeration, geometrical, and 

material parameters on the frequency parameters of the 

sandwich functionally graded nanocomposite plate. 

(Tahouneh et al. 2019) used an analysis technique 

concerning to vibration analysis of a single layered 

graphene sheet (SLGS) with corner cutout based on the 

nonlocal elasticity model framework of classical Kirchhoff 

thin plate. The buckling, bending and vibration behaviours 

of functionally graded nanobeams with nonuniform 

thickness are investigated in (Rajasekaran and Khaniki 

2018) with nonlocal Eringen theory. For molecular study is 

introduced by (Tahouneh et al. 2020) to study the vibration 
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analysis of vacancy defected graphene sheet as a 

nonisotropic structure via molecular dynamic and 

continuum approaches. 

The Differential Quadrature Method (DQM) proved to 

be a simple and efficient numerical technique for solving 

linear and nonlinear partial differential equations by the 

discretization of any derivative at a point with a weighted 

linear sum of the functional values of its neighboring points, 

as reported in (Bellman et al. 1972). This method addresses 

complex problems for the static and dynamic analysis of 

various structural components, such as beams, plates, and 

cylinders. (Tahouneh 2014) studied the free vibrations of 

bidirectional functionally graded annular plates lying on a 

two-parameter elastic foundation. The formulations, which 

are based on bi-dimensional and three-dimensional 

elasticity theories, are solved using numerical methods 

based on the differential quadrature method (DQM) for the 

analysis of structural and dynamical systems (Bozdogan 

2012, Yas et al. 2011, Bambill et al. 2010). (Rajasekaran et 

al. 2009) presented a unified solution method for the 

classical beam theory. According to the classical approach 

used in the field of strength of materials, the system of 

external forces, geometry, mechanical characteristics of 

materials are well known, which makes it possible to 

determine the internal stresses by using a differential 

analysis of the conservative kinematic laws. The free 

vibration and buckling analysis of beams, using Eringen’s 

theory for nonlocal elasticity, was carried out using the 

modified differential quadrature method developed by 

(Murmu and Pradham 2008). (Ghazaryan et al. 2017) 

studied the free vibrations of non-uniform cross-section and 

axially functionally graded Euler–Bernoulli beams with 

various boundary conditions by differential transform 

method, (Garijo 2015) dealed with the eigenvalues problem 

related to the free vibration of Euler–Bernoulli beams of 

variable cross-section issolved using a collocation technique 

based on Bernstein polynomials. (Mechab et al. 2016) 

proposed the solution for free vibration analysis of 

orthotropic beams with local and nonlocal formulation 

using the high-order theory including the Poisson effect. 

(Nedri et al. 2014) examined the free vibration of laminated 

composite plates on elastic foundations with a refined 

hyperbolic shear deformation theory. 
The present investigation aims at deriving the nonlocal 

elasticity for modeling nano E-FGM beams based on Euler-
Bernoulli beam theory. Various boundary conditions and 
non-uniform cross sections are considered for obtaining the 
nano E-FGM beam models. For this, the nonlocal analytical 
model is applied to simply supported, cantilever, propped 
cantilever and clamped beams. The effects of small-scale 
parameters on the deflections and bending moments in 
beams are examined. In addition, the free vibration 
numerical results are obtained by solving the beam bending 
differential equation with variable coefficients, using the 
differential quadrature method (DQM). 

 

 

2. Mathematical formulation 
 

Consider a straight uniform beam with length 𝐿 and 
thickness ℎ. A coordinate system (𝑥, 𝑧) is introduced on the 
central axis of the beam, with the non-uniform variation of 

the width b(x), and the z axis is along the thickness 
direction; the origin of the coordinate system is placed at 
the left end of the beam. Moreover, it is assumed that the 
beam deformations take place in the (𝑥 ,𝑧 ) plane, and 
therefore the displacement components (𝑢,𝑤) along the x 
and z directions depend solely on the coordinates 𝑥 and 𝑧 
and time t. The general form of the following displacement 
field can be written as:  
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Here u and w are the axial and transverse displacements 

of the beam center line in the x and z directions, 

respectively, and t denotes time. 
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2.1 Nonlocal model for free vibration of E-FGM 
beams  

 

Consider a linear homogenous nonlocal elastic body. 

The stress components, while neglecting the body forces, 

can be expressed as (Eringen 1983): 

( ) ( ) ( ) ( )'',' xdvxCxxx klijkl

V
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(4) 

where 𝜎𝑖𝑗 , 𝜀𝑘𝑙 and 𝐶𝑖𝑗𝑘𝑙  are the stress, strain and fourth-

order elasticity tensors, respectively. The term 𝜆(|𝑥′ −
𝑥|, 𝛼) is the nonlocal modulus, and the attenuation function 

is the kernel function which is included into the constitutive 

equations to measure the nonlocal effects at the point x 

induced by the local strains at any point x'; the value of 
|𝑥′ − 𝑥|  is the Euclidean distance. Also, 𝛼 is the scale 

coefficient or nonlocal unit length scale parameter 

describing the effect of the micro- and nanoscale on the 

mechanical behavior. The term 𝛼 depends on the internal 

characteristic lengths (lattice parameter, granular size, 

distance between C–C bonds), ℓ𝑖  , and the external 

characteristic lengths (crack length, wave length), le. It is 

expressed as 𝛼 =
𝑒0ℓ𝑖

ℓ𝑒
, where the parameter 𝑒0 is estimated 

so as the relations of the nonlocal elasticity model could 

provide satisfactory approximations of the atomic 

dispersion curves of plane waves with those of the atomic 

lattice dynamics. Due to the difficulty of solving the 

integral constitutive relation, it was decided to use the 

Eringen simplified equation in its differential form, as given 

by Equation (4), as a basis for the formulation of the 

nonlocal constitutive equation (5): 

( )( )  :)(1 22
0 zCae ij =−

 
(5) 

where ‘:’ represents the double dot product; ∇2  is the 

Laplacian operator, expressed as: 
𝜕2

𝜕𝑥2 
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Thus, using the Laplacian operator, the nonlocal 

constitutive relations can be expressed as: 
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where 𝜎𝑥 and 𝜀𝑥  are the stress and strain components, 

respectively. In addition, the elastic constants 𝑄11  are 

expressed in terms of Young’s modulus 𝐸 and Poisson’s 

ratio 𝜈. 

 

2.2 Governing equations and boundary   
conditions 

 

Using equations 1, 2, and 3 for strains and stresses as 

well as the dynamic version of the principle of virtual work, 

variationally consistent governing differential equations and 

the corresponding boundary conditions for the beam under 

consideration are obtained. When the principle of virtual 

work is applied to the beam, the following equation is 

obtained: 
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(8) 

Here the quantity 𝛿 denotes the variational operator. 

Employing Green’s theorem in Equation (8) allows 

obtaining the coupled Euler–Lagrange equations, which 

represent the governing differential equations of the beam, 

along with its associated boundary conditions. The resulting 

governing differential equations are as follows: 
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Where 𝐴𝑖𝑗,𝐵𝑖𝑗 , 𝐷𝑖𝑗and 𝐼11, are the beam stiffness, as 

defined by 
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Here the local stresses 𝑁 and 𝑀 are defined by 
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The nonlocal higher-order beam generalized constitutive 

law can be written as: 
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The bending moment may then be expressed as: 
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Substitution of Equation (13) into Equation (10) leads to 

the governing equations given below 
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Furthermore, multiplication of Equation (15a) by 

𝐵11 and Equation (15b) by 𝐴11 allows obtaining 
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Subtracting Equation (16a) from Equation (16b) gives 

one single differential equation as a function of 𝑤0(𝑥, 𝑡): 
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For harmonic vibrations, the transverse displacement 

can be expressed as: 
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Let us introduce the dimensionless formulation, based 

on the following dimensionless parameters that are given 

by: 
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where 𝜁0  represents the value of 𝜁  of an isotropic 

homogeneous beam (E2 / E1 = 1).  

 

2.3 Solution procedure using the differential 
quadrature method 

 

 In the differential quadrature method (DQM), the 

partial derivatives, appearing in the partial differential 

equation of a function, with respect to a space variable at a 

given interpolation point is approximated as a weighted 

linear sum of the function values at all chosen interpolation 

points. Thus, the differential quadrature method allows 

transforming the governing differential equation into a set 

of equivalent simultaneous equations. This is done by 

replacing the partial derivative by equivalent weighting 

coefficients. 

The first partial derivative is equivalent to a weighting 

coefficient matrix, 
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Similarly, the second, third and fourth order partial 

derivatives are expressed as: 
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Where, [𝑁0] is a matrix developed from Chebyshev 

polynomials with interpolation points defined as: 
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The discretization points are obtained from the 

Chebyshev-Gauss-Lobatto interpolation points which are 

located in the local coordinate system within the interval [-

1, 1] 
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Note that n is the number of interpolation points. The 

differential vibration equation in discrete form, with 

dimensional parameters, is given by the expression: 
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With nondimensional formulation parameters: 
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In order to implement the various boundary conditions 

in Equations 21 and 27, the governing equations are 

rewritten in Table 1. 

 

 

Table 1 Different boundary conditions of E-FGM beam 

with the nondimensional formulation 

Simply supported - simply supported (S–S) 
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Simply supported - clamped supported (S–C)   
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Clamped - clamped (C–C) 
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Clamped – Free (C–F) 

( )

( ) ( ) 10/0/

00/,0

3322 ===

===





atdWdanddWd

atddWW

0,0

0,0

∑∑

∑

11

1

11

==

==

==

=

n

j

jnj

n

j

jnj

n

j

jjj

WCandWB

WAandW

 

 
Fig. 1 Variation of uniform and nonuniform width of 

beam for the different shape function 

 
Table 2 First three Nondimensional natural frequencies 

𝜔 =
𝜔̄𝑛

√𝜁0
 of nonuniform beam with exponential width for  

𝐵(𝜉) = 𝑏0𝑒−𝛿𝜉 

E1 

/ 

E2 

 

Mode 

number 

S-S C-C 

 

δ 

Present 

DQM 

(N=11) 

Cem Ece 

et 

al. 2007 

Present 

DQM 

(N=55) 

CemEce et 

al. 2007 

1 

 

0 

1 9.869 9.869 22.373 22.373 

2 39.478 39.478 61.671 61.673 

3 88.850 88.826 120.900 120.903 

 

1 

1 9.773 9.773 22.511 22.512 

2 39.570 39.570 61.857 61.860 

3 88.968 88.970 121.104 121.108 

 

2 

1 9.487 9.487 22.936 22.938 

2 39.852 39.852 62.419 62.423 

3 89.405 89.405 121.722 121.723 

 

Table 3 First three Nondimensional natural frequencies 𝜔𝑛 

of uniform width 𝐵(𝜉) = 𝑏0 with E-FGM beams 

E1 

/ 

E2 

Mode 

number 

S-S C-C 

Present 

DQM 

(N=11) 

Yang et al. 

2008 

Present 

DQM 

(N=55) 

Yang et 

al. 2008 

0.2 

1 9.273 9.270 21.094 21.020 

2 37.091 37.090 57.941 57.940 

3 83.454 84.280 113.587 113.590 

1 

1 9.869 9.870 22.373 22.370 

2 39.478 39.480 61.671 61.670 

3 88.826 88.830 120.900 120.900 

5 

1 9.273 9.270 21.094 21.020 

2 37.091 37.090 57.941 57.940 

3 83.451 84.280 113.587 113.590 

 
 
3. Material gradient of E-FGM beams 

 

Consider an elastic E-FGM beam with the different 

shape function of width. The Young’s modulus, the 

Poisson’s ratio and mass density of the beams vary only in 

the thickness direction with exponential function (E-FGM) 

as follow: 

( ) zeEzE 
0=

;
( ) zez  0=

;
( ) zez  0=

 (28) 
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Fig. 2 Relative errors for nondimensional frequency 

parameters with number of interpolation points   for a 

simply-simply (S-S) boundary condition 
 

Table 4 Dimensionless fundamental frequency for simply 

supported-simply supported (S- S) beams for different non-

local parameters and various number of interpolation points 

 

 
where,  𝐸0 , 𝜌0  and 𝜇0  are the values of the Young’s 
modulus, mass density, and the Poisson’s ratio at the 
midplane of the beam. 𝛼, is a constant defining the material 
property variation along the thickness direction, for 
isotropic homogeneous beam 𝛼 = 0. The top surface of the 
beam is aluminium with the material parameters: 𝐸1 =
70𝐺𝑃𝑎,𝜇1 = 0.33,𝜌1 = 2780𝑘𝑔/𝑚3. 

The results presented in Table 2 allow us to validate the 
first three normalized natural frequencies of isotropic beam 
with uniform and exponential width, see Figure 1. 

The natural frequencies of isotropic and E-FGM beam 
without nonlocal effects, obtained in the present study, 
proved to be in excellent agreement with those given by 
(Cem Ece et al. 2007) in   Table 2 and (Yang et al. 2008) 
in Table 3, for cases of simply-supported (S-S), clamped-
clamped (C-C) beams. 

The results in Table 4 of the natural frequencies with 

nonlocal effects for simply-supported (S-S) beam converge 

at ten interpolation points (N = 10) with a relative error of 

0.7% with respect to the results of (Reddy 2007) and 

(Pradhan and Murmu 2009). These results are similar with 

the nonlocal parameter between 0 and 0.05. The 

convergence of the natural frequencies without nonlocal 

effects for case simply-supported (S-S) beam is provided at 

N = 10 grid interpolation points with relative errors equal to 

0.01% with Yang et al. 2008) see Figure 2. For cases of 

clamped-clamped (C-C), clamped-free (C-F) and simply 

supported- clamped (S-C) beams, the convergence is 

provided at N = 55 grid interpolation points with relative 

errors equal to -2.8710-4, 0.15 and 0.029 %, respectively, as 

shown in Figure 3 

Increasing the nonlocal parameter in Table 5 to 8 leads 

to a considerable decrease in the free vibration frequency.  

These conclusions are obtained for different beam 

widths and mechanical properties of E-FGM materials, and 

also for different boundary conditions, except for the 

clamped-free (C-F) case where this variation is linear and 

weak. For the boundary condition of a simply-supported (S-

S) beam, the width variation does not affect the free 

vibrations; the results obtained by varying the width are 

almost identical, as shown in Figure (4.a). With regard to 

the other boundary conditions (S-C), (C-C) and (C-F), the 

difference is found to be significant see Figures 4b, 4c and 

4d 

Figure 5 illustrates the variation of the nondimensional 

fundamental frequency as a function of the modulus ratio, 

for various nonlocal parameters and boundary conditions. It 

is clearly noted that as the modulus ratio of the E-FGM 

beam increases, the nondimensional fundamental frequency, 

for the different nonuniform beam widths, goes up to 

eventually reach a maximum value in this isotropic material 

(E2//E1=1). Beyond this value, the vibrational frequency 

starts decreasing gradually for all boundary conditions. 

Therefore, increasing the nonlocal parameter causes the 

vibrational frequency to decrease under all boundary 

conditions. 

 

 

Fig. 3 Relative errors for nondimensional frequency 

parameters with number of interpolation points for the 

boundary conditions:  clamped – clamped(C-C), clamped – 

free (C-F) and simply supported- clamped (S-C) 

Number of interpolation points 

g/100 DQM (N=4) 
DQM 

(N=5) 

DQM 

(N=7) 

DQM 

(N=10) 

(Reddy 

2007) 

(Pradhan 

2009) 

0 
10.6667 

(+8.08%) 

9.8240 

(-0.46%) 

9.8697 

(+0.007%) 

9.8696 

(+0.006%) 
9.869 

0.5 
10.3931 

(+7.88%) 

9.5912 

(-0.44%) 

9.6348 

(+0.008%) 

9.6347 

(+0.007%) 
9.634 

1 
10.1396 

(+7.70%) 

9.3743 

(-0.43%) 

9.4160 

(+0.011%) 

9.4159 

(+0.009%) 
9.415 

1.5 
9.9038 

(+7.52%) 

9.1714 

(-0.43%) 

9.2114 

(+0.004%) 

9.2113 

(+0.003%) 
9.211 

2 
9.6836 

(+7.37%) 

8.9812 

(-0.42%) 

9.0195 

(+0.005%) 

9.0195 

(+0.005%) 
9.019 

2.5 
9.4776 

(+6.60%) 

8.8023 

(-0.42%) 

8.8392 

(+0.002%) 

8.8392 

(+0.002%) 
8.839 

3 
9.2841 

(+6.60%) 

8.6338 

(-0.40%) 

8.6693 

(+0.003%) 

8.6693 

(+0.003%) 
8.669 

3.5 
9.1021 

(+6.98%) 

8.4745 

(-0.39%) 

8.5089 

(+0.011%) 

8.5088 

(+0.009%) 
8.508 

4 
8.9303 

(+6.87%) 

8.3237 

(-0.39%) 

8.3570 

(+0.011%) 

8.3569 

(+0.010%) 
8.356 

4.5 
8.7679 

(+6.77%) 

8.1807 

(-0.38%) 

8.2130 

(+0.012%) 

8.2129 

(+0.011%) 
8.212 

5 
8.6141 

(+6.66%) 

8.0449 

(-0.38%) 

8.0761 

(+0.001%) 

8.0761 

(+0.001%) 
8.076 
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Table 5 Nondimensional fundamental frequencies of nonuniform E-FGM beam with non-local parameters and Simply 

supported-Simply supported (S-S) boundary conditions. Interpolation points N=11 

E2/E1 Nonlocal parameter g2 B()=b0 B()=b0.e-  B()=b0.( +1) B()=b0.(+1)2 

0.2 

0 9.2726 9.1817 9.2309 9.1438 

1/100 8.8463 8.8018 8.8093 8.7346 

2/100 8.4739 8.4361 8.4407 8.3757 

5/100 7.5875 7.5630 7.5621 7.5165 

1 

0 9.8696 9.7729 9.8251 9.6927 

1/100 9.4159 9.3301 9.3765 9.2589 

2/100 9.0195 8.9425 8.9841 8.8784 

5/100 8.0761 8.0169 8.0489 7.9676 

2 

0 9.7526 9.1817 9.2309 9.1438 

1/100 8.8463 8.8018 8.8093 8.7346 

2/100 8.4739 8.4361 8.4407 8.3757 

5/100 7.5875 7.5630 7.5621 7.5165 

Table 6 Nondimensional fundamental frequencies of nonuniform E-FGM beam with non-local parameters and  

Simply Supported-Clamped (S-C) boundary conditions. Interpolation points N=55 

E2/E1 Nonlocal parameter g2 B()=b0 B()=b0.e-  B()=b0( +1) B()=b0.(+1)2 

0.2 

0 14.5733 13.5924 15.1018 15.7637 

1/100 13.7978 12.8707 14.3134 14.9706 

2/100 13.1323 12.2508 13.6350 14.2846 

5/100 11.5906 10.8137 12.0576 12.6771 

1 

0 15.4182 14.3783 16.0441 16.6796 

1/100 14.5992 13.6163 15.2080 15.8420 

2/100 13.8962 12.9616 14.4883 15.1172 

5/100 12.2671 11.4432 12.8144 13.4183 

5 

0 14.5733 13.5924 15.1018 15.7637 

1/100 13.7978 12.8707 14.3134 14.9706 

2/100 13.1323 12.2508 13.6350 14.2846 

5/100 11.5906 10.8137 12.0576 12.6771 

 

Table 7 Nondimensional fundamental frequencies of nonuniform E -FGM beam with non-local parameters  

And Clamped-Clamped (C-C) boundary conditions. Integration points N=55 

E2/E1 Nonlocal parameter g2 B()=b0 B()=b0.e−  B()=b0.( +1) B()=b0.(+1)2 

0.2 

0 21.0940 21.2797 20.8797 20.8196 

1/100 20.1306 19.9624 19.7383 19.1851 

2/100 19.0532 18.9610 18.6522 18.1583 

5/100 16.6308 16.6721 16.2282 15.8497 

1 

0 22 .3739 22.5117 22.3938 22.1186 

1/100 21.4266 21.2476 20.2109 20.4203 

2/100 20.2798 20.1818 19.8531 19.3273 

5/100 17.7015 17.7455 17.2730 16.8701 

5 

0 21.0940 21.2797 20.8797 20.8196 

1/100 20.1306 19.9624 19.7383 19.1851 

2/100 19.0532 18.9610 18.6522 18.1583 

5/100 16.6308 16.6721 16.2282 15.8497 
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Table 8 Nondimensional fundamental frequencies of nonuniform E-FGM beam with non-local parameters and Clamped- 

Free (C-F) boundary conditions. Integration points N=55 

E2/E1 Nonlocal parameter g2 B()=b0 B()=b0.e−  B()=b0.( +1) B()=b0.(+1)2 

0.2 

0 3.3169 4.4668 2.6679 2.1452 

1/100 3.3023 4.4347 2.6597 2.1407 

2/100 3.2871 4.4014 2.6512 2.1360 

5/100 3.2379 4.2960 2.6233 2.1206 

1 

0 3.5160 4.7349 2.8397 2.2739 

1/100 3.5006 4.7009 2.8310 2.2692 

2/100 3.4844 4.6656 2.8218 2.2642 

5/100 3.4322 4.5538 2.7922 2.2479 

5 

0 3.3169 4.4668 2.6679 2.1452 

1/100 3.3023 4.4347 2.6597 2.1407 

2/100 3.2871 4.4014 2.6512 2.1360 

5/100 3.2379 4.2960 2.6233 2.1206 
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(a) Simply- Simply(S-S) (b) Simply supported- Clamped (S-C) 
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(c) Clamped -Clamped (C-C) (d) Clamped - Free (C-F) 

Fig. 4 Variation of nondimensional fundamental frequency with nonlocal parameters and nonuniform width for different 

boundary conditions: 
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5. Conclusions 
 

This paper is an attempt to study the application of the 

differential quadrature method to the longitudinal vibrations 

of functionally graded material (E-FGM) nonuniform 

beams, based on the nonlocal elasticity theory. Several 

beams with nonuniform widths, and for different boundary 

conditions, were studied while taking into account various 

parameters such as the material characteristics of the beam, 

geometric variation of the width, scale effect and nonlocal 

effect. For various non-uniform widths of the beams, and 

under different boundary conditions, the increase of the 

nonlocal parameter causes the nondimensional vibrational 

frequency to decrease. The non-dimensional frequency 

varies proportionally with the ratio modulus up to the 

reference value for isotropic material. Beyond this value of 

the ratio this frequency evolves in an inversely proportional 

manner.  

 

 

The present study demonstrated the effectiveness of the 

differential quadrature method in solving the differential 

equation with variable coefficients for E-FGM beams with 

nonuniform widths and subjected to free vibrations, while 

applying the nonlocal theory. The effectiveness of this 

method is proved by the rapid convergence of the results 

and their concordance with the analytical solutions reported 

in previous research works. 
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