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1. Introduction 
 

Metal foams are in the category of porous materials with 

low weight due to possessing different variations of 

porosities in them (Ahmed et al. 2019, Al-Maliki et al. 

2019). Applying mechanical loads to such material 

structures yields elastic deformations and changed 

vibrational properties (Shafiei et al. 2017, Mirjavadi et al. 

2017&2018&2019, Azimi et al. 2017,2018). The variation 

of porosities in this material causes a significant difference 

between metal foams and other perfect metals. In a non-

perfect metal, the material characteristics are notably 

influenced by pore variations. Also, this variation in pores 

can affect the vibration frequencies of engineering 

structures made of metal foams. This issue can be 

understood from the works done by Chen et al. 2015 and 

2016. Different from metal foams, there are also 

functionally graded (FG) or ceramic-metal materials in 

which pore variation effect is very important (Abdelaziz et 

al. 2017, Zarga et al. 2019, Zine et al. 2018, Yahiaoui et al. 

2018, Medani et al. 2019, Meksi et al. 2019, Mahmoudi et 

al. 2019, Achouri et al. 2019). In this material, pores may 

be produced in a phase between ceramic and material (Attia 

et al. 2018, Addou et al. 2019). Engineering structures 

made of this materials are studied to understand their 

vibration behaviors as reported in the works of 

Wattanasakulpong et al. (2014), Atmane et al. 2015). This 

type of material is used in different structures such as 
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beams, plates and shells (Bellifa et al. 2017, Boukhlif et al. 

2019). There are some studies on different structures in the 

literature (Berrabah et al. 2013, Aissani et al. 2015, Sahu et 

al. 2018, Nebab et al. 2019). 

Curved shell structures with single or double curvatures 

are a particular sort of modern structures, frequently applied 

in the industries like aero-space, aircrafts, space vehicles, 

space engineering and in other serious engineering fields. 

The study of static and dynamic behaviors of such 

structures is essential to have impressive and reliable 

designs. Recently, some authors studied mechanical 

behaviors of doubly-curved shells made of different 

materials. Zare Jouneghani et al. (2017) examined linear 

vibration properties of FG double-curve shells based on 

porosity effects. Zhao et al. (2019) examined linear 

vibrations of porous FG shells with considering general 

types of boundary conditions. Also, Li et al. (2019) 

provided a numerical solution for free vibrations of FG 

shells with double curvatures and non-uniform thickness. 

Trinh et al. (2019) explored the temperature and porosity 

impacts on free vibration characteristics of FG double-curve 

shells.  

All of above mentioned articles related to porous 

doubly-curved shells neglects the influences of geometrical 

imperfection and stiffeners. Geometry imperfections are 

created during operation life or set up of curved shells and 

result in changed mechanical properties (Barati and 

Zenkour 2018). Stiffened plates and shells are sorts of 

structures fortified via arrays of stiffeners for enhancing 

their loads carrying capacity, and broadly applied in modern 

engineering nowadays. Accordingly, there have been many 

studies on the stability and dynamics of stiffened structures 

(Duc et al. 2016). Based on above discussion, nonlinear 
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stability analysis of geometrically imperfect and stiffened 

doubly-curved porous shells under mechanical loads is not 

performed yet.  

The present article is devoted to analyze nonlinear 

stability and post-buckling behavior of a geometrically 

imperfect doubly-curved shell made of porous metal foam 

under compressive loads and lateral pressure. The 

formulation of doubly-curved shell is based on classic thin 

shell theory. Porosities have two types of dispersion within 

the structure including uniform and non-uniform. The 

nonlinear governing equations are analytically solved with 

the help of Airy stress function to obtain the post-buckling 

load-deflection curves of the geometrically imperfect metal 

foam doubly-curved shell. Obtained results indicate the 

significance of porosity distribution, geometrical 

imperfection, foundation factors, stiffeners and geometrical 

parameters on post-buckling characteristics of porous 

doubly-curved shells. 

 

 

2. Porous metal foam material with open cells 
 

A porous material, for instance a steel foam, might be 

placed in the category of lightweight materials and can be 

applied in several structures such as curved panels. Often, 

pore variation along the thickness of shells results in a 

notable alteration in every kind of material property. When 

the pore distribution inside the material is selected to be 

non-uniform, the metal foam might be defined as a 

functionally graded material since its properties obey some 

specified functions. Herein, the following types of pore 

dispersion will be employed (Ahmed et al. 2019, Fenjan et 

al. 2019): 

• Uniform kind 

2 0(1 )E E e = −
 

(1a) 

2 0(1 )G G e = −
 

(1b) 

2 0(1 )e  = −
 

(1c) 

• Non-uniform kind 
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The most important factors in above relations are the 

greatest values of material properties E2, G2 and 𝜌2. Also, 

there are two important factors related to pores and mass 

which are e0 and em as: 
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Based on the open cell assumption of porous material, 

we use the following relations: 
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Based on uniformly distributed pores, the following 

parameter is used in Eq.(1) as: 
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3. Governing equations 
 

So far, a variety of plate-shell theories are introduced for 

description and analyzes of the structures (Abualnour et al. 

2019, Tounsi et al. 2020, Asghar et al. 2020, Adda Bedia et 

al. 2019, Alimirzaei et al. 2019, Batou et al. 2019, 

Belbachir et al. 2019, Berghouti et al. 2019, Boukhlif et al. 

2019, Bourada et al. 2019, Boutaleb et al. 2019, Boulefrakh 

et al. 2019, Chaabane et al. 2019, Draoui et al. 2019, Hellal 

et al. 2019, Hussain et al. 2019, Kaddari et al. 2020, 

Khiloun et al. 2019, Sahla et al. 2019, Semmah et al. 2019, 

Tlidji et al. 2019, Zarga et al. 2019, Zaoui et al. 2019).  In 

this article, classic shell theory has been employed for 

mathematical modeling of the doubly-curved shells. Thus, 

the strain field can be introduced by (Duc and Quan 2014): 
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(7) 

The presented field contains transverse (w) and in-plane 

(u, v) components. Based on the classic shell assumption, 

stress-strain relations can be summarized as (Ahmed et al. 

2019): 
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(8) 

where σi (i=x, y, xy) are stress field components. The 

stresses leads to below resultants via integrating Eq.(8) over 

shell thickness as: 
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in which Es is Young’s modulus of stiffeners; sx nd sy are 

spacing of longitudinal and lateral stiffeners; Asx and Asy are 

cross sections of stiffeners and 
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(16) 

Note that hx and hy are height of stiffeners; bx and by are 

width of stiffeners. The well-known governing equations 

for a doubly-curved shells under transverse pressure (q) 

may be expressed by: 

0
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(19) 

in which kW and kp are linear and shear foundation 

parameters. Now, using Eqs. (9)-(14), it is possible to obtain 

in-plane strains as: 
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(21) 

Now, the Airy stress function (F) can be introduced by: 
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(22) 

By using above definitions and considering geometric 

imperfection deflection (w*), the governing equation 

becomes: 
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(23) 

The compatibility equation for a double-curve shell 

having geometric imperfectness might be denoted as: 
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Now, Eq.(20) can be expressed in terms of stress 

function (F) as: 
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Placing Eq. (20) in Eq. (24) results in the compatibility 

equation of an imperfect metal foam doubly curved shells 

as: 
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(26) 

The above equation must be solved together with Eq. 

(23) to obtain post-buckling path of the present shell model. 

 

 

4. Method of solution 
 

According to the section, the solution of the nonlinear 

governing equations for the post-buckling of a metal foam 

doubly-curved shell has been represented. For the 

mechanical post-buckling study of simply-supported shells, 

the freely moving edge conditions are: 
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Then, the displacements are considered in the following 

form: 
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where 𝑊̃ and 𝑊∗ are the deflection amplitude and 

imperfection amplitude, respectively. For simply-supported 

edges let 𝑓𝑚
𝑤 = 𝑓𝑚

𝑤∗ = 𝑠𝑖𝑛(𝜆𝑚𝑥)  with 𝜆𝑚 = 𝑚𝜋/𝑎  and 

𝑔𝑛
𝑤 = 𝑔𝑛

𝑤∗(𝑦) = 𝑠𝑖𝑛(𝛿𝑛𝑦) with 𝛿𝑛 = 𝑛𝜋/𝑏 . Via 

employment of the edge conditions in Eqs.(27)-(28) and 

displacement components in Eq.(29)-(30), the general 

expression for stress function F may be introduced by: 
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where Px and Py are applied in-plane load in x and y 

directions and 
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Now, Eqs. (29)-(31) can be inserted in Eq.(23) to find 

the governing equation as: 

( )
2

3 2 * * *

1 2 3 4 5 0S W S W S W W S W W S W+ + + + =
 
(32) 

where S1 and 𝑆5  are the linear stiffness matrices of 

perfect and imperfect shells respectively. Si (i=2, 3, 4) 

denote nonlinear stiffness matrices. Note that for studying 

nonlinear stability of doubly-curved shells under lateral 

pressure let Px=Py=0. Also, for studying nonlinear stability 

of single-curve shells under axial load (Px), it is crucial to 

consider q=Py=0. The nonlinear governing equation has 

been solved for finding post-buckling curves of the shell 

based on the variation of P or q versus normalized 

deflection 𝑊̃/ℎ. Here, calculations have been carried out 

according to below dimensionless factors: 

2

11 11

4a a
k , kW W p pK K

D D
= =  (33) 

 

 
5. Discussion on findings 

 
According to the section, post-buckling of a porous 

doubly-curved shell modeled via nonlinear imperfect thin 

shell theory has been studied based upon provided solution 

approach. The doubly curved shell with stiffeners is shown 

in Figs.1 and 2. Also, porosity distributions are indicated in 

Fig.3. The dependency of nonlinear buckling load to the 

porosity distributions, foundation parameters, dimensionless 

amplitude, stiffeners, geometrical imperfection and 

geometrical factors will be discussed. As the first step, post-

buckling responses of ideal and imperfect plates have been 

validated with those reported by Chikh et al. (2016) based 

on functionally graded (FG) plate model, as provided in 

Table 1. According to the table, buckling loads have been 

provided for both perfect ( 𝑊∗/ℎ = 0 ) and imperfect 
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( 𝑊∗/ℎ = 0.1 ) plates based on various normalized 

amplitude. In this research, obtained results based on metal 

foam material are presented using the below properties: 

𝐸2 = 200 GPa, 𝜌2 = 7850 𝑘𝑔/𝑚3, 𝑣 = 0.33,   

Influences of pore content (e0) on the post-buckling 

properties of curved panel are presented in Fig. 4 at 

imperfection amplitude of W*/h=0.1. Uniform pore 

distribution has been considered. In the case of ideal 

(perfect) porous doubly-curved panel, the load at 𝑊̃/ℎ =
0is critical buckling load. However, in the case of imperfect 

porous curved panel (𝑊∗/ℎ ≠ 0), the critical buckling load 

does not exist, because the shell has an initial deflection. It 

must be pointed out that the buckling load becomes greater 

by increasing in normalized amplitude. The reason is 

intrinsic stiffening impact raised from geometric 

nonlinearity. Decreasing effect of porosities on mechanical 

properties of the shell is obviously observable from this 

graph. In fact, the effective stiffness of the porous doubly-

curved panel may be prominently diminished via adding a 

small amount of pores to matrix material. Thus, post-

buckling loads reduce by increasing in porosity content. 

Fig. 5 presents the variation of pressure-deflection 

curves of a doubly-curved shell under transverse loading 

when a/h=50 and  𝑊∗/ℎ = 0.1 based on various values of 

porosity coefficient. This figure shows that with the 

increment of dimensionless deflection, obtained pressure 

becomes larger regardless of the value of porosity 

coefficient. At a prescribed value of dimensionless 

deflection, increase of porosity coefficient leads to smaller 

pressures. This means that porosities make the shell 

structure more flexible. This observation is valid for both 

perfect and imperfect doubly-curved shells.  

In Figs. 6 and 7, the load-deflection and pressure-

deflection curves have been illustrated based on the types of 

porosity distribution at a fixed value of porosity coefficient 

e0=0.5. Derived findings indicate that the curved shell with 

non-uniform pore distributions have higher nonlinear 

buckling load and pressure than uniform pore distributions. 

Such a fact reveals that the curved shell with symmetrically 

dispersed pores may introduce the higher shell stiffness 

together with the better mechanical performances. Indeed, 

pore distribution has a notable impact on buckling 

behaviors and may be incorporated in stability studies of 

curved shells. According to previous discussions, the 

material properties of porous curved shells are un-varied 

along the thickness in the case uniform pore distributions. 

Whereas, the material properties become maximum at upper 

and lower surfaces in the case of non-uniform pore 

distributions.  

Fig.8 indicates the post-bucking curves of the porous 

shell with and without the effect of stiffeners. Uniform 

porosity distribution with e0=0.2 is considered. Geometrical 

parameters of the stiffener are selected as sx=0.4a, zx=0.01a, 

hx=0.01h, dx=0.005a. This figure shows that stiffened 

curved shells have enhanced load carrying capacities since 

they are reinforced by a system of stiffeners. Therefore, 

post-buckling loads of stiffened curved shells are higher 

than those of curved shells without stiffeners. As stated 

before, porous curved shells have smaller buckling loads  

Table 1 Validation of post-buckling loads of ideal and 

imperfect flat panel for different dimensionless amplitudes 

(a/Rx=0) 

𝑊̃/ℎ 𝑊∗/ℎ = 0   𝑊∗/ℎ = 0.1  

 
Chikh et al. 

2016 
present  Chikh et al. 2016 present 

0 0.62411 0.62411  0 0 

0.1 0.62627 0.62627  0.31853 0.31853 

0.2 0.63274 0.63274  0.43334 0.43334 

0.3 0.64354 0.64354  0.50047 0.50047 

 

 
Fig. 1 Geometry of a double-curve shell on elastic 

foundation 

 

 

than perfect one. So, their buckling curves can be enhanced 

by using stiffeners leading to higher buckling loads.  

Effects of length-to-thickness ratio (a/h) on post-

buckling behaviors of porous curved panel have been 

plotted in Fig.9. Two cases of geometrically ideal (perfect) 

and imperfect shells have been supposed. It is obvious that 

shells are less rigid at greater values for a/h. Accordingly, 

derived post-buckling load becomes lower via enlargement 

of a/h at prescribed normalized amplitudes (𝑊̃/ℎ). Also, 

calculated post-buckling loads for various values of a/h rely 

on the magnitude of normalized deflection. For smaller a/h, 

post-buckling load increases with a higher slope according 

to normalized deflection than higher length-to-thickness 

ratio or thinner shells. Such observation is due to more 

stiffness of the plate at low values of a/h. 

Fig. 10 indicates the variation of post-buckling load of a 

porous curved panel versus normalized amplitude for 

various linear (KW), shear (KP) foundation factors. It must 

be pointed out that the shear layer gives continuous 

interactions with the porous doubly-curved panel, whereas 

linear layer gives discontinuous interactions with the plate. 

Growth of foundation factors results in greater nonlinear 

buckling load via improving the bending rigidity of porous 

doubly-curved panel. 

Geometrical imperfection (𝑊∗/ℎ) effect on post-

buckling behavior of porous curved panel has been 

illustrated in Fig.11. IT may be observed that the initial 

deflection of shell has notable influences on the post-

buckling load-deflection path. Based on previous 

discussion, the critical buckling load vanishes by 

considering plate initial deflection. In fact, for the case of 

perfect structure (𝑊∗/ℎ = 0), the shell has critical 

buckling. Next, shell buckling capacity improves by the 

increase of normalized deflection. However, for the case of 
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Fig. 4 Nonlinear buckling load versus normalized deflection 

of the shell for various porosity coefficients (a/h=50, R/a=4, 

W*/h=0.1) 
 

imperfect structure (𝑊∗/ℎ ≠ 0), there is no buckling load 

before the initial situation of porous curved panel. Thus, the 

buckling load is zero at the starting point for imperfect 

plates. After that, greater amplitudes of shells need stronger 

compressive load. Finally, it may be concluded that pot-

buckling curves of perfect and imperfect shells become 

closer to each other at large values for normalized 

amplitude. 

 

 

Fig. 5 Pressure-deflection curves of doubly-curved shell for 

various porosity coefficients (a/h=50, R/a=4, W*/h=0.1) 

 

 

6. Conclusions 
 

This article analyzed post-buckling behaviors of 

imperfect and porous doubly-curved shells via stablishing a 

nonlinear shell formulation in which stiffeners effects are 

involved. Both uniform and non-uniform pore distributions 

were considered. Obtained finding in this research are 

presented as follows. 

 

Fig. 2 Side views of a double-curve shell with stiffeners 

 
(a) Uniform 

 
(b) Non-uniform 

Fig. 3 Two types of porosity distributions inside metal foam 
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Fig. 6 Nonlinear buckling load versus normalized deflection 

of the shell for various porosity distributions (a/h=50, R/a=4, 

W*/h=0.1, e0=0.5) 

 

 

 

 

 

Fig. 7 Pressure-deflection curves of doubly-curved shell for 

various porosity distributions (a/h=50, R/a=4, W*/h=0.1, 

e0=0.5) 

 

 

 

Fig. 8 Nonlinear buckling load versus normalized deflection 

of porous shell with and without stiffeners (a/h=50, R/a=4, 

W*/h=0.1, e0=0.2, sx=0.4a, zx=0.01a, hx=0.01h, dx=0.005a) 

 

 

 

 

 

 

 

 

Fig. 9 Nonlinear buckling load versus normalized deflection 

of porous shell based on various length-to-thickness rations 

(R/a=4, W*/h=0.1, e0=0.2) 

 

707



 

Seyed Sajad Mirjavadi et al. 

 

Fig. 10 Nonlinear buckling load versus normalized 

deflection of porous shell based on various length-to-

thickness rations (a/h=50, R/a=4, W*/h=0.1, e0=0.2) 

 

 

Fig. 11 Nonlinear buckling load versus normalized 

deflection of porous shell based on various length-to-

thickness rations (a/h=50, R/a=4, e0=0.2) 

 

 

•  The most important observation was that increasing 

pore amount yields lower buckling loads for all types of 

pore distributions. It means that adding the amount of pores 

can reduce the shell stiffness and decrease its post-buckling 

behavior.  

•  Moreover, uniform pore distribution provided lower 

post-buckling loads than non-uniform distribution. This is 

due to larger amount of pores based on uniform dispersion.  

•  An important finding was that as the magnitude of 

imperfection is greater, the post-buckling load is lower. 

•  Stiffened curved shells have enhanced load carrying 

capacities since they are reinforced by a system of 

stiffeners. 
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