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1. Introduction 
 

To predict the fracture and failure of structural 

components, the behavior of existing cracks in the structure 

should be investigated. Over the last decades, extensive 

theoretical and applied studies have dealt with the 

simulation of the failure mechanism in materials. Although 

numerical difficulties still exist, the finite element method 

provides an approach to predict the failure behavior of 

materials. The main challenge of modeling the crack 

propagation using FEM is the proper modeling of strong 

discontinuities in displacements caused by the growth of 

crack. After the pioneering work of Griffith (1921) on 

brittle fracture of glass, various alternative approaches have 

been proposed to simulate the behavior of cracked 

structures more realistic. Ingraffea (2004) has represented a 

thorough survey of the computational methods in fracture 

mechanics while comparing their abilities. The most 

common methods generally require step-by-step complete 

remeshing of the global model. However, this procedure is 

computationally expensive and some alternative methods 

have been proposed to model the crack growth without 

remeshing (Moës et al. 1999, Sukumar et al. 2000, Zi et al. 

2007). 

Polygonal finite element method has been recently 

employed in modeling of crack propagation. The 

advantages of this method include greater flexibility in the 

meshing of arbitrary geometries, better accuracy in the 

numerical solution because of their higher order shape 

functions, and no requirement for overall remeshing in  
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crack growth which is inevitable in classic triangular and 

quadrilateral elements. The idea of polygonal FEM dates 

back to 1975 when Wachspress (1975) used barycentric 

coordinates and rational basis for shape functions. However, 

there is no unique way for construction of the shape 

functions over the polygon elements and several approaches 

were proposed by researchers including modified 

polynomial rational functions (Meyer et al. 2002), natural 

neighbor based coordinates (Sibson 1980), mean value 

theorem for harmonic functions (Floater 2003) and 

geometrical properties of the element (Malsch et al. 2005). 

Warren (1996) extended the standard barycentric coordinate 

functions for simplices to arbitrary convex polytopes 

combining the adjoints of various dual cones associated 

with the polytope. Sukumar (2004) employed the maximum 

entropy principle to construct the polygonal interpolants for 

convex and concave polygons. Dasgupta (2003) proposed 

an integration algorithm for polygonal and polyhedral 

domains using divergence theorem. An efficient 

methodology for automatic dynamic crack propagation 

simulations using polygon elements was developed by Ooi 

et al. (2013) based on the scaled boundary finite element 

method (SBFEM). They accommodated crack propagation 

via an automatic local remeshing algorithm involving only a 

small patch of polygons around the crack tip. Talischi et al. 

(2012) presented a simple and robust code for polygonal 

mesh generation based on the centroidal Voronoi diagrams.  

Virtual element method (VEM) was introduced by 

Beirão Da Veiga et al. (2013) for complicated element 

geometries and higher-order continuity conditions with the 

addition of suitable non-polynomial functions. They take 

the spaces and the degrees of freedom in such a way that the 

elementary stiffness matrix can be computed without 

actually computing these non-polynomial functions, but just 
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using the degrees of freedom. Hussein et al. (2019) applied 

VEM to crack-propagation in elastic solids for meshes with 

highly irregular shaped elements and arbitrary number of 

nodes. They developed the robust cutting techniques 

through elements for crack propagation in two dimensional 

solids using VEM. Leon et al. (2014) employed polygonal 

finite element in dynamic fracture simulations to reduce 

mesh bias. They proposed an adaptive element splitting 

algorithm to increase the number of potential crack 

directions. Spring et al. (2014) proposed a scheme for 

adaptive mesh refinement on unstructured polygonal 

meshes to better capture crack patterns in dynamic cohesive 

fracture simulations. This scheme was selectively chosen to 

optimize the number of paths that a crack may travel, while 

still maintaining a conforming domain discretization. A 

polygonal FEM was presented by Khoei et al. (2015) for 

crack growth simulation with minimum remeshing. They 

modified the convex and concave polygonal elements based 

on the singular quarter point isoparametric concept to 

improve the accuracy of the stress intensity factors. A 

Voronoi polygonal hybrid finite elements with boundary 

integrals was developed by Wang and Qin (2017). They 

converted element domain integral in the two-field 

functional into element boundary integrals to reduce 

integration dimension. Hoshina et al. (2018) proposed a 

new computational strategy for adaptive local mesh 

refinement using polygonal finite elements in arbitrary two-

dimensional domains. They performed a mesh refinement in 

regions of material concentration, and a mesh derefinement 

in regions of low material concentration. An extended 

polygonal finite element method was presented by Hyunh et 

al. (2019) for large deformation fracture analysis. They 

used a polygonal mesh to represent space of the present 

numerical technique in advance, and then a local refinement 

of structured meshes at the vicinity of the discontinuities is 

additionally established. 

One of the challenging problems in numerical solutions 

of crack propagation problems is the accuracy of numerical 

computation due to mesh discretization. The accuracy of the 

FE solution affects directly on the exactness of the 

prediction of the crack propagation trajectory. Adaptive 

mesh refinement is an appropriate technique to control the 

discretization error especially in the near crack tip region. 

However, the optimal mesh configuration changes 

continually throughout the crack growth and several stages 

of mesh refinement may be required. Since the exact 

solution is usually not available in most of crack problems, 

it is approximated by a recovered solution to estimate the 

error. Zienkiewicz and Zhu (1987) introduced recovery-

based error estimation to obtain more accurate 

representation of the variables through a recovery 

procedure. One of the most accurate recovery based 

techniques was superconvergent recovery (SPR) technique 

introduced by Zienkiewicz and Zhu (1992). They assumed a 

polynomial expansion for stress field over a patch of 

elements sharing each node and then interpolated those 

nodal values using standard shape functions to obtain the 

recovered stress values. Moslemi and Khoei (2009) 

improved this technique to Weighted SPR considering 

different weighting factors for superconvergent points of the 

patch. This technique estimated the error more efficient and 

realistic particularly in the boundaries of problem and 

elements located near the crack front. Özakça (2003) 

compared different error estimators in adaptive finite 

element analysis of linearly elastic structures based on flux 

projection or best guess stress values and residual methods. 

Ullah et al. (2013) developed an automatic adaptive 

coupling procedure combining finite element method and 

element free Galerkin method (EFGM). They converted the 

elements which violate a predefined error measure to an 

EFG zone avoiding computationally expensive FE 

remeshing.  

Ródenas et al. (2013) enhanced the error estimation in 

energy norm using a moving least squares recovery based 

procedure. This technique was more flexible than SPR 

techniques as it directly provided continuous interpolated 

fields without relying on any FE mesh. A goal oriented error 

estimation in the extended finite element method was 

proposed by González-Estrada et al. (2015) which 

considered the stress intensity factor as the quantity of 

interest. Chen et al. (2016) presented a Three-dimensional 

superconvergent gradient recovery on tetrahedral meshes 

based on centroidal Voronoi Delaunay tessellations 

(CVDT). They established a modified superconvergence 

patch recovery method to overcome the influence of slivers 

on CVDT meshes. An adaptive higher-order method based 

on a generalization of polynomial/rational splines over 

hierarchical T-meshes (PHT/RHT-splines) was introduced 

by Anitescu et al. (2018). They used hierarchical bases and 

adaptivity and added more degrees of freedom only where 

they are necessary to improve the approximation. A 

Statistical Approach for Error Estimation in Adaptive Finite 

Element Method was proposed by Moslemi and Tavakkoli 

(2018). They compared the statistical distribution of the 

stress values at Gauss points around a node with the 

uniform distribution function to estimate the error. Gibert et 

al. (2019) combined the extended finite element method 

and automatic adaptive mesh refinement taking advantage 

of both methods. The enrichment of the model was included 

in the kinematic continuity relations and the field transfer 

process. A near-tip grid refinement is introduced by Cho 

(2019) in the crack analysis by natural element method.  

This refinement technique is completed in two steps in 

which grid points are added and Delaunay triangles sharing 

the crack tip node are divided. Ziaei and Moslemi (2020) 

presented a new probabilistic error estimator considering 

uncertainties in geometric sizes, material properties and 

loading conditions to reduce the mesh dependency of the 

responses dispersion. 

In the present study, the adaptive mesh refinement is 

employed in the polygonal-FEM for modeling of crack 

propagation problems. To predict the crack growth, linear 

elastic fracture mechanics (LEFM) is assumed. A-posteriori 

error estimator is used based on the Zienkiewicz–Zhu 

method in conjunction with a weighted SPR technique to 

obtain the mesh density. The mesh refinement is 

accomplished generally on the polygonal elements with an 

arbitrary mesh density. To prevent poor polygonal element 

shapes, local modifications are applied on the mesh in the 

steps that the estimated error are kept within the prescribed 
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error. The crack growth process is accomplished 

independent from the mesh refinement procedure and the 

mesh is refined in some steps of crack growth which the 

estimated error violates a predefined error measure. This 

study is the first to specifically investigate the mesh 

adaptivity with the estimated error in polygonal elements 

and distribute the error uniformly across the domain with 

arbitrary mesh density. In the previous researches on 

polygonal finite element method, the mesh was modified 

locally and a very fine mesh was employed near the crack 

tip zone to reduce the discretization error. The remainder of 

this paper is organized as follows. Section 2, reviews 

interpolants functions of polygonal elements and numerical 

integration on polygons. Next, in Section 3, an adaptive 

mesh refinement strategy is introduced for polygonal 

elements in crack growth problems. In order to illustrate the 

capability of proposed approach in crack propagation 

problems, several numerical simulation results are 

presented in Section 4. Finally, some concluding remarks 

are given in Section 5. 

 

 

2. Polygonal finite element method  

 

2.1 Shape functions for polygonal domains 
 

Researchers have recently become interested in using n-

sided polygonal elements in finite element modeling of 

mechanical and structural components. There are several 

approaches to represent the shape functions over polygonal 

elements satisfying essential conditions. These essential 

conditions include local support, inter-element 

compatibility, Lagrange property and completeness (Khoei 

et al. 2015). In the most commonly used approaches, the 

weight functions are employed to construct the shape 

functions as 

𝑁𝑗(𝑥) =
𝑤𝑗(𝑥)

∑ 𝑤𝑖(𝑥)
𝑛
𝑖=1

 (1) 

In a trigonometric form of the approach presented by 

Meyer et al. (2002), the weighting functions for node j 

defined as 

�̂�𝑗 =
𝑆(𝑝𝑖 , 𝑝𝑗 , 𝑝𝑘)

𝑆(𝑝, 𝑝𝑖 , 𝑝𝑗)𝑆(𝑝, 𝑝𝑗 , 𝑝𝑘)
=
cot(𝛽𝑗) + cot(𝛼𝑗)

‖𝑥𝑗 − 𝑥‖
2  (2) 

where 𝑝𝑖, 𝑝𝑘 are adjacent nodes to the node j, 𝑝 is the 

interpolation point and S denotes the area of the triangle 

whose vertices are specified in the parentheses. The norm 

‖𝑥𝑗 − 𝑥‖
2
is the distance between interpolation point and 

node j and the angles 𝛽𝑗  and 𝛼𝑗  are indicated in Fig. 1. 

This definition would result non-negative shape functions 

for convex polygons. 

To compute the stiffness matrix of each element, the 

derivatives of these shape functions should be integrated 

over the element. To approximate the integrals by a 

Gaussian form of numerical quadrature in polygonal 

domains, a virtual node is assumed within the element and 

it is connected to real nodes of the element. Thus, the  

 

Fig. 1 Parameters of the polygonal shape functions 

 

 

Fig. 2 Gauss qudrature points of sub-triangles in 

numerical integration 

 

 

polygonal element is partitioned into triangular elements 

and Gauss quadrature points of these triangular elements are 

used for numerical integration as shown in Fig. 2. The local 

coordinates of Gauss quadrature points in sub-triangles 

have been adjusted according to the barycentric coordinates 

of the polygonal element. 

 
2.2 Polygonal mesh generation 
 

In adaptive remeshing procedure, many constraints are 

exerted on elements size over the domain. These 

paradoxical constraints in triangular and quadrilateral 

meshes may produce ill-shaped elements and result high 

values of error. Polygonal discretization offers greater 

flexibility in mesh generation particularly in complicated 

geometries. The most common polygonal discretization 

algorithms are based on the Voronoi diagrams and their 

reflections. In this study, PolyMesher (Talischi et al. 2012) 

written for the polygonal mesh generation is employed and 

modified for interfering element in crack propagation 

models. This algorithm is mainly based on the implicit 

description of the domain and the centroidal Voronoi 

tesselleation (CVT). Defining signed distance function, any 

arbitrary domain can be specified by separating internal and 

external points of the domain. If the domain is denoted by 

Ω, the signed distance function which represents the nearest 

distance from boundary is defined by:  

𝑑(𝑥) = 𝑠(𝑥) ‖𝑥 − 𝑦‖𝑦∈𝜕Ω
𝑚𝑖𝑛  (3) 

where 𝜕Ω is the boundary of Ω, ‖𝑥 − 𝑦‖ denotes the 

distance between x and point y on the boundary of the 

domain and the sign function is given by: 
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𝑠(𝑥) = {
−1,𝑥 ∈ Ω
+1,𝑥 ∉ Ω

 (4) 

Thus, the points are categorized to internal, boundary 

and external points of the domain as:  

Ω = {𝑥 ∈𝑅2: 𝑑(𝑥) < 0} 

𝜕Ω = {𝑥 ∈𝑅2: 𝑑(𝑥) = 0} 

Ω̅ = {𝑥 ∈𝑅2: 𝑑(𝑥) > 0} 

(5) 

The seeds which represent the mesh density are placed 

in the domain. Then these seeds are reflected with respect to 

the boundary using signed distance function. The domain is 

partition to the cells using Voronoi diagram where each 

point of the cell has the smallest distance to the 

corresponding seed of the cell. A schematic process of mesh 

generation is illustrated in Fig. 3.  

A random selection of the seeds may lead to a polygonal 

mesh not suitable for use in finite element analysis. Thus, 

an iterative algorithm is proposed to modify the generating 

seeds location. Lloyd algorithm replaces the given 

generators by the centroids of the corresponding Voronoi 

regions iteratively. These iterations decrease an energy 

functional and the process continues until the seeds are 

mapped to themselves. 

 

 

3. Adaptive polygonal mesh refinement in crack 
growth problems 
 

3.1 Adaptive mesh refinement 
 

Since the critical points of the problem change 

continuously through the crack growth steps, the polygonal 

mesh should be refined in some steps of crack growth to 

control the discretization error. However, to reduce the 

computational cost, the remeshing process is accomplished 

only in steps which the estimated error exceeds the aim 

error. In crack growth problems, the mesh refinement is 

needed when the crack tip gets away from the previous 

refined region. Since the exact solution of the problem is 

unknown in most problems, the error is estimated using a 

recovered solution.  

𝑒𝜎 ≈ 𝜎∗ − �̂� (6) 

where �̂� represents the stress value obtained from FE 

solution and 𝜎∗ is the recovered stress. The recovered 

stress is estimated by interpolating a polynomial function  

 

 

over a patch of elements surrounding each nodal point. 

Thus, a component of recovered stress 𝜎𝑖
∗ is given by  

𝜎∗
𝑖 = 𝐏𝐚 = ⟨1𝑥𝑦 …𝑦𝑛⟩⟨𝑎0𝑎1𝑎2…𝑎𝑛⟩ (7) 

The unknown vector a is obtained by a least square fit to 

the finite element solutions over the patch. According to the 

technique proposed by Moslemi and Khoei (2009), different 

weighting factors are assumed for sampling points in the 

error function to make a more realistic recovered stress. 

This technique improves the recovering procedure 

particularly in regions with high gradient of stress such as 

the crack tip zone. Thus, the error function takes the 

following form:  

F(𝐚) = ∑(𝑤𝑘[𝜎
∗
𝑖(𝑥𝑘 , 𝑦𝑘) − 𝜎^

𝑖(𝑥𝑘 , 𝑦𝑘)])
2

𝑛

𝑘=1

 

= ∑(𝑤𝑘[𝐏(𝑥𝑘 , 𝑦𝑘)𝒂 − 𝜎^
𝑖(𝑥𝑘 , 𝑦𝑘)])

2

𝑛

𝑘=1

 

(8) 

The weighting factors are considered in terms of the 

distance of the sampling points from the recovering node. 

Thus, the nearest sampling points have more effect in the 

recovery process. If rk denotes the distance of k-th sampling 

point form the recovering node, the corresponding 

weighting factor is taken as wk=1/rk. After determination of 

the recovered polynomial, the nodal recovered stress is 

computed by the evaluation of the polynomial at the nodal 

coordinates. The recovery process is accomplished for all of 

the nodes of the mesh. Since the finite element solution has 

been computed on Gauss quadrature points, the recovered 

solution is transferred from nodal points to Gauss points 

using Wachspress shape functions as it was described in 

Section 2.  

𝜎∗ = 𝑁. 𝜎 ∗ (9) 

where  𝜎 ∗  represents the nodal recovered stress. The 

recovery stress procedure in polygonal elements is 

illustrated in Fig. 4.  

The error is estimated over the domain as the difference 

of the recovered stress and finite element solution according 

to Eq. (6). The region with high stress gradient show the 

larger values of error and the uniform stress regions have 

smaller error. A strategy to have an optimal mesh is to 

distribute the error uniformly over the elements. Thus, to 

attain the uniform error, the mesh is refined in regions with 

   

Fig. 3 Polygonal mesh generation procedure (Talischi et al. 2010) 
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high error and the elements are coarsened in regions with 

low error. To make the error dimensionless, it is normalized 

with respect to the overall average stress. This average 

stress is achieved by weighted averaging of stress over all 

of the elements. 

𝜂 =
‖𝑒𝜎‖

‖�̂�‖
 (10) 

Now if  𝜂𝑎𝑖𝑚 represents the aim error, the new size for 

mesh refinement would be determined by:  

(ℎ𝑖)𝑛𝑒𝑤 = (
𝜂𝑎𝑖𝑚

𝜂
)(ℎ𝑖)𝑜𝑙𝑑 (11) 

where (ℎ𝑖)𝑜𝑙𝑑 and (ℎ𝑖)𝑛𝑒𝑤 denote  i-th element size in 

previous mesh and refined mesh, respectively. Repeating 

this procedure for all of the elements would produce the 

refinement mesh density. Since the polygonal mesh is 

generated by a set of Voronoi seeds, first a background 

triangular mesh is generated according to the refinement 

mesh density and then, the nodes of this triangular mesh is 

utilized as the seeds for PolyMesher.  

The estimated pointwise error is always larger than aim 

error in singular points such as the crack tip. Thus, this 

pointwise error is not a proper criterion for mesh refinement 

and a global error estimation over the domain is needed. 

Comparing the global estimated error with the aim error 

indicates that the mesh refinement is not required in all 

steps of the crack growth and a local modified mesh could 

be used in several steps of the crack growth. To evaluate the 

overall error, Gauss point errors are integrated over all of 

the elements. 

‖𝑒𝜎‖ = (∫ (𝜎∗ − �̂�)𝑇(𝜎∗ − �̂�)𝑑Ω
Ω

)

1/2

 (12) 

A multilevel mesh refinement is required, when the error 

is not attained the aim error in first level. After attaining the 

aim error, the finite element solutions are reliable and the 

crack growth is accomplished according to these results. In 

this study, maximum circumferential tensile stress criterion 

is used to find the direction of the crack growth (Erdogan 

and Sih 1963). 

 
 

3.2 Local remeshing procedure 

Although the aim error would be attained in some steps 

of the crack growth and no mesh refinement is required, 

however, local modifications are applied on the mesh to 

prevent poor polygonal element shapes. Since a few 

elements are intersected by the crack growth line, negligible 

computational cost is imposed in this procedure. When the 

crack intersects an element side, the element is splitted in 

two distinct elements. However, if the intersection point is 

very close to the node, a poor element with very small side 

would be created. If d denotes the distance of the 

intersection point and the node and L represent the element 

side, the modification is required when d<αL. α is a user 

defined parameter which indicates the sensitivity of the 

mesh to the small side elements. In this study it is assumed 

to be 0.2. Small values for α would result ill-shaped 

elements and deviate the crack path. However, choosing 

large values for this parameter would require local 

modification in many elements and impose high 

computational effort without considerable improvement of 

the solution. The effect of this parameter on mesh 

modification is illustrated in Fig. 5 considering three 

different values for α. For local modification of the mesh, 

the node is moved to the intersection point to eliminate the 

small side. The element containing the crack tip is also 

divided to several elements to prevent from the concave 

element. The crack tip is connected to peripheral nodes 

which make element angles smaller than 135°. The local 

modification procedure for small side elements is illustrated 

in Fig. 6 as node 7 is transferred to node 19 and then node 

16 is connected to nodes 12 and 14. 

Another local modification occurs when the crack tip is 

close to an element side. In this condition a poor element 

with large angles would be created. Thus, to avoid such 

elements, the near element side is transmitted to the crack 

tip location. This modification converts the neighbor 

element to a critical element and this element should be 

divided to two distinct elements by connecting the crack tip 

to peripheral nodes which make element angles smaller than 

135°. Fig. 7 shows the local modification process for large 

angle elements. Overall scheme of the proposed algorithm 

  
Fig. 4 The process of recovering of the stresses on polygonal elements; ● nodal points,  ∆ Gauss points; dashed circles 

represesnt the patch of the recovering node and blue arrows indicate the process of stress transfer from nodal points to 

Gauss points 
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Fig. 6 The local modification procedure for small side 

elements a) before modifacation b) after modification 

 

 

for adaptive polygonal mesh refinement in crack growth 

problems is summarized in flowchart in Fig. 8.  

The proposed algorithm can be generalized to three 

dimensional problems with a little modification of the 

procedures. The polygonal mesh generator (Polymesher) 

should be replaced with a polyhedral mesh generator. In the 

process of the error estimation, three dimensional 

polynomials should be employed to recover the stress and 

finally, a spatial crack growth criteria must be applied. This 

algorithm is capable of capturing complicated crack 

patterns in dynamic fractures, including crack branchings 

and crack coalescence. Employing the dynamic finite 

element method, a dynamical instability causes oscillations 

in crack velocity and structure. Applying the mesh adaption, 

the minor branches may also be captured. The advantage of 

great flexibility of the polygonal elements would facilitate 

the crack coalescence.  

 

 

 
Fig. 7 The local modification procedure for large angle 

elements a) before modifacation b) after modification 
 
 

The computational cost spent in the proposed algorithm 

consists of three main parts: finite element analysis, error 

estimation and updated mesh generation. However, the 

finite element analysis requires greater than 90% of the 

computational effort and other parts have negligible effect 

on the computational cost. In the examples of the next 

section, the error estimation and mesh generation process 

had taken just a few seconds. Thus, in the proposed 

algorithm, the time saving achieved through mesh 

optimization outweighs the cost of adaptive remeshing. 
 

 

4. Numerical simulation results 
 

To illustrate the capability and performance of proposed 

adaptive strategy together with the polygonal FEM 

described in section 3, several numerical examples are 

presented. The first example is chosen to demonstrate the 

accuracy of the proposed algorithm for a benchmark  

 
 

 
Fig. 5 The effect of parameter α on local mesh modification process 
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problem in a uniaxial tensile stress. The effect of the 

implemented adaptive strategy is shown on the predicted 

crack path. The complex geometries are chosen for the next 

two examples to challenge the capability of the algorithm in 

such problems. To determine the crack growth direction, the 

maximum circumferential stress criterion is employed. The 

crack grows with a pre-defined constant length at each step  

 

 

of crack propagation. This length determines the number of 

crack growth steps and required computational effort. To 

optimize the computational cost, larger crack growth steps 

are taken in direct crack paths and this length is decreased 

when the crack kinks suddenly. All examples are modeled 

by a plane strain condition and the first order polygonal 

elements are employed for the finite element meshes. The  

 
Fig. 8 Flowchart of the adaptive polygonal mesh refinement in crack growth problems 
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adaptive strategy has been initialized with a coarse uniform 

polygonal FE mesh in all of the examples. The error 

estimation procedure was used based on the Zienkiewicz-

Zhu error estimator. The different values for aim error are 

considered depending on the nature of the problem. The 

value of the aim error is determined by the user and 

depends on the acceptable error. It is usually taken 10% in 

the literature. Small values of the aim error would increase 

remeshing steps and computational effort. However large 

values of the aim error may result inaccurate crack growth 

modeling. In the following examples the aim error is 

adjusted in a way that there would be at least two adaptive 

remeshing stages in all of the examples. The variation of 

estimated error with crack length is illustrated during 

adaptive mesh refinement to investigate the efficiency of 

error estimation and mesh refinement procedures. The 

initial and refined meshes are shown during the adaptive 

remeshing procedure. The entire process of adaptive mesh 

refinement has been automatically performed without user 

intervention. To demonstrate the accuracy of the proposed 

algorithm, the results are compared with those reported in 

literature. 
 

4.1 A rectangular plate with an edge crack in 
tension 

 

The first example refers to tensile loading of a 

rectangular plate with an edge crack as shown in Fig. 9(a). 

This example is chosen to illustrate the performance of 

adaptive polygonal mesh refinement strategy for a 

benchmark problem. The top and bottom edges of plate are 

subjected to uniform vertical traction σ = 1000 kgf/cm2. The 

elasticity modulus of the plate is E = 2×106 kgf/cm2 and the 

Poisson ratio is ν= 0.3. The plate is initially modeled and 

meshed with 200 uniform five-sided and six-sided elements 

as shown in Fig. 9(b). 

The FE analysis of the initial mesh illustrates the stress 

concentration at the crack tip as shown in Fig. 9(c). To 

demonstrate the performance of the proposed algorithm, the 

crack is propagated using adaptive polygonal FEM and 

classic FEM. In the classic approach the analysis is 

accomplished on the base of the initial mesh. However, in 

the adaptive approach the model is remeshed as the 

estimated error exceeded the aim error. In this example the 

aim error is taken 6% and the crack growth length is 2 cm. 

In both approaches the error estimated in different crack 

growth steps. The trend of estimated error in these 

approaches are summarized in Table 1. It can be seen that in 

two steps of the crack growth (steps 2 and 6) the estimated 

error exceeds the aim error and adaptive remeshing is 

required. In other five steps the aim error is satisfied and the 

crack is propagated according to the previous mesh. 

However, a minor tolerances in number of elements can be 

seen in these five steps, due to the local modification 

described in Section 3.  

The process of adaptive mesh refinement in steps 2 and 

6 are illustrated in Fig. 10. The contour of estimated error 

indicates that the crack tip region contains highest values of 

error and a uniform mesh cannot satisfy accuracy 

conditions. Thus, a refined mesh near the crack tip zone is 

generated (Fig. 10(c)) and the mesh is coarsened in low 

error regions. In next four steps, the current mesh (Fig. 

10(d)) have satisfied accuracy conditions. However, in step 

6 as the crack tip takes some distance from refined zone, 

another adaptive mesh refinement is required to reduce the 

estimated error to aim error. Thus the refined zone moves to 

the right part of the plate (Fig. 10(f)) and the previous 

refined zone have coarsened. Since the large parts of the 

domain is coarsened in this step, the number of element and 

nodes have been reduced after mesh refinement from 1145 

to 997 (Table 1). This implies that the proposed mesh 

refinement procedure may decrease the computational effort 

in some problems. 

  

 
Fig. 9 The rectangular plate with an edge crack in tension; a) 

geometry and boundary conditions b) initial FE mesh c) the 

contour of stress σy 
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In Fig. 11, the variation of the estimated error during the 

crack growth is shown for the uniform and adapted meshes. 

In the classic method without mesh refinement, the 

estimated error is increased in consecutive steps which 

makes the results unreliable. In each step the error takes the 

crack into mixed mode and intensifies the error in next 

steps. However, in adaptive polygonal FEM the error is 

controlled whenever it exceeds the target error. The 

maximum circumferential stress criterion is employed.in 

both methods for the kinking angle of the crack. The 

adaptive method propagates the crack in a straight line as it 

was expected. However, in the classic method without mesh 

refinement, the large value of stress error result in a 

deviation of crack path. The crack trajectory obtained using 

the adaptive FE technique is compared with the classic 

method in Fig. 12.  

 
 

4.2 Mixed mode crack propagation in the bending 
beam with three holes 

 

The second example is of a rectangular Plexiglas 

bending beam weakened by three holes as shown in Fig. 

13(a). The presence of holes in the plate disturbs the stress 

field around the holes which result to curvilinear crack path. 

This path is highly dependent on the initial crack size and 

its position. This example have been investigated 

experimentally and numerically by different researchers 

(Bittencourt et al. 1996, Khoei et al. 2015) to show the 

performance of their proposed computational algorithm. In 

this example the crack size and eccentricity is chosen a=1 

in and b=6 in. The experimental results indicates that the 

crack intersects the middle hole in this case. The material 

properties of Plexiglas is chosen as follows; E=348076 psi 

and ν= 0.3. The FE modeling have been initiated with 232  

   

   

Fig. 10 The rectangular plate with an edge crack in tension; a,d) The FE mesh before refinement, b,e) the estimatederror 

contour, c,f) the refined FE mesh in steps 2 and 6 of crack growth 
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Table 1 The rectangular plate with an edge crack in tension; 

Summary of estimated errors for adaptive polygonal FEM 

and classic FEM 

 Adaptive polygonal FEM Classic FEM 

Crack 

growth 

step 

Number 

of 

elements 

Number 

of nodes 

Estimated 

error (%) 

Number 

of 

elements 

Number 

of nodes 

Estimated 

error (%) 

1 200 396 4.98 200 396 4.98 

2 202 398 6.20 202 398 6.20 

2 

(remeshed) 
594 1126 2.35 - - - 

3 596 1132 3.33 204 401 9.89 

4 598 1137 4.44 204 402 11.85 

5 600 1141 5.59 206 404 13.39 

6 602 1145 6.67 206 405 16.14 

6 

(remeshed) 
524 997 1.33 - - - 

7 524 1002 1.51 208 407 19.86 
 

 

 

 

polygonal elements as shown in Fig. 13(b). The initial 

analysis indicates that this example have several critical 

points which show stress concentration in regions such as 

crack tip, point load, constraints and near hole zone as 

shown in Fig. 13(c). 

The aim error is chosen 7% to necessitate three adaptive 

steps. The trend of the estimated error is summarized in 

Table 2. Since the initial mesh is coarse and the holes are 

modeled roughly (Fig. 13(b)), the adaptive refinement is 

required from the very first step of analysis which shows 

largest value of error (12%). Two additional adaptive 

remeshing have accomplished in steps 3 and 5 where the 

aim error is not achieved. Different crack growth lengths 

have been considered in various steps depending on the 

kinking of the crack. The procedure of adaptive polygonal 

remeshing is illustrated in Fig. 14. The initial meshes (Figs. 

14(a)-(c)) are improved (Figs. 14(g)-(i)) according to error  

 
Fig. 12 The rectangular plate with an edge crack in 

tension; a) a comparison of the crack path between the 

uniform and adapted meshes, b) the deformed shape of the 

crack growth  

 

 

 

 
Fig. 13 Bending beam weakened by three holes; a) 

geometry and boundary conditions (all dimensions in 

inch), b) initial FE mesh mesh, c) the contour of stress σy 
 

 
Fig. 11 The rectangular plate with an edge crack in 

tension; The variation of overall percentage of estimated 

error with crack length 
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contours (Figs. 14(d)-(f)). In early stages, the side holes are 

more refined due to the crack tip and point load. However, 

in last stages the as the crack grows, the middle hole 

becomes more critical and requires higher dense mesh. 

An important aspect of the adaptive FEM is to create an 

optimal mesh with minimum degrees of freedom while 

producing an error value that is lower than the aim error. In 

traditional adaptive mesh refinement with triangular or 

quadrilateral elements, the remeshing procedure usually 

increase number of DOFs drastically. However great 

flexibility of mesh generation in polygonal elements 

controls the number of DOFs and makes the polygonal 

adaptive FEM more efficient. It is obvious from Table 2 that 

the number of nodes is not increased considerably. The 

convergence of the estimated error is depicted in Fig. 15 for 

successive FE meshes. The drops on the graph indicates the 

effect of adaptive mesh refinement on the discretization 

error.  

The eccentricity of the crack and the presence of the 

holes diverts the crack toward the holes and results the 

mixed mode crack propagation. The crack path is predicted 

using the maximum circumferential stress criteria and is 

compared to those of experimental and numerical results 

reported by Bittencourt et al. (1996) (Fig. 16(a)). A good 

agreement can be seen between the numerical prediction 

and those of experiments. The crack growth length is 

reduced to 0.3 in where the crack curves sharply in final 

steps of crack propagation. Fig. 16(b) indicates that the 

crack ultimately intersects the middle hole as it was 

observed in the experimental tests (Bittencourt et al. 1996). 

 

Table 2 Bending beam weakened by three holes; Summary 

of estimated errors for adaptive polygonal FEM during 

crack growth 

Crack growth 

step 

Crack 

growth 

length 

(in) 

Number of 

elements 

Number 

of nodes 

Crack 

length 

(in) 

Estimated 

error (%) 

1 1.5 232 465 1 12.12 

1 (remeshed) 1.5 605 1204 1 3.68 

2 0.5 611 1215 2.5 6.88 

3 0.5 611 1219 3 7.83 

3 (remeshed) 0.5 616 1247 3 5.20 

4 1 617 1250 3.5 6.30 

5 0.25 622 1256 4.5 10.24 

5 (remeshed) 0.25 672 1343 4.5 5.39 

6 0.25 676 1349 4.8 5.95 

7 0.25 678 1353 5.1 6.20 

 

 

Khoei et al. (2015) predicted the same path with polygonal 

elements which was highly refined near the crack tip and 

holes without adaptive remeshing. 

 
4.3 A rectangular plate with cracks emanating from 

holes 
 

The last example represents a 10×20 mm rectangular 

steel plate with two holes as shown in Fig. 17(a). Two 

cracks oriented with the angle of 45º have emanated from  

 
Fig. 14 Bending beam weakened by three holes; a-c)The FE mesh before refinement, d-f)the estimated error contour, g-i)the 

refined FE mesh at steps 1,3 and 5 of crack propagation respectively 
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the holes. The problem has been analyzed with 

displacement control by pulling the top edge of the plate in 

an incremental manner. The material properties used in this 

example are the same as the first example. This example is 

chosen to demonstrate the ability of the proposed algorithm 

in the problems with multiple cracks. This problem was 

investigated by Belytschko et al. (1995) using element-free 

Galerkin method. The domain is initially discretized using 

204 polygonal elements as shown in Fig. 17(b).  The stress 

concentration can be observed in the crack tips and around 

the holes. The contour of stress σx in step 6 of crack growth 

is plotted in Fig. 17(c) which indicates the critical regions 

of the problem. The distributed loading and constraint 

prevent the stress concentration in top and bottom edges. 

The presence of two different cracks will intensify the 

discretization error and the aim error is taken 10% in this 

example. The procedure of adaptive remeshing, number of 

nodes and elements in each step and corresponding 

estimated errors are summarized in Table 3. The advantage 

of the polygonal elements is used in half steps of the crack  

 

 

growth and the crack is propagated with previous meshes. 

However, in steps 1, 4, 6 the aim error has been exceeded 

and the adaptive remeshing is accomplished. The process of 

adaptive mesh refinement is illustrated in Fig. 18. Each 

refined mesh in each step is employed as the initial mesh of 

next step as shown in Fig. 18. The contour of estimated 

error (Figs. 18(b),(e),(h)) indicates the regions which 

require dense mesh. However, the error of these regions are 

gradually decreased and new critical regions are produced 

in consecutive steps.  

The variation of estimated error with crack length is 

plotted in Fig. 19. It can be seen the estimated error has 

approximately linear relation with crack growth. As the 

crack grows, the crack tip takes some distance from refined 

zone and the discretization error increases. This relation can 

be used to roughly predict the steps which require adaptive 

mesh refinement. Through this approximation, the aim error 

and number of adaptive mesh refinement stages can be 

adjusted to balance the required computational cost and the 

accuracy of the results. The large increment in the last step 

 
Fig. 15 Bending beam weakened by three holes; The variation of overall percentage of estimated error with crack length 

 

 
Fig. 16 Bending beam weakened by three holes; a)a comparison of the crack path between the proposed algorithm and 

experimental results(Bittencourt et al.1996) b) the deformed shape of the crack growth, c) the polygonal mesh employed by 

Khoei et al. (2015) 
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Fig. 17 The rectangular plate with cracks emanating from 

holes; a) geometry and boundary conditions (all 

dimensions in mm), b) initial FE mesh mesh, c) the 

contour of stress σx in step6 

 

Table 3 The rectangular plate with cracks emanating from 

holes; Summary of estimated errors for adaptive polygonal 

FEM during crack growth 

Crack 

growth step 

Crack 

growth 

length 

(mm) 

Number of 

elements 

Number 

of nodes 

Crack 

length 

(mm) 

Estimated 

error (%) 

1 1 204 409 1 10.1 

1 (remeshed) 1 499 982 1 5.83 

2 0.5 509 996 2 7.74 

3 0.5 514 1002 2.5 9.01 

4 0.5 518 1007 3 10.6 

4 (remeshed) 0.5 738 1462 3 5.97 

5 2.5 745 1476 3.5 7.37 

6 2.5 758 1496 6 12.94 

6 (remeshed) 2.5 805 1585 6 5.26 

of crack growth results a long distance between crack tip 

and refined zone (Fig. 18(g)) and makes maximum 

estimated error in this step as shown in Fig. 19. 

The inclined orientation of the cracks leads to mixed 

mode crack propagation in initial steps of the crack growth. 

However, in next steps crack curves to horizontal direction 

and mode I dominates the crack behavior. Thus, large crack 

growth length is considered in last modeling steps. In final 

steps, the cracks attract each other and make an anti-

symmetric pattern as shown in Fig. 20. Khoei et al. (2008) 

analyzed this example using an automatic adaptive mesh 

refinement technique with triangular elements. Fig. 20 

indicates the predicted path is identical to the numerical 

result reported by Khoei et al. (2008). 
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Fig. 18 The rectangular plate with cracks emanating from 

holes; a,d,g) The FE mesh before refinement, b,e,h) the 

estimated error contour, c,f,i) the refined FE mesh in steps 

1, 4 and 6 of crack growth 

 

 

 
Fig. 19 The rectangular plate with cracks emanating from 

holes; The variation of overall percentage of estimated 

error with crack length 

 

 
Fig. 20 The rectangular plate with cracks emanating from 

holes; a comparison of the crack path between the 

proposed algorithm and those reported by Khoei et al. 

(2008) 

5. Conclusion 
 

In the present paper, an automatic adaptive mesh 

refinement was presented in simulation of crack 

propagation in the framework of polygonal finite element 

modeling. The advantage of great flexibility of the 

polygonal elements was employed to discretize the domain 

with desired mesh density. In many steps of the crack 

propagation there was no requirement to overall remeshing 

and some local modifications was sufficient. This led to 

huge saving in computational cost of the analysis. In the 

previous methods, the problem should be analyzed with a 

very fine mesh in all of the crack growth steps which 

impose high computational cost to the problem. This is 

prevented using mesh adaption and reduce the 

computational cost of the problem. However, in some steps 

which the crack tip took some distance from the refined 

zone and the estimated error exceeded the aim error, the 

proposed adaptive polygonal FEM controlled the error to 

make FEM solution reliable. Through this procedure the 

path of the crack propagation was predicted precisely. A 

linear relation was approximated between the crack growth 

and estimated error which can be applied for the adjustment 

of the aim error and computational cost. Very lower number 

of DOFs was produced during the process of adaptive 

remeshing in polygonal elements in comparison with 

triangular and quadrilateral elements as it was reported in 

the literature (Khoei et al. 2008; Moslemi and Khoei 2009) 

which makes the adaptive mesh refinement more efficient 

in polygonal elements. Finally, to demonstrate the 

efficiency and robustness of proposed adaptive algorithm in 

error reduction, three numerical examples were presented 

and compared with those available experimental data and 

analytical solutions reported in literature. 

 

 

References 
 

Anitescu, C., Hossain, M.N., Rabczuk, T. (2018), “Recovery-

based error estimation and adaptivity using high-order splines 

over hierarchical T-meshes”, Comput. Methods. Appl. Mech. 

Eng., 328, 638-662. https://doi.org/10.1016/j.cma.2017.08.032. 

Beirão Da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, 

L.D., Russo, A. (2013), “Basic principles of virtual element 

methods”, Math. Models Methods Appl. Sci., 23, 199-214. 

https://doi.org/ 10.1142/S0218202512500492. 

Belytschko, T., Lu, Y.Y., Gu, L. (1995), “Crack propagation by 

element-free Galerkin methods”, Eng. Fracture Mech., 51, 295–

315. https://doi.org/ 10.1016/0013-7944(94)00153-9. 

Bittencourt, T.N., Wawrzynek, P.A., Ingraffea, A.R., Sousa, J.L. 

(1996), “Quasi-automatic simulation of crack propagation for 2D 

lefm problems”, Eng. Fracture Mech., 55, 321-334. 

https://doi.org/ 10.1016/0013-7944(95)00247-2. 

Chen, J., Chen, Z. (2016), “Three-dimensional superconvergent 

gradient recovery on tetrahedral meshes”, J. Numerical Methods 

Eng., 108, 819-838. https://doi.org/ 10.1002/nme.5229. 

Cho, J.R., (2019), “Near-tip grid refinement for the effective and 

reliable natural element crack analysis”, Struct. Eng. Mech., 

70(3), 279-287. https://doi.org/ 10.12989/sem.2019.70.3.279. 

Dasgupta, G. (2003), “Integration within polygonal finite 

elements”, J. Aerosp. Eng., 16, 9–18. 

https://doi.org/10.1061/(ASCE)0893-1321(2003)16:1(9). 

Erdogan, F., Sih, G.C. (1963), “On the crack extension in plates 

698

https://www.scopus.com/record/display.uri?eid=2-s2.0-84872376410&origin=reflist&sort=plf-f&cite=2-s2.0-84872376410&src=s&imp=t&sid=0d77dcb69ef941b4108d68bb5f218541&sot=cite&sdt=a&sl=0&recordRank=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84872376410&origin=reflist&sort=plf-f&cite=2-s2.0-84872376410&src=s&imp=t&sid=0d77dcb69ef941b4108d68bb5f218541&sot=cite&sdt=a&sl=0&recordRank=
https://www.scopus.com/record/display.uri?eid=2-s2.0-0030242472&origin=reflist&sort=plf-f&cite=2-s2.0-0030242472&src=s&imp=t&sid=4db3f027c691d0d8ec3925549d728bef&sot=cite&sdt=a&sl=0&recordRank=
https://www.scopus.com/record/display.uri?eid=2-s2.0-0030242472&origin=reflist&sort=plf-f&cite=2-s2.0-0030242472&src=s&imp=t&sid=4db3f027c691d0d8ec3925549d728bef&sot=cite&sdt=a&sl=0&recordRank=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85065775542&origin=resultslist&sort=plf-f&src=s&st1=structural+engineering+mechanics&st2=refinement&searchTerms=refinement%3f%21%22*%24&sid=12cffa314329d0908366d9bf3ccc5527&sot=b&sdt=b&sl=90&s=SRCTITLE%28structural+engineering+mechanics%29AND+TITLE-ABS-KEY%28refinement%29+AND+PUBYEAR+%3e+2017&relpos=0&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85065775542&origin=resultslist&sort=plf-f&src=s&st1=structural+engineering+mechanics&st2=refinement&searchTerms=refinement%3f%21%22*%24&sid=12cffa314329d0908366d9bf3ccc5527&sot=b&sdt=b&sl=90&s=SRCTITLE%28structural+engineering+mechanics%29AND+TITLE-ABS-KEY%28refinement%29+AND+PUBYEAR+%3e+2017&relpos=0&citeCnt=0&searchTerm=


 

Polygonal finite element modeling of crack propagation via automatic adaptive mesh refinement 

 

under plane loading and transverse shear”, J. Basic Eng., 4, 519–

27. https://doi.org/ 10.1115/1.3656897. 

Floater, M.S. (2003), “Mean value coordinates”, Comput. Aid. 

Geometric Design., 20, 19–27. https://doi.org/ 10.1016/S0167-

8396(03)00002-5. 

Gibert, G., Prabel, B., Gravouil, A. and Jacquemoud, C. (2019), 

“A 3D automatic mesh refinement X-FEM approach for fatigue 

crack propagation”, Finite Elements Anal Design., 157, 21-37. 

https://doi.org/ 10.1016/j.finel.2019.01.008. 

González-Estrada, O.A., Ródenas, J.J., Bordas, S.P.A., Nadal, E., 

Kerfriden, P., Fuenmayor, F. (2015), “Locally equilibrated stress 

recovery for goal oriented error estimation in the extended finite 

element method”, Comput. Struct., 152, 1–10. 

https://doi.org/10.1016/j.compstruc.2015.01.015. 

Griffith, A.A. (1921), “The phenomena of rupture and flow in 

solids”, Philosophical Transactions of the Royal Society, 221, 

163–198. https://doi.org/ 10.1098/rsta.1921.0006. 

Hoshina, T.Y.S., Menezes, I.F.M., Pereira, A. (2018), “A simple 

adaptive mesh refinement scheme for topology optimization 

using polygonal meshes”, J. Brazilian Soc. Mech. Sci. Eng., 40, 

1-17. https://doi.org/ 10.1007/s40430-018-1267-5. 

Hussein, A., Aldakheel, F., Hudobivnik, B., Wriggers, P., Guidault, 

P.-A., Allix, O. (2019), “A computational framework for brittle 

crack-propagation based on efficient virtual element 

method”, Finite Elements Anal. Design, 159, 15-32. 

https://doi.org/10.1016/j.finel.2019.03.001. 

Huynh, H.D., Tran, P., Zhuang, X., Nguyen-Xuan, H. (2019), “An 

extended polygonal finite element method for large deformation 

fracture analysis”, Eng. Fracture Mech., 209, 344-368. 

https://doi.org/ 10.1016/j.engfracmech.2019.01.024. 

Ingraffea, A.R. (2004), “Computational fracture mechanics”, 

Encyclopedia of computational mechanics, vol 2. Wiley, New 

Jersey. https://doi.org/ 10.1002/0470091355.ecm032. 

Khoei, A.R., Azadi, H., Moslemi, H. (2008), “Modeling of crack 

propagation via an adaptive mesh refinement based on modified 

superconvergent patch recovery technique”, Eng. Fracture 

Mech., 75, 2921–2945. 

https://doi.org/10.1016/j.engfracmech.2008.01.006. 

Khoei, A.R., Yasbolaghi, R., Biabanaki, S. (2015), “A polygonal 

finite element method for modeling crack propagation with 

minimum remeshing”, Int. J. Fracture, 194, 123–48. 

https://doi.org/ 10.1007/s10704-015-0044-z. 

Leon, S.E., Spring, D.W., Paulino, G.H. (2014), “Reduction in 

mesh bias for dynamic fracture using adaptive splitting of 

polygonal finite elements”, J. Numerical Methods Eng.100, 555–

576. https://doi.org/ 10.1002/nme.4744. 

Malsch, E.A., Lin, J.J., Dasgupta, G. (2005), “Smooth two 

dimensional interpolations: a recipe for all polygons”, J. 

Graphics Tools, 10, 27–39. https://doi.org/ 

10.1080/2151237X.2005.10129192. 

Meyer, M., Lee, H., Barr, A.H., Desbrun, M. (2002), “Generalized 

barycentric coordinates for irregular n-gons”, J. Graphics Tools7, 

13–22. https://doi.org/ 10.1080/10867651.2002.10487551. 

Moës, N., Dolbow, J., Belytschko, T. (1999), “A finite element 

method for crack growth without remeshing”, J. Numerical 

Methods Eng.46, 131–150. https://doi.org/ 10.1002/(SICI)1097-

0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J. 

Moslemi, H., Khoei, A.R. (2009), “3D adaptive finite element 

modeling of non-planar curved crack growth using the weighted 

superconvergent patch recovery method”, Eng. Fracture Mech., 76, 

1703–1728. https://doi.org/10.1016/j.engfracmech.2009.03.013. 

Moslemi, H., Tavakkoli, A. (2018), “A statistical approach for 

error estimation in adaptive finite element method”, J. Comput. 

Methods Eng. Sci. Mech., 19, 440-450. https://doi.org/ 

10.1080/15502287.2018.1558424. 

Ooi, E.T., Shi, M., Song, C., Tin-Loi, F., Yang, Z. (2013), “Dynamic 

crack propagation simulation with scaled boundary polygon elements 

and automatic remeshing technique”, Eng. Fracture Mech., 106,1–21. 

https://doi.org/10.1016/j.engfracmech.2013.02.002.  

Özakça, M. (2003), “Comparison of error estimation methods and 

adaptivity for plane stress/strain problems”, Struct. Eng. Mech., 

15, 579-608. https://doi.org/ 10.12989/sem.2003.15.5.579. 

Ródenas, J.J., González-Estrada, O.A., Chinesta, F., Fuenmayor, 

F.J. (2013), “Enhanced error estimator based on a nearly 

equilibrated moving least squares recovery technique for FEM 

and XFEM”, Comput. Mech., 52, 321–344. 

https://doi.org/10.1007/s00466-012-0814-7. 

Sibson, R. (1980), “A vector identity for the Dirichlet 

tessellation”, Mathematical Proceedings of the Cambridge 

Philosophical Society, 87, 151–155. https://doi.org/ 

10.1017/S0305004100056589. 

Spring, D.W., Leon, S.E., Paulino, G.H. (2014), “Unstructured 

polygonal meshes with adaptive refinement for the numerical 

simulation of dynamic cohesive fracture”, Int. J. Fracture, 189, 

33-57. https://doi.org/ 10.1007/s10704-014-9961-5. 

Sukumar, N. (2004), “Construction of polygonal interpolants: a 

maximum entropy approach”, J. Numerical Methods Eng., 61, 

2159–2181. https://doi.org/ 10.1002/nme.1193. 

Sukumar, N., Moës, N., Moran, B., Belytschko, T. (2000), 

“Extended finite element method for three-dimensional crack 

modelling”, J. Numerical Methods Eng., 48, 1549–1570. 

https://doi.org/ 10.1002/1097-0207(20000820)48:11<1549::AID-

NME955>3.0.CO;2-A. 

Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M. (2010), 

“Polygonal finite elements for topology optimization: a unifying 

paradigm”, J. Numerical Methods Eng., 82, 671–698. 

https://doi.org/ 10.1002/nme.2763. 

Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M. (2012), 

“Polymesher: a general-purpose mesh generator for polygonal 

elements written in Matlab”, Struct. Multidisciplinary Opt.,45, 

309–328. https://doi.org/ 10.1007/s00158-011-0706-z. 

Ullah, Z., Augarde, C. (2013), “Finite deformation elasto-plastic 

modelling using an adaptive meshless method”, Comput. 

Struct.,118, 39–52. https://doi.org/ 

10.1016/j.compstruc.2012.04.001. 

Wachspress, E.L. (1975), A Rational Finite Element Basis, 

Academic Press, New York. https://doi.org/ 10.1115/1.3452953. 

Wang, H., Qin, Q.H. (2017), “Voronoi polygonal hybrid finite 

elements with boundary integrals for plane isotropic elastic 

problems”, J. Appl. Mech., 9, 1750031. https://doi.org/ 

10.1142/S1758825117500314. 

Warren, J. (1996), “Barycentric coordinates for convex polytopes”, 

Adv. Comput. Math., 6, 97–108. 

https://doi.org/10.1007/BF02127699. 

Zi, G., Rabczuk, T., Wolfgang W. (2007), “Extended meshfree 

methods without branch enrichment for cohesive cracks”, 

Comput. Mech., 40, 367–382. https://doi.org/ 10.1007/s00466-

006-0115-0. 

Ziaei, H., Moslemi, H. (2020), “A new adaptive mesh refinement 

strategy based on a probabilistic error estimation”, Struct. Eng. 

Mech., 74(4), 547-557. 

https://doi.org/10.12989/sem.2020.74.4.547. 

Zienkiewicz, O.C., Zhu, J.Z. (1987), “A simple error estimator and 

adaptive procedure for practical engineering analysis”, J. 

Numerical Methods Eng., 24, 337-357. https://doi.org/ 

10.1002/nme.1620240206. 

Zienkiewicz, O.C., Zhu, J.Z. (1992), “The superconvergent patch 

recovery (SPR) and adaptive finite element refinement”, 

Comput. Methods. Appl. Mech. Eng., 101, 207-224. 

https://doi.org/ 10.1016/0045-7825(92)90023-D. 

 

 

PL 

699

https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57205677515&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=15846878600&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6505775841&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=15724951200&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85061046846&origin=resultslist&sort=cp-f&src=s&st1=adaptive+mesh+refinement&st2=spr&nlo=&nlr=&nls=&sid=c967b061d04b34291764ead3c4e184c8&sot=b&sdt=b&sl=58&s=TITLE-ABS-KEY%28adaptive+mesh+refinement%29+AND+PUBYEAR+%3e+2018&relpos=21&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85061046846&origin=resultslist&sort=cp-f&src=s&st1=adaptive+mesh+refinement&st2=spr&nlo=&nlr=&nls=&sid=c967b061d04b34291764ead3c4e184c8&sot=b&sdt=b&sl=58&s=TITLE-ABS-KEY%28adaptive+mesh+refinement%29+AND+PUBYEAR+%3e+2018&relpos=21&citeCnt=0&searchTerm=
https://www.scopus.com/sourceid/18189?origin=resultslist
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57202510599&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6701768428&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57199275909&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85048614680&origin=resultslist&sort=plf-f&src=s&st1=hoshina&st2=menezes&sid=88e47916c2b5a359613dd4f3eb2ef653&sot=b&sdt=b&sl=47&s=%28AUTHOR-NAME%28hoshina%29+AND+AUTHOR-NAME%28menezes%29%29&relpos=0&citeCnt=1&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85048614680&origin=resultslist&sort=plf-f&src=s&st1=hoshina&st2=menezes&sid=88e47916c2b5a359613dd4f3eb2ef653&sot=b&sdt=b&sl=47&s=%28AUTHOR-NAME%28hoshina%29+AND+AUTHOR-NAME%28menezes%29%29&relpos=0&citeCnt=1&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85048614680&origin=resultslist&sort=plf-f&src=s&st1=hoshina&st2=menezes&sid=88e47916c2b5a359613dd4f3eb2ef653&sot=b&sdt=b&sl=47&s=%28AUTHOR-NAME%28hoshina%29+AND+AUTHOR-NAME%28menezes%29%29&relpos=0&citeCnt=1&searchTerm=
https://www.scopus.com/sourceid/71359?origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85064650069&origin=reflist&sort=plf-f&cite=2-s2.0-85064650069&src=s&imp=t&sid=efbf909a7309b97a61d1cfa43786ceab&sot=cite&sdt=a&sl=0&recordRank=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85064650069&origin=reflist&sort=plf-f&cite=2-s2.0-85064650069&src=s&imp=t&sid=efbf909a7309b97a61d1cfa43786ceab&sot=cite&sdt=a&sl=0&recordRank=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85064650069&origin=reflist&sort=plf-f&cite=2-s2.0-85064650069&src=s&imp=t&sid=efbf909a7309b97a61d1cfa43786ceab&sot=cite&sdt=a&sl=0&recordRank=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57205672125&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57202617523&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=24485610900&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=24503383800&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85061058997&origin=resultslist&sort=plf-f&src=s&st1=polygonal+finite+element&st2=&sid=0eb5361dd9474f0c92378e483665dd06&sot=b&sdt=b&sl=39&s=TITLE-ABS-KEY%28polygonal+finite+element%29&relpos=10&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85061058997&origin=resultslist&sort=plf-f&src=s&st1=polygonal+finite+element&st2=&sid=0eb5361dd9474f0c92378e483665dd06&sot=b&sdt=b&sl=39&s=TITLE-ABS-KEY%28polygonal+finite+element%29&relpos=10&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85061058997&origin=resultslist&sort=plf-f&src=s&st1=polygonal+finite+element&st2=&sid=0eb5361dd9474f0c92378e483665dd06&sot=b&sdt=b&sl=39&s=TITLE-ABS-KEY%28polygonal+finite+element%29&relpos=10&citeCnt=0&searchTerm=
https://www.scopus.com/sourceid/20594?origin=resultslist
http://dx.doi.org/10.1002/0470091355.ecm032
https://doi.org/10.1080/2151237X.2005.10129192
https://doi.org/10.1080/10867651.2002.10487551
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=55960502400&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84906781023&origin=resultslist&sort=plf-f&src=s&st1=leon&st2=polygonal&sid=318e6806fab3ed2828078a031493764e&sot=b&sdt=b&sl=48&s=%28AUTHOR-NAME%28leon%29+AND+TITLE-ABS-KEY%28polygonal%29%29&relpos=6&citeCnt=28&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84906781023&origin=resultslist&sort=plf-f&src=s&st1=leon&st2=polygonal&sid=318e6806fab3ed2828078a031493764e&sot=b&sdt=b&sl=48&s=%28AUTHOR-NAME%28leon%29+AND+TITLE-ABS-KEY%28polygonal%29%29&relpos=6&citeCnt=28&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84906781023&origin=resultslist&sort=plf-f&src=s&st1=leon&st2=polygonal&sid=318e6806fab3ed2828078a031493764e&sot=b&sdt=b&sl=48&s=%28AUTHOR-NAME%28leon%29+AND+TITLE-ABS-KEY%28polygonal%29%29&relpos=6&citeCnt=28&searchTerm=
http://dx.doi.org/10.1115/1.3452953



