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Abstract. The present paper employs nonlocal strain gradient theory (NSGT) to study buckling behavior of functionally graded
magneto-electro-thermo-elastic (FG-METE) nanoshells under various physical fields. NSGT modeling of the nanoshell contains
two size parameters, one related to nonlocal stress field and another related to strain gradients. It is considered that mechanical,
thermal, electrical and magnetic loads are exerted to the nanoshell. Temperature field has uniform and linear variation in nanoshell
thickness. According to a power-law function, piezo-magnetic, thermal and mechanical properties of the nanoshell are considered to
be graded in thickness direction. Five coupled governing equations have been obtained by using Hamilton’s principle and then
solved implementing Galerkin’s method. Influences of temperature field, electric voltage, magnetic potential, nonlocality, strain
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gradient parameter and FG material exponent on buckling loads of the FG-METE nanoshell have been studied in detail.
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1. Introduction

Magneto-electro-thermo-elastic (METE) materials as a
type of intelligent materials exhibit interesting multi-
physical behaviors owing to their mechanical performance
under electric and magnetic fields (Pan 2001). Sensors,
actuators and many smart systems and devices are good
candidates for application of METE materials in them.
These materials can provide electric voltage sensing or
magnetic potential sensing when they are under an external
mechanical load (Ebrahimi and Barati 2018). In contrast,
these material can exhibit mechanical deformation when
they are under electro-magnetic field (Ramirez et al. 2006).
To achieve a METE material with expected material
properties, two constituents are directly combined with each
other to make a composite material such as BaTiOs-
CoFe;04. The material properties of these composites
including elastic moduli, piezoelectric and magnetic
properties are dependent on the percentage of the two
constituents. Also, BaTiO3 and CoFe,O4 may be combined
with each other to make a special type of material called
functionally graded material (FG) (Ebrahimi and Barati
2016, Chikh et al. 2016, Yazid et al. 2018, Park et al. 2016,
Sayyad and Ghugal 2018). In FG model, all properties are
varying in thickness direction of the material. Actually, the
properties can be variable form BaTiO3 to CoFe,O4 or vice
versa. The rate of variation in material properties is
controllable in FG materials by defining a power-law model
(Barati and Zenkour 2018). This model
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possesses a material index that makes us able to control the
rate of variation.

For mathematical modeling of a nano-dimension
structure such as a plate or a shell, there are different non-
classic theories, for example nonlocal theory and strain
gradient based theories (Eltaher er al. 2016, Barretta et al.
2016, Heydarpour and Malekzadeh 2019, Attia and
Mahmoud 2016, Alasadi et al. 2019, Fenjan et al. 2019a,b,
Faleh et al. 2020, Al-Maliki et al. 2019). In various models
of strain gradient theory, one or more scale parameter exist
in order to characterize size-dependent properties of nano-
dimension structure. It is reported that structural stiffness
may be increases by applying the effect of strain gradient
parameter. Also, there is nonlocal theory introduced by
Eringen (1983) for which it is reported that structural
stiffness of nanoshells may be reduced by applying the
effect of nonlocal parameter (Zeighampour et al. 2018).
Accounting for nonlocal influences, smart nanostructures
such as magneto-electro-elastic nanostructures have been
studied in the view of their static or dynamic characteristics
(Ke and Wang 2014, Farajpour ef al. 2016, Ke et al. 2014,
Waksmanski and Pan 2017, Hamad et al. 2019, Khalaf et al.
2019, Kunbar ef al. 2020, Fenjan et al. 2020, Ahmed et al.
2020).

Many molecular dynamic simulations confirm that
mechanical properties of nano-size structures rely on two
scale parameters, one based on nonlocal elasticity theory
and another based on strain gradient theory (Mehralian et
al. 2017a,b). Actually, the two scale parameters must be
simultaneously considered in a single theory called nonlocal
strain gradient theory (NSGT). Recently, a huge number of
studies have been published to explore combined nonlocal
and strain gradient effects on frequencies and buckling
loads of nano-size structures. NSGT is used by Ebrahimi et
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al. (2016) to examine wave dispersion characteristics of a
nano-size plate constructed from FG materials. Analyzing
post-buckling properties nano-size beams using NSGT has
been performed by Li and Hu (2015) based on Euler-
Bernoulli beam model. Employing a higher-order beam
model, Lu et al. (2017) examined natural frequencies of a
nanobeam using NSGT formulation. Analyzing nonlinear
deflections and vibrational behaviors of FG nanobeams
utilizing NSGT formulation have been carried out by Li and
Hu (2016). Wave dispersion properties of a FG magneto-
electro-elastic nano-size plate in the context of NSGT have
been explored by Ebrahimi and Dabbagh (2017). Moreover,
closed-form solution of deflection and natural frequency of
a NAGT based FG nanobeam has been represented by
Simsek (2019). Also, wave dispersion properties of a
nanoshell made of FG magneto-electro-elastic material have
been studied by Ma et al. (2018) in the framework of
NSGT. Furthermore, She ef al. (2018) examined nonlinear
deflection and vibrational behaviors of NSGT-based
cylindrical nanoshells with FG properties. Arefi et al.
(2019) utilized NSGT to obtain deflections of nano-size
plates having magneto-electro-elastic face sheets. Based on
above information and a complete literature search, one can
conclude that buckling characteristics of FG-METE
nanoshells based on NSGT have not studied up to now.

Based on classical shell theory and in the context of
NSGT, the present study explores buckling behavior of
functionally graded magneto-electro-thermo-elastic (FG-
METE) nanoshells of cylindrical shape. NSGT modeling of
the nanoshell contains two size parameters, one related to
nonlocal stress field and another related to strain gradients.
It is considered that mechanical, thermal, electrical and
magnetic loads are exerted to the nanoshell. Temperature
field has uniform and linear variation in nanoshell
thickness. According to a power-law function, piezo-
magnetic, thermal and mechanical properties of the
nanoshell are considered to be graded in thickness direction.
In the context of Galerkin’s method, the five governing
equations are reduced to ordinary equations and are
numerically solved. Impacts of thermal loading type,
electric voltage, magnetic potential, nonlocal parameter,
strain gradient parameter and FG material exponent on
buckling loads of a FG-METE nanoshell will be figured
out.

2. Nonlocal strain gradient shell modeling

In order to define the stress field components (oj) in the
framework of nonlocal strain gradient theory (NSGT), two

stress fields which are nonlocal stress Ui(jo) and higher-order

stress ai(jl) have been employed (Ebrahimi ef al. 2016):
0 1
oij = ol =Voi (1)

Based on the following two integrals, nonlocal and
higher-order stresses are respectively related to strain field
g; and strain gradients Ve;; with the help of nonlocal
parameters (eoa, €1a) and strain gradient parameter (/) as:

Gi(jo) - I\, Cijao(x, X, g@)eiq (X)dX' (2a)

o i(jl) = '2_"\/ Cijun (. X, e@) Ve (X)dx’ (2b)

I above relations, Cjj;; denotes the elastic properties.
Moreover, ao(x,x,e,a) and a;(x,x,e;a) denote
nonlocal Kernel functions. Differential formulation of
nonlocal strain gradient theory may be represented as
follows:

[1-(ea)*V’IL-(&)° V10

3)

:Cijkl [1-(ea)* Ve, _Cijkl 12[1-(e,2)*V*IV?s,

The symbol V?is used as Laplacian operator. By

selectinge; = ey = e, it is possible to express a simpler
formulation of NSGT as (Ebrahimi et al. 2016):

[1—(ea)*V?] Ojj = Cijkl L-1°VZ]s, @

3. FGM shell modeling

For mathematical description of a FG material, there are
various models such as power-law function. Th is function
may be used in order to define material properties as a
function of power-law index or material gradient exponent
(p). All of material properties (Pr) which may be elastic,
piezoelectric and magnetic properties are variable form
upper size properties (P;) to bottom side properties (Py) as
(Faleh et al. 2018):

1
P, (z)=(R —Pb)(§+5)p +P, 5)

In above function, z is distance from the mid-surface of
the shell.

So far, a variety of structural theories are introduced for
description and analyzes of diverse structures (Abualnour et
al. 2019, Adda Bedia et al. 2019, Alimirzaei et al. 2019,
Batou et al. 2019, Belbachir et al. 2019, Berghouti et al.
2019, Boukhlif et al. 2019, Bourada et al. 2019, Boutaleb et
al. 2019, Boulefrakh et al. 2019, Chaabane et al. 2019,
Draoui et al. 2019, Draiche et al. 2019, Hellal et al. 2019,
Hussain et al. 2019, Karami et al. 2019a-c, Karami et al.
2020, Kaddari et al. 2020, Khiloun et al. 2019, Mahmoudi
et al. 2019, Medani et al. 2019, Meksi et al. 2019, Sahla et
al. 2019, Semmah et al. 2019, Tlidji et al. 2019, Zarga et al.
2019, Zaoui et al. 2019). As it is known in research
community, classical shell theory (CST) is suitable for
studying thin shells. However, the displacement field of the
nanoshell (u;, uz u3) based on CST can be defined as
function of axial (i), circumferential (v) and transverse (w)
components in the following form:

ow
ul(x,y,z):u(x,y)—z&(x, y) (6)
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(D)= F )0

Uy (X, Y, 2) =W(X, Y) ®)

There are only three strains for the CST shells as
follows:

ou o*w
E=—"—1
OX NG
Sy = ﬂ—ﬂ— 0w )
yy ay R ayZ
ou ov o*w
V= +t——22

oy oX OXOY

Suppose that the nanoshell is exposed to electric (@) and
magnetic (1) potentials having cosine variation of electric
and magnetic displacement components (¢,y) based on
following relations:

D (X,Y,2)=-cos(E2)p (X, y)+%v (10)

Y(X,Y,2)=—cos(&z)y (X, y)+%Q (11)

It should be pointed out that &=a/h. Also, V and Q
respectively denote exerted electric voltage and magnetic
potential to nanoshell.

The electric and magnetic fields are defined as gradients
of electric potential and magnetic potential, respectively.
Knowing this fact, it is possible to derive all components
for electrical field (Ex, Eo, E,) and magnetic field (Hx, Ho,
H,) in the following form:

E, =—®, =cos(£2) 22, (12)
' oX
0
E,=-, =cos(§z)£, (13)
E,=—®, =—§sin(52)¢—% (14)
oy
H, =-Y,=cos(fz) =, (15)
: OX
oy
H,=-T, =—§sin(§Z)7—ZTQ (17

The components of stress field, electric field
displacement (Dy, Dy, D,) and magnetic induction (Bx, By,
B,) of nano-size shells according to NSGT and classical
shell theory can be defined by:

(l_ (ea)2 vz)Gxx

B o gar R - N . ~ . (18)
=@1-1"V)[Cpe, +C125yy]_e31 E, -Gy H, —CLaAT

(1-(ea)’V?)o,,

I . 5 5 ~ (19)
=1-1"V)[Ce, +C115W]—e31 E, -0, H, -C,aAT

(1-(e8)’V*)o,, = (1-1°V*)Cye s (20)

(1-(ea)*V?)D, =+5,E, +d,H, 1)
(1-(ea)*V?*)D, =+5,E, + d.H, (22)
(1—(ea)’V?)D,
- 23
:(1_|2v2)[é318xx+é318yy]+§33Ez +d33Hz ( )
(1-(ea)’V*)B, = +d,,E, + 7,H, (24)
(1-(ea)’V*)B, = +d,E, + 7, H, (25)
(1-(ea)*V?)B,
(26)

= (1_|2V2)[q3lgxx + qSlgw]+a33Ez + XxH,

where @&; is thermal expansion coefficient. Elastic,
piezoelectric and magnetic material properties are
respectively denoted by Cj, ejj and ;. It must be mentioned
that the material properties are defined in the following
forms based on plane stress assumption of shells (Ke ef al.
2014):

S C123 ~ C123 ~
C11 = C11 - ) C12 = C12 - ) Cee = Ceel
33 33
g —e s g _o  Culs
31— C31 1 Uz = Ua c.
Css 33
7 7 7 7, Oasas
d11 = d11v d33 = d33 + ) 27
Cy
o2
g _ & _ 33 ~
St =Sy Si=Spt v X = X
33
G, Cpe
~ 3B~ 3%3
X=Xt 04 =0—
33 Cs3

According to the definition of strain energy (U) and the
work done by external loads (), Hamilton’s principle
might be expressed by:
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J'Ot oU-W)dt=0 (28)
where
(6,06, +cPVe + 0,08,

v +o-§1y)6V £y +0, 07+ O'S)(W T (29)
-D,SE, - D,5E, - D,5E, ~B,6H, -B,6H, ~B,6H,)dV

ouU =

82W
aXZ
where N,gand Nggare general axial and circumferential
loads:

No=N,o=N"+NF+N"+N" @

in which NT, NE, NH and NM respectively express
temperature, electrical, magnetic and mechanical loadings.
Electrical and magnetic loadings can be expressed by:

NEz_J-h/z~ 20

o*w
SW = j(N )+Nyoy))5wdv (30)

~——dz, N" = q31 dz (32)

2 3L h —-hi2 h

Here, uniformly and linearly distributed temperature
loads in the thickness of nanoshell have been considered.
For the two types of temperature distribution, T(z) may be
introduced by:

Uniform temperature rise:

T(z)=AT +T, (33)

Linear temperature rise:

T(2) =T, +AT (%+%), AT =T,-T, G4
in which T, and Ty, are the temperature at top and bottom
surfaces of the nanoshell thickness. Moreover, To=300 K
can be defined as reference temperature. Then, temperature
rise in the nanoshell can be introduced by A7. Thermal
loading through the thickness can be expressed by:

hi2 ~
—J. h/2C11 a, (T(2)-T,)dz (33

By using Eq.(28) and collecting the coefficients of
displacement components (Su, dv, dw), one can derive the
governing equations of METE nanoshells as:

N, ON,
Ny , Ty _g (36)
OX oy
oN,, ON
T+ —2=0 (37)

OX oy
M, M, M,

0 2t 0 5yy oy*
X X

N o°w 0*w (38)
+?yy_ XO(a?)_NyO(ilayz)zo

th (005(62 , sz =0(39)

I h;u(cos(;‘z ]dz =0 (40)

where Nj and M; (ij=xx, Xy, yy) are membrane forces
and bending moments:

=j_h/2( c® -vo¥)dz =N - VN

XX

:Im( (0) Va(l))dZ— (0) VN“)

Xy

h/2
_ 0 _ @ _N©O _ ()
W _.[_h/z (o, —Vo,)dz=N’ —VNp

2 “0
W= .[—hlz (¢ (0) Va(l’)dz _ b(O) _VM:X(l)
h/2
M, :I » 2(o " 0 Va‘l))dz— b(O) ~VM! b(y)
_ J’“” o —Ve®)dz =M —ymE
in which
h/
NG = [ (0 )dz, NP = j (o )dz
(42)

© _ ©) @ _ @
MO =" 2(6)dz, MP=["" 2(of )z

Consider that symbols @ and @ respectively denote
classic and non-classic forces/moments. Also, obtained
boundary conditions based on Hamilton’s principle can be
expressed by:

u=0, or N,n +N,n =0 (43)

v=0, or N,n, +N, n =0 (44)
w=0, or

oM oM oM
(M T My (T Ty ) o)
OX oy Ox oy OX oy

ow

o =0, or M,n,+M_n, =0 (46)

ow

E:O, or M,n,+M_ n =0 (47)

$=0, or ff;/zz(cos(fz) D,n, +cos(£2)Dyn, )dz =0 (48)

h/2

y=0, or J:hlz(cos(gz) B,n, +c0s(¢£2)B,n, )dz =0 (49)
in which n, and n, denote cosines of direction.

By integrating Eq. (41) over the thickness, one may

derive following relations based on NSGT formulation of

METE nanoshells:
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ow Az( Wy g, oW

22
(1—(ea)2V2)N =@-1"V )[Au B, 8X2 R _Blzy

)]

TALG ALy —NT - NE - N"

2.2 ou o°w o W o°w
(1~ ()’ V)M, =(1-1°V )[Bu&_ DnyﬁL B, (E_E) - Dy, W]
+Eq¢+Eqy
o°w w o°w
(1—(ea)2V2)N99 (1—|2V2)[A12 B ox P All( R)_ 11?]
+AGP+ Agy
2.2 ou o*w N W o*w
1- (Ea)ZVZ)Mga = (1—| \Y )[BlZ &— D12 W—F Bll(a—ﬁ) - Dll W]
+Eg ¢+ Eqy
5 o 2.2 ou ov o°w
@-(a) V)N, =1-17V )[Ase(a"‘&)_ Bess %]
ov o°w
a-ea2vH)M,, = A-12V2) (B, (2 + Ny 2D, TV
oy | ox xdy
hi2 e 0P =m0y
th/z (1-(ea)*V*)D, cos(éz)dz =+ R = o Fr =~ =
h/2 e 0P  —n Oy
th/z (1—(ea)2V2)Dy cos(£z)dz =+ F5, — Y +Fy = Py
hi2 ) . ,O0U e OV o’'w  o°w
-V, D, §sin(§2)dz = A () + AM(@——) v 5)
~Fap-Fir
h/2 mOP om0y
J:hlz (1—(ea)2V2)BX cos(éz)dz =+ F ol X o
h/
I i (1—(ea)’ V2 )B cos(&z)dz =+ Fz’;‘%+ X5 — or
h/2 i m,OU m OV W o°w
[y, -7 V?)B, Esin(¢z)dz = AL() + Aﬂ(a——) B (e )

- 32¢_ Xsrg,ﬂ/
in which

663

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(67)

(58)

(59)

(60)

(61)
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hi2 ~ )
{Au’ B Dll} = thlz o {Lz,2°}dz, (62)
h2 ~ )
{A;,B;,, Dp}= J:h,zclz {Lz,27}dz, (63)
h2 ~ )
{Ass: Bess Des} = J:hlz Ces {1, 2,23z, (64)
hi2 .
(MuEsf=]  eugsin(2){1,2}dz (65)
he .
{As.niv Egi} = -[—hlz (& sin($z) { 1,z }dZ (66)

{Fi. P P

67

= f,h,z 510057 (£2),§,, C0s* (£2), 8, & sin’ (£2) | dz 67)
{FI.F3 R}

- J.Ilzz {all cos’ (52) ! 622 cos’ (52)* 633 §2 sinz(gz)}dz (68)
X Xnoxm
{11 22 33}

(69)

Ih;jz ;(11 c08%(£2), 7, COS*(E2), 7as E° sinz(fz)}dz

The governing equations for METE in the context of NSGT can be obtained in terms of displacement variables
by substituting Egs.(50)-(61) into Eqs (36)-(40) as:

2 a 16w o*w ou o
1-1°V -——)-B,—— —
a-12v2)ia, 0 A ) B e A g D) .
28, — ay] AL m L
A 1292)a, (DU OV) pp OW  a OU g OW M Low g o
6 2 66 2 12 1 A,/ Pu L3
OX OX 8 OX R 0
Y xoy X'y X'y A
AR O
3 4 3 2 4 3 3
(1_|2V2)[Bl1a_u_ 11a \iv"'Blz( aZV _ia VZV)_ 12 asz +2866(a—uz+ aZV )
OX oxoy R ox ox-oy oxoy® ox-oy
o*w o’u o*w v 10°w o*w
_4D66 aXzayz + BlZ 8X8y2 - D12 8x28y2 + 811(W_EW)_ DllW
(72)

el BT A Bl e S Thren L Tl T
x RoC Ry R RO

+(1— (ea)2 V) [~(NT + NE + N" + azw aZW
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Oy e ¢
aXZ + F22

N -
+F; PG +Fy
_F363¢_ Fsr;?/ =0

2y m82¢ n
ot x22

- 3?¢_X3r2,7/:0

+F7 o ¢+X1”1‘
Ox?

4. Solution procedure

Galerkin’s technique is an effective method for solving
five coupled governing equations of METE nanoshells. The
nanoshell boundary conditions in axial direction (at x=0 and
L) can be assumed as:

o’'w  o'w
PN T 5
Simply-supported edges

ow
OX Clamped edges

The displacement components must be accurately
determined in order to verify above boundary conditions. To
this end, an approximate solution for the five variables can
be considered as:

u= ZZUmnu(xy ZZUmn

m=1 n=1 m=1 n=1

V= iianV (x,y)= iiV Xn(X) aY;T(y) (78)

m=1 n=1 m=1 n=1

w= iiwmnw(x, y) =ii

m=1 n=1 m=1 n=1

W, X (XY, (Y) (79)

p=33 0, F(x ) =330, X (X)Y,(¥) @)

m=1 n=1 m=1 n=1

r=Y YL 70y) =3 Y XY, (Y) €

m=1 n=1 m=1 n=L

where Upn s Vi s Wonn » @ @and Y3, are buckling
amplitudes. Two functions Xy, and Y, must be selected in
suitable forms for capturing the influences of boundary
conditions:

Both edges simply-supported (S-S):

X, :sin(m—|_7z X), Y, =sin(ny) (82)

n 0° . ,0u
6y2+F22 ﬁ}z/"'An(&"'_ _) 31(

ov W82

oy Ty (73)

o o°w
Aal(&u a_ﬁ) 31( W ﬁ) (74)

Both edges clamped (C-C):
X :sinz(m—ljzx), Y. =Sin(ny) (83)

Based on Galerkin’s technique and inserting
displacement components in Eqs.(77)-(81) to Egs.(70)-(74),
the governing equations can be presented as ordinary
equations:

kU +Kk,V +k,W +k, ®+k,;Y=0 (34)
KU +K,,V + kW + K, D +K, Y =0 (85)
KU + KV + KW + K, ;@ + K, Y =0 (86)
kU +K,,V +k, W +k,, ®+k,Y=0 (87)

KU +KV + KW +K, D +k Y =0 (88)

Representing above equations in matrix form gives:

U

K]

(89)

~ 8 = <
I
o

where [K] denotes the stiffness matrix of nanoshell; ki
are stiffness matrix components which have the following
definitions:

[T 2>[Au A%( Ty )a(x, y)dydx (90)

2zR

J @ 12ia

oy = | ( )])u(x y)dydx (91)
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(T 1202 1 ow o°w o°w
=] J @I Bﬂ # AR 50 B S o= 2B DUk, )y

- IZIR (A, %)U(X, y)dydx

||
O'—.l—

T n 7)u(x y)dydx

2

\ 27R 2.2 o%u ou
= j j (@ VVAAS(G 5,0+ Ae 5 DV ydyd

O'—.l—

[T @13 2)[%( T e m & 2)])v(x y)dydx

T2 2 o*w *w
ko =] [ (@1VOE28 o B o A ) B, 3])v(x y)dydx

- J: ZIR (+ Ay %)V(X, y)dydx

=ET(+ ?%)v(x, y)dydx

_LGR 202 @ o%u A12
= f j (@-1V9)[B, 8X3+2866(8Xay2)+812 axay 2= w(x, y)dydx

O'—.l—

T 12V Blz( ) 2566( ) Bn(—) A“( )])W(X y)dydx

L 2zR 4 4 4
2 o'W 1aw o'W o'W

J.J. (1 17V )[ Dlla 4 Blz( R X 2) 2D128 28y2 _4D66 8X28y2

0 0

(182) o'w By, d°w Aﬂ(w) Baw]

= Roy’ “oy* R ox oy’

+(1—(ea)2V2)[=(NT +NE + N" + N )(52‘” o'w )])W(x y)dydx

! ! +E;f1 o ¢ %ﬁ%@w(x, y)dydx

(92)

(93)

(94)

(95)

(96)

97)

(98)

(99)

(100)

(101)

(102)

(103)
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2
oy LA A31 YIW(x, y)dydx (104)

_L R 627
_E['([ +E31( 8y

S [ Cypxaex  aos

Koy = | j (+A31(+—»¢(x y)dydx  (106)

aw o*w

= | I (+ A )BT +5 T g(x, y)dydx (107)

L 2zR . a . 62
k=] (RS8R S D Pl y)eox oo
0

L 2zR
— m a 7 m 8 Y
—£ ! (R 7 +Fp s Y —Fg7)g(x y)dydx (109)
L 2zR au
=[ [ A xoydydx o
00 X

L 2zR
o = | (A Erteydyx iy
00 ay
:J I (+Au(- ) E31(6W+gy))7(x y)dydx (112)

(T m 627 m o 7 m
=] [ (4] *+X — Xz7)7(x y)dydx (113)
0 0 ay

In order to find the values of buckling load, the
determinant of stiffness matrix should be defined as zero.
Nonlocal parameter, strain gradient parameter and buckling
load have been normalized as:

N=NM

[
,y=—,l=t (114)

5. Numerical results and discussions

Thorough this section, buckling characteristics of FG-
METE nanoshells under thermal loading, electric voltages,
magnetic potentials and mechanical loading have been
studied in detail. Influences of NSGT scale coefficients and
material exponent of FG material on buckling loads have

been investigated. Geometry of the METE nanoshell has
been illustrated in Fig.1. Table 1 presents the material
properties of FG-METE material.

For validating buckling loads of a FG cylindrical shell,
obtained buckling loads are compared with the results
provided by Bitch et al. (2013) in Table 2 for two buckling
modes of (m,n)=(1,3) and (1,5). Different values of material
exponent (p=0, 0.5, 1, 5) are considered for this
comparison. Also, nonlocal and strain gradient effects have
been discarded. Obtained buckling loads are the same as
those reported by Bitch et al. (2013). Taking into account
nonlocal strain gradient influences, the buckling loads of
cylindrical nanoshells are validated in Table 3 with those of
Mehralian et al. (2017) using molecular dynamic (MD)
simulation. A nanoshell of radius R=2nm has been
considered for this comparison. Based on calibrated values
of nonlocal and strain gradient parameters, obtained results
in present show good agreement with those of Mehralian et
al. (2017).

In the view of structural analysis, a compressive load
can decrease structural stiffness of a shell. When the
compressive load is strong enough, it can lead to buckling
of the shells. In the same way, exerting a high temperature
can lead to structural stiffness reduction and then thermal
buckling of the shells at critical buckling temperature.
Tables 4 and 5 represent critical buckling loads and
buckling temperatures of FG-METE cylindrical nanoshells
with S-S edge conditions for different material gradient
exponents (p), nonlocal parameters (i) and strain gradient
parameters (A). By choosing p=A=0, buckling loads and
buckling temperatures of macro-scale shells can be derived.

Hence, non-zero values for nonlocal and strain gradient
parameters may reflect scale-dependent effects. In the case
of 2=0, small scale effects are considered using nonlocal
elasticity theory and strain gradient effect has been ignored.
It can be understand from the tables that increasing in
nonlocal parameter may reduce buckling loads and
temperatures of METE nanoshell. Also, strain gradient
growth can give greater buckling load at fixed material
gradient exponent. However, buckling behavior of FG
nanoshells depends on material exponent value. Indeed,
increase of p leads to smaller buckling load owing to
reduction in amount of CoFe>O4 with lower elastic moduli
compared to BaTiO;.

In Fig.2, variation of critical buckling load of METE
nanoshell with respect to electric voltage (V) has been
plotted for different values of material gradient exponent
(p). Different elasticity theories have been considered:
classical elasticity theory (CET) with pu=0, A=0, nonlocal
elasticity theory (NET) with p=0.03, A=0 and nonlocal
strain gradient theory (NSGT) with n=0.03, 2=0.02. In can
be deduced from the figure that NSGT gives greater
buckling loads than NET. This is because NSGT considers
the influence of strain gradients and structural stiffness
increment. NSGT is also able to consider structural stiffness
reduction by using nonlocal stress field effects. However,
NET only introduces structural stiffness reduction and gives
smaller buckling loads than CET. An important fact is that
at p=0, the nanoshell of 100% made of CoFe,O4 for the
value of piezoelectric constant (e3;) is zero for it. Therefore,
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the nanoshell buckling is not affected by the electric voltage
when p=0. Also, as the value of p rises, the total portion of
CoFe;04 in FG material reduces and then the buckling load
becomes more influenced by the electric voltage. Thus, the
buckling load decrease occurs with higher rate as the value
of material exponent growths. For non-zero-values of
material exponent, the nanoshell buckling load diminishes
due to increase of applied voltage. Indeed, positive voltage
may results in smaller buckling load than negative voltage.

Fig. 3 demonstrates buckling load variation of the
nanoshell with respect to applied magnetic potential (£2)
and material gradient exponent (p) based on various
elasticity theories (CET, NET and NSGT). Simply-
supported boundary conditions have been considered for the
nanoshell. Again, it can be observed that NET modeling of
the nanoshell leads to lower buckling loads compared to
CET or NSGT. Also, it can be seen that the nanoshell
buckling load increases due to increase of applied magnetic
potential. However, positive magnetic field may results in
grater buckling load than negative magnetic field.
Moreover, buckling behavior of FG-METE nanoshell in
magnetic field relies on the value of material exponent (p).
As the value of p is smaller, the buckling load curves
magnetic potential increases with higher rates. This is
because the percentage of magnet phase (CoFexOs) is
greater than piezoelectric phase at lower material
exponents.

Fig. 4 indicates critical buckling temperature of FG-
METE nanoshells With S-S and C-C boundary conditions
exposed to uniform temperature rise (UTR) and linear
temperature rise (LTR) by varying nonlocal and strain
gradient coefficients. Regardless of the type of temperature
file, critical buckling temperature diminishes with the
growth of nonlocal parameter, but increases with increasing
in strain gradient parameter. Therefore, this two scale
parameters have different effects on buckling of nanoshells.
Another observation from the figure is that UTR leads to
lower critical temperatures than LTR since the nanoshell is
more flexible under UTR. So, the nanoshell can tolerate
higher temperatures in the case of LTR.

Coupled effects of magneto-electro-thermal fields on
buckling behavior of FG-METE nanoshells have been
illustrated in Fig.5. To this end, buckling temperature of the
nanoshell has been plotted versus magnetic potential based
on different values of electric voltage. Both uniform and
linear temperature rises are considered. It is evident from
this figure that critical temperature generally increases by
changing of magnet potential from a negative to positive
value. While, critical temperature reduces by changing of
electric voltage from a negative value to a positive value.
Indeed, negative electric voltages represent greater buckling
load than positive voltages because negative voltage induce
a tensile force to the nanoshell while positive voltages
induce a compressive force to the nanoshell.

Fig. 6 depicts critical buckling temperatures of FG-
METE nanoshells with respect to circumferential wave
number (n) and different nonlocal parameters. Temperature
field has been considered to be uniform, UTR. It can be
concluded from the figure that buckling temperatures first
reduce with wave number and then increase with wave

number. This behavior is owing to complex configuration of
nanoshells at various buckling modes. Moreover, it can be
observed that nonlocal parameter has its reducing effect on
buckling temperature at all values of circumferential wave
number.

Fig. 1 Geometry of a METE cylindrical nanoshell.

Table 1 Material properties of the FG-METE nanoshell.

Properties BaTiO, CoFe,0,
C11 =C2 (GPa) 166 286
C1 77 173
Ceo 44.5 56.5
e (Cm?) -4.4 0
q3; (N/Am) 0 580.3
s1110°C?m?NY 11.2 0.08
S33 12.6 0.093
2111078 Ns?>C2/2) 5 -590
233 10 157
dyy =dpp =dg3 0 0
2 (107%1/ K) 10 15.7

Table 2 Comparison of buckling load for a FG cylindrical
shell (R/h=100)

Bigg le3t)al. Present study

L/R=2 p=0 2.229 2.229
(m,n)=(1,5) p=0.5 1.545 1.545
p =1 1.228 1.228

p=5 0.723 0.723

L/R=6 p=0 2.079 2.079
(m,n)=(1,3) p=0.5 1.445 1.445
p =1 1.151 1.150

p=5 0.674 0.674
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Table 3 Validation of buckling loads for NSGT nanoshell
(L/R=10, h/R=0.2)

2=0.5 nm? 2=0.7 nm?
Mehralian et Present Mehralian et Present

al. (2017) al. (2017)
p=1 372.225 372.880 395.186 395.881
=T3 324.044 324.614 344.033 344.638
=T5 293.239 293.775 311.327 311.875

Table 4 Buckling load of FG nanoshell based on various
material gradient index, nonlocal and strain gradient
parameters (V=0, Q=0, L=20R, R=50h).

A=0 A=0.01 2=0.02

p=0 u=0  3.26619 3.40006 3.80165
“:10'0 3.13759 3.26618 3.65197
90 280613 2.92114 3.26617
W00 238603 2.48382 277719
p=1 u=0  2.89736 3.01400 3.36392
W00 278328 2.89533 3.23147
00 248025 2.58947 2.89009
20 211650 2.20180 245742
p=2 u=0  2.75545 2.86651 3.19968
D0 264696 275365 3.07370
W20 236733 2.46275 2.74899
H00 201202 2.09405 2.33744

Table 5 Critical buckling temperature (AT) of FG nanoshell
based on various material gradient index, nonlocal and
strain gradient parameters (V=0, Q=0, L=20R, R=100h).

2=0 2=0.01 2=0.02

p=0 =0 135.776 141.341 158.036
u=0.01  130.430 135.776 151.813
u=0.02  116.651 121.432 135.775
u=0.03  99.1872 103.253 115.449
p=1 p=0 64.7395 67.3618 75.2285
u=0.01  62.1905 64.7096 72.2665
u=0.02  55.6206 57.8736 64.6322
u=0.03  47.2937 49.2093 54.9561
p=2 p=0 54.9647 57.1944 63.8834
u=0.01  52.8006 54.9425 61.3681
u=0.02  47.2227 49.1383 54.8851
u=0.03  40.1530 41.7818 46.6683

10

Buckling load (N)

-2 -1 0 1 2
Electric voltage (mV)

(a) CET: p=0, A=0

Buckling load (N)

Electric voltage (mV)
(b) NET: p=0.03, A=0

Buckling load (N}

-2 -1 0 1 2
Electric voltage (mV)

(¢) NSGT: p=0.03, 4=0.02

Fig. 2 Variation of critical buckling load with respect to
electric voltage for different material exponents (R/h=100,
L=20R, Q=0).
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Buckling load (N}

2 1 0 1 2
Magnetic potential (107%0)
(a) CET: p=0, A=0

Buckling load (N}

-2 -1 0 1 2
Magnetic potential (1070
(b) NET: p=0.03, A=0

Buckling load (N}

-2 -1 0 1 2
Magnetic potential (107%0))
(¢) NSGT: p=0.03, 2=0.02
Fig. 3 Variation of critical buckling load with respect to

magnetic potential for different material exponents
(R/h=100, L=20R, V=0).

Buckling temperature (AT) Buckling temperature (AT)

Buckling temperature (AT)

100

0.00 0.62 0.04 0.06 0.08 0.10

Nonlocal parameter (1)
(a) UTR, S-S

200

0.00 0.62 0.04 0.06 0.08 0.10

Nonlocal parameter ()

(b) LTR, S-S
500 : :

0.00 0.02 0.04 0.08 0.08 0.10

Nonlocal parameter (1)
(c) UTR, C-C
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Fig. 4 Buckling temperatures with respect to nonlocal
parameter for different strain gradient parameters and
temperature distributions (R/h=100, L=20R, p=1)
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Fig. 5 Critical buckling temperature of the nanoshell
versus magnetic potential and various voltages (p=I,
p=0.03, 2=0.02).

300
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n
o
o

Buckling temperature (AT)
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1 2 3 4 5 6 7 8
Circumferential wave number (n)

Fig. 6 Critical buckling temperature of the nanoshell

versus wave number and various nonlocal parameter
(R/h=50, L/R=20, V=0, Q=0, p=1, A=0.02)

6. Conclusions

In this paper, buckling characteristics of FG-METE
nanoshells were studied in the framework of NSGT and
classical shell theory. Different loadings such as electrical,
mechanical, thermal and magnetic were exerted to the
nanoshell. Temperature field had uniform and linear
variation in nanoshell thickness. Five governing equations
were developed for presented shell model and then they
were solved using Galerkin’s method. In was deduced that
NSGT gives greater buckling loads than NET. This is
because NSGT considers the influence of strain gradients
and structural stiffness increment. However, NET only
introduced structural stiffness reduction and gave smaller
buckling loads than CET. Also, as the value of material
exponent raised, the total portion of CoFe,O4 in FG material
reduced and then the buckling load became more influenced
by the electric voltage. Another observation was that UTR
leads to lower critical temperatures than LTR. So, the

nanoshell can tolerate higher temperatures in the case of
LTR.

References

Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A.,
Bousahla, A. A. and Tounsi, A. (2019), “Thermomechanical
analysis of antisymmetric laminated reinforced composite plates
using a new four variable trigonometric refined plate
theory”, Comput. Concrete, 24(6), 489-498.
https://doi.org/10.12989/cac.2019.24.6.489.

Bedia, W. A., Houari, M. S. A., Bessaim, A., Bousahla, A. A.,
Tounsi, A., Saeed, T. and Alhodaly, M. S. (2019), “A New
Hyperbolic Two-Unknown Beam Model for Bending and
Buckling Analysis of a Nonlocal Strain Gradient Nanobeams”, J.
Nano Res., 57, 175-191.



672 Reza Asrari, Farzad Ebrahimi and Mohammad Mahdi Kheirikhah

https://doi.org/10.4028/www.scientific.net/JNanoR.57.175.

Addou, F. Y., Meradjah, M., Bousahla, A. A., Benachour, A.,
Bourada, F., Tounsi, A. and Mahmoud, S. R. (2019), “Influences
of porosity on dynamic response of FG plates resting on
Winkler/Pasternak/Kerr foundation using quasi 3D HSDT”,
Comput. Concrete, 24(4), 347-367.
https://doi.org/10.12989/cac.2019.24.4.347.

Ahmed, R.A., Fenjan, R.M., Luay Badr Hamad and Faleh, N. M.
(2020), “A review of effects of partial dynamic loading on
dynamic response of nonlocal functionally graded material
beams”, Adv. Mater. Res., 9(1), 33-48.
https://doi.org/10.12989/amr.2020.9.1.033

Alasadi, A. A., Ahmed, R. A. and Faleh, N. M. (2019), “Analyzing
nonlinear vibrations of metal foam nanobeams with symmetric
and non-symmetric porosities”, Adv. Aircraft Spacecraft Sci.,
6(4), 273-282. https://doi.org/10.12989/aas.2019.6.4.273.

Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019),
“Nonlinear analysis of viscoelastic micro-composite beam with
geometrical imperfection using FEM: MSGT electro-magneto-
elastic bending, buckling and vibration solutions”, Struct. Eng.
Mech., 71(5), 485-502.
https://doi.org/10.12989/sem.2019.71.5.485.

Al-Maliki, A. F., Faleh, N. M. and Alasadi, A. A. (2019), “Finite
element formulation and vibration of nonlocal refined metal
foam beams  with  symmetric and  non-symmetric
porosities”, Struct.  Monitor.  Maintenance, 6(2), 147-159.
https://doi.org/10.12989/smm.2019.6.2.147.

Arefi, M., Kiani, M. and Rabczuk, T. (2019), “Application of
nonlocal strain gradient theory to size dependent bending
analysis of a sandwich porous nanoplate integrated with
piezomagnetic face-sheets”, Compos. Part B. Eng., 168, 320-
333. https://doi.org/10.1016/j.compositesb.2019.02.057.

Attia, M. A. and Mahmoud, F. F. (2016), “Modeling and analysis
of nanobeams based on nonlocal-couple stress elasticity and
surface energy theories”, J. Mech. Sci., 105, 126-134.
https://doi.org/10.1016/j.ijjmecsci.2015.11.002.

AitYahia (2015), “Wave propagation in functionally graded plates
with porosities using various higher-order shear deformation
plate theories”, Struct. Eng. Mech., 53(6), 1143 — 1165.
doi.org/10.12989/sem.2015.53.6.1143.

Aissani, K., Bouiadjra, M. B., Ahouel, M. and Tounsi, A. (2015),
“A new nonlocal hyperbolic shear deformation theory for
nanobeams embedded in an elastic medium”, Struct. Eng. Mech.,
55(4), 743-763. https://doi.10.12989/sem.2015.55.4.743 .

Akgoz, B. and Civalek, O. (2013), “Buckling analysis of linearly
tapered micro-columns based on strain gradient elasticity”,
Struct. Eng. Mech., 48(2), 195-205.
d0i.10.12989/sem.2013.48.2.195.

Barati, M. R. and Zenkour, A. M. (2018), “Electro-thermoelastic
vibration of plates made of porous functionally graded
piezoelectric materials under various boundary conditions”, J.
Vib. Control, 24(10), 1910-1926.
https://doi.org/10.1177%2F1077546316672788.

Barretta, R., Feo, L., Luciano, R., de Sciarra, F. M. and Penna, R.
(2016), “Functionally graded Timoshenko nanobeams: a novel
nonlocal gradient formulation”, Compos. Part B. Eng., 100, 208-
219. https://doi.org/10.1016/j.compositesb.2016.05.052.

Batou, B., Nebab, M., Bennai, R., Atmane, H. A., Tounsi, A. and
Bouremana, M. (2019), “Wave dispersion properties in imperfect
sigmoid plates using various HSDTs”, Steel Compos. Struct.,
33(5), 699. https://doi.org/10.12989/s¢s.2019.33.5.699.

Belbachir, N., Draich, K., Bousahla, A. A., Bourada, M., Tounsi,
A. and Mohammadimehr, M. (2019), “Bending analysis of anti-
symmetric cross-ply laminated plates under nonlinear thermal
and mechanical loadings”, Steel Compos. Struct., 33(1), 913-924.
https://doi.org/10.12989/scs.2019.33.1.081.

Berghouti, H., Adda Bedia, E. A., Benkhedda, A. and Tounsi, A.

(2019), “Vibration analysis of nonlocal porous nanobeams made
of functionally graded material”, Adv. Nano Res., 7(5), 351-364.
https://doi.org/10.12989/anr.2019.7.5.351.

Berrabah, H. M., Tounsi, A., Semmah, A. and Adda, B. (2013),
“Comparison of various refined nonlocal beam theories for
bending, vibration and buckling analysis of nanobeams”, Struct.
Eng. Mech., 48(3), 351-365.
https://doi.org/10.12989/sem.2013.48.3.351.

Bich, D. H., Nguyen, N. X. and Van Tung, H. (2013),
“Postbuckling of functionally graded cylindrical shells based on
improved Donnell equations”, Vietnam J. Mech., 35(1), 1-15.
https://doi.org/10.15625/0866-7136/35/1/2894.

Bousahla, A. A., Benyoucef, S., Tounsi, A. and Mahmoud, S. R.
(2016), “On thermal stability of plates with functionally graded
coefficient of thermal expansion”, Struct. Eng. Mech., 60(2),
313-335. https://doi.org/10.12989/sem.2016.60.2.313.

Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A. A.,
Bourada, M., Tounsi, A. and Al-Osta, M. A. (2019), “A simple
quasi-3D HSDT for the dynamics analysis of FG thick plate on
elastic foundation”, Steel Compos. Struct., 31(5), 503-516.
https://doi.org/10.12989/s¢s.2019.31.5.503.

Bourada, F., Bousahla, A. A., Bourada, M., Azzaz, A., Zinata, A.
and Tounsi, A. (2019), “Dynamic investigation of porous
functionally graded beam using a sinusoidal shear deformation
theory”, Wind Struct., 28(1), 19-30.
https://doi.org/10.12989/was.2019.28.1.019.

Boutaleb, S., Benrahou, K. H., Bakora, A., Algarni, A., Bousahla,
A. A., Tounsi, A., Tounsi, A. and Mahmoud, S. R. (2019),
“Dynamic Analysis of nanosize FG rectangular plates based on
simple nonlocal quasi 3D HSDT”, Adv. Nano Res., 7(3), 189-
206. http://dx.doi.org/10.12989/anr.2019.7.3.191.

Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A. A., Tounsi, A.
and Mahmoud, S. R. (2019), “The effect of parameters of visco-
Pasternak foundation on the bending and vibration properties of
a thick FG plate”, Geomech. Eng., 18(2), 161-178.
https://doi.org/10.12989/gae.2019.18.2.161.

Chaabane, L. A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.
Z., Tounsi, A., Derras, A., Bousahla, A. and Tounsi, A. (2019),
“Analytical study of bending and free vibration responses of
functionally graded beams resting on elastic foundation”, Struct.
Eng. Mech., 71(2), 185-196.
https://doi.org/10.12989/sem.2019.71.2.185.

Chikh, A., Bakora, A., Heireche, H., Houari, M.S.A., Tounsi, A.
and Bedia, E.A. (2016), “Thermo-mechanical postbuckling of
symmetric S-FGM plates resting on Pasternak elastic
foundations using hyperbolic shear deformation theory”, Struct.
Eng. Mech., 57(4), 617-639.
https://doi.org/10.12989/sem.2016.57.4.617.

Draiche, K., Bousahla, A. A., Tounsi, A., Alwabli, A. S., Tounsi, A.
and Mahmoud, S. R. (2019), “Static analysis of laminated
reinforced composite plates using a simple first-order shear
deformation theory. Comput. Concrete, 24(4), 369-378.
https://doi.org/10.12989/cac.2019.24.4.369.

Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), “Static
and dynamic behavior of nanotubes-reinforced sandwich plates
using (FSDT)”, J. Nano Res., 57, 117-135.
https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.

Ebrahimi, F. and Barati, M. R. (2016), “Static stability analysis of
smart  magneto-electro-elastic  heterogeneous  nanoplates
embedded in an elastic medium based on a four-variable refined
plate theory”, Smart Mater. Struct., 25(10), 105014.
https://doi.org/10.1088/0964-1726/25/10/105014.

Ebrahimi, F. and Barati, M. R. (2018), “Vibration analysis of smart
piezoelectrically actuated nanobeams subjected to magneto-
electrical field in thermal environment”, J. Vib. Control., 24(3),
549-564. https://doi.org/10.1177/1077546316646239.

Ebrahimi, F., Barati, M. R. and Dabbagh, A. (2016), “A nonlocal


https://doi.org/10.12989/cac.2019.24.4.347
http://dx.doi.org/10.12989/sem.2015.55.4.743
http://dx.doi.org/10.12989/sem.2013.48.2.195
https://doi.org/10.15625/0866-7136/35/1/2894
https://doi.org/10.12989/sem.2016.57.4.617

On scale—dependent stability analysis of functionally graded magneto-electro-thermo-elastic cylindrical nanoshells 673

strain gradient theory for wave propagation analysis in
temperature-dependent inhomogeneous nanoplates”, J. Eng. Sci.,
107, 169-182. https://doi.org/10.1016/].ijjengsci.2016.07.008.

Ebrahimi, F. and Dabbagh, A. (2017), “On flexural wave
propagation responses of smart FG magneto-electro-elastic
nanoplates via nonlocal strain gradient theory”, Compos. Struct.,
162, 281-293. https://doi.org/10.1016/j.compstruct.2016.11.058.

Eltaher, M. A., Khater, M. E. and Emam, S. A. (2016), “A review
on nonlocal elastic models for bending, buckling, vibrations, and
wave propagation of nanoscale beams”, Appl. Math. Modell.,
40(5-6), 4109-4128. https://doi.org/10.1016/j.apm.2015.11.026.

Eringen, A. C. (1983), “On differential equations of nonlocal
elasticity and solutions of screw dislocation and surface waves”,
J. Appl. Physics, 54(9), 4703-4710.
https://doi.org/10.1063/1.332803.

Ebrahimi, F. and Barati, M.R. (2018), “Wave propagation analysis
of smart strain gradient piezo-magneto-elastic nonlocal beams”,
Struct. Eng. Mech., 66(2), 237-
248.https://doi.org/org/10.12989/sem.2018.66.2.237.

Ebrahimi, F., Shaghaghi, G. R. and Boreiry, M. (2016), “An
investigation into the influence of thermal loading and surface
effects on mechanical characteristics of nanotubes”, Struct. Eng.
Mech., 57(1), 179-200.
https://doi.org/10.12989/sem.2016.57.1.179

Faleh, N. M., Fenjan, R. M. and Ahmed, R. A. (2020), “Forced
vibrations of multi-phase crystalline porous shells based on
strain gradient elasticity and pulse load effects”, J. Vib. Eng.
Technol., 1-9. https://doi.org/10.1007/s42417-020-00203-8.

Farajpour, A., Yazdi, M. H., Rastgoo, A., Loghmani, M. and
Mohammadi, M. (2016), “Nonlocal nonlinear plate model for
large amplitude vibration of magneto-electro-elastic nanoplates”,
Compos. Struct., 140, 323-336.
https://doi.org/10.1016/j.compstruct.2015.12.039.

Fenjan, R. M., Ahmed, R. A., Alasadi, A. A. and Faleh, N. M.
(2019a), “Nonlocal strain gradient thermal vibration analysis of
double-coupled metal foam plate system with uniform and non-
uniform porosities”, Coupled Syst. Mech., 8(3), 247-257.
https://doi.org/10.12989/csm.2019.8.3.247.

Fenjan, R. M., Ahmed, R. A. and Faleh, N. M. (2019b),
“Investigating dynamic stability of metal foam nanoplates under
periodic in-plane loads via a three-unknown plate theory”, Adv.
Aircraft Spacecraft Sci., 6(4), 297-314.
https://doi.org/10.12989/aas.2019.6.4.297.

Fenjan, R. M., Hamad, L. B. and Faleh, N. M. (2020),
“Mechanical-hygro-thermal vibrations of functionally graded
porous plates with nonlocal and strain gradient effects”, Adv.
Aircraft Spacecraft Sci., 7(2), 169-186.
https://doi.org/10.12989/aas.2020.7.2.169.

Heydarpour, Y. and Malekzadeh, P. (2019), “Dynamic stability of
cylindrical nanoshells under combined static and periodic axial
loads”, J. Brazilian Soc. Mech. Sci. Eng., 41(4), 184.
https://doi.org/10.1007/s40430-019-1675-1.

Hanifi Hachemi Amar, L., Kaci, A. and Tounsi, A. (2017), “On the
size-dependent behavior of functionally graded micro-beams
with porosities”, Struct. Eng. Mech., 64(5), 527-541.
https://doi.org/10.12989/sem.2017.64.5.527 .

Hadji, L., HassaineDaouadji, T., Ait Amar Meziane, M. and Tlidji,
Y., (2016), “Analysis of functionally graded beam using a new
first-order shear deformation theory”, Struct. Eng. Mech., 57(2),
315-325. https://doi.org/10.12989/sem.2016.57.2.315 .

Hamad, L. B., Khalaf, B. S. and Faleh, N. M. (2019), “Analysis of
static and dynamic characteristics of strain gradient shell
structures made of porous nano-crystalline materials”, Adv.
Mater. Res., 8(3), 179.
https://doi.org/10.12989/amr.2019.8.3.179.

Hellal, H., Bourada, M., Hebali, H., Bourada, F., Tounsi, A.,
Bousahla, A. A. and Mahmoud, S. R. (2019), “Dynamic and

stability analysis of functionally graded material sandwich plates
in hygro-thermal environment using a simple higher shear
deformation theory”, J. Sandwich Struct. Mater., (Accepted),
https://doi.org/10.1177/1099636219845841.

Hussain, M., Naecem, M. N., Tounsi, A. and Taj, M. (2019),
“Nonlocal effect on the vibration of armchair and zigzag
SWCNTs with bending rigidity”, Adv. Nano Res., 7(6), 431-442.
https://doi.org/10.12989/anr.2019.7.6.43 1.

Karami, B., Janghorban, M. and Tounsi, A. (2019a), “Wave
propagation of functionally graded anisotropic nanoplates resting
on Winkler-Pasternak foundation”, Struct. Eng. Mech., 7(1), 55-
66. https://doi.org/10.12989/sem.2019.70.1.055.

Karami, B., Janghorban, M. and Tounsi, A. (2019b), “On exact
wave propagation analysis of triclinic material using three
dimensional bi-Helmholtz gradient plate model”, Struct. Eng.
Mech., 69(5), 487-497.
https://doi.org/10.12989/sem.2019.69.5.487.

Karami, B., Janghorban, M. and Tounsi, A. (2019c), “On pre
stressed functionally graded anisotropic nanoshell in magnetic
field”, J. Brazilian Soc. Mech. Sci. Eng., 41, 495.
https://doi.org/10.1007/s40430-019-1996-0.

Karami, B., Janghorban, M. and Tounsi, A. (2020), “Novel study
on functionally graded anisotropic doubly curved nanoshells”,
Eur. Phys. J. Plus 135, 103. https://doi.org/10.1140/epjp/s13360-
019-00079-y.

Kaddari, M., Kaci, A., Bousahla, A. A., Tounsi, A., Bourada, F.,
Tounsi, A., Bedia, E.A. and Al-Osta, M. A. (2020), “A study on
the structural behavior of functionally graded porous plates on
elastic foundation using a new quasi-3D model: Bending and
Free vibration analysis”, Comput. Concrete, 25(1), 37-57.
https://doi.org/10.12989/cac.2020.25.1.037.

Khiloun, M., Bousahla, A. A., Kaci, A., Bessaim, A., Tounsi, A.
and Mahmoud, S. R. (2019), “Analytical modeling of bending
and vibration of thick advanced composite plates using a four-
variable quasi 3D HSDT”, Eng. Comput.,
https://doi.org/10.1007/s00366-019-00732-1.

Kocaturk, T. and Akbas, S. D. (2013), “Wave propagation in a
microbeam based on the modified couple stress theory”, Struct.
Eng. Mech., 46(3), 417-431.
https://doi.org/10.12989/sem.2013.46.3.417.

Ke, L. L. and Wang, Y. S. (2014), “Free vibration of size-
dependent magneto-electro-elastic nanobeams based on the
nonlocal theory”, Physica E Low-dimensional Syst. Nanostruct.,
63, 52-61. https://doi.org/10.1016/j.physe.2014.05.002.

Ke, L. L., Wang, Y. S., Yang, J. and Kitipornchai, S. (2014), “The
size-dependent vibration of embedded magneto-electro-elastic
cylindrical nanoshells”, Smart Mater. Struct., 23(12), 125036.
https://doi.org/10.1088/0964-1726/23/12/125036.

Khalaf, B. S., Fenjan, R. M. and Faleh, N. M. (2019), “Analyzing
nonlinear mechanical-thermal buckling of imperfect micro-scale
beam made of graded graphene reinforced composites”, Adv.
Mater. Res., 8(3), 219.
https://doi.org/10.12989/amr.2019.8.3.219.

Kunbar, L. A. H., Alkadhimi, B. M., Radhi, H. S. and Faleh, N. M.

(2020), “Flexoelectric  effects on dynamic response
characteristics of nonlocal piezoelectric material beam”, Adv.
Mater. Res., 8(4), 259.

https://doi.org/10.12989/amr.2019.8.4.259.

Li, L. and Hu, Y. (2015), “Buckling analysis of size-dependent
nonlinear beams based on a nonlocal strain gradient theory”, J.
Eng. Sci., 97, 84-94.
https://doi.org/10.1016/j.ijengsci.2015.08.013.

Li, L. and Hu, Y. (2016), “Nonlinear bending and free vibration
analyses of nonlocal strain gradient beams made of functionally
graded material”, J. Eng. Sci., 107, 77-97.
https://doi.org/10.1016/j.ijjengsci.2016.07.011.

Lu, L., Guo, X. and Zhao, J. (2017), “Size-dependent vibration


http://dx.doi.org/10.12989/sem.2018.66.2.237
http://dx.doi.org/10.12989/sem.2017.64.5.527
http://dx.doi.org/10.12989/sem.2016.57.2.315
http://dx.doi.org/10.12989/sem.2013.46.3.417
https://doi.org/10.1088/0964-1726/23/12/125036

674 Reza Asrari, Farzad Ebrahimi and Mohammad Mahdi Kheirikhah

analysis of nanobeams based on the nonlocal strain gradient
theory”, J. Eng. Sci., 116, 12-24.
https://doi.org/10.1016/].ijjengsci.2017.03.006.

Ma, L. H.,, Ke, L. L., Reddy, J. N., Yang, J., Kitipornchai, S. and
Wang, Y. S. (2018), “Wave propagation characteristics in
magneto-electro-elastic nanoshells using nonlocal strain gradient
theory”, Compos. Struct., 199, 10-23.
https://doi.org/10.1016/j.compstruct.2018.05.061.

Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Adda
Bedia, E. A. and Mahmoud, S. R. (2019), “A refined quasi-3D
shear deformation theory for thermo-mechanical behavior of
functionally graded sandwich plates on elastic foundations”, J.
Sandwich Struct. Mater., 21(6), 1906-1926.
https://doi.org/10.1177%2F1099636217727577.

Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A.,
Bousahla, A. A. (2019), “Static and dynamic behavior of (FG-
CNT) reinforced porous sandwich plate”, Steel Compos. Struct.,
32(5), 595-610. https://doi.org/10.12989/5¢5.2019.32.5.595.

Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia,
E. A. and Mahmoud, S. R. (2019), “An analytical solution for
bending, buckling and vibration responses of FGM sandwich
plates”, J.  Sandw. Struct. Mater., 21(2), 727-757.
https://doi.org/10.1177/1099636217698443.

Mehralian, F., Beni, Y. T. and Zeverdejani, M. K. (2017a),
“Calibration of nonlocal strain gradient shell model for buckling
analysis of nanotubes using molecular dynamics simulations”,
Physica B Condensed Matter, 521, 102-111.
https://doi.org/10.1016/j.physb.2017.06.058.

Mehralian, F., Beni, Y. T. and Zeverdejani, M. K. (2017b),
“Nonlocal strain gradient theory calibration using molecular
dynamics simulation based on small scale vibration of
nanotubes”, Physica B Condensed Matter, 514, 61-69.
https://doi.org/10.1016/j.physb.2017.03.030.

Pan, E. (2001), “Exact solution for simply supported and
multilayered magneto-electro-elastic plates”, J. Appl. Mech.,
68(4), 608-618. https://doi.org/10.1115/1.1380385.

Park, W. T., Han, S. C.,, Jung, W. Y and Lee, W. H. (2016),
“Dynamic instability analysis for S-FGM plates embedded in
Pasternak elastic medium using the modified couple stress
theory”, Steel Compos. Struct., 22(6), 1239-1259.
https://doi.org/10.12989/scs.2016.22.6.1239.

Pour, H. R., Vossough, H., Heydari, M. M., Beygipoor, G. and
Azimzadeh, A. (2015), “Nonlinear vibration analysis of a
nonlocal sinusoidal shear deformation carbon nanotube using
differential quadrature method”, Struct. Eng. Mech., 54(6), 1061-
1073. https://doi.org/10.12989/sem.2015.54.6.1061.

Ramirez, F., Heyliger, P. R. and Pan, E. (2006), “Free vibration
response of two-dimensional magneto-electro-elastic laminated
plates”, J. Sound Vib., 292(3-5), 626-644.
https://doi.org/10.1016/1.jsv.2005.08.004.

Sayyad, A. S. and Ghugal, Y. M. (2018), “An inverse hyperbolic
theory for FG beams resting on Winkler-Pasternak elastic
foundation”, Adv. Aircraft Spacecraft Sci., 5(6), 671-689.
https://doi.org/10.12989/aas.2018.5.6.671.

Sahla, M., Saidi, H., Draiche, K., Bousahla, A. A., Bourada, F. and
Tounsi, A. (2019), “Free vibration analysis of angle-ply
laminated composite and soft core sandwich plates”, Steel
Compos. Struct., 33(5), 663-679.
https://doi.org/10.12989/s¢s.2019.33.5.663.

Semmah, A., Heireche, H., Bousahla, A.A., Tounsi, A. (2019),
“Thermal buckling analysis of SWBNNT on Winkler foundation
by nonlocal FSDT”, Adv. Nano Res., 7(2), 89-98.
http://dx.doi.org/10.12989/anr.2019.7.2.089.

She, G. L., Yuan, F. G., Ren, Y. R., Liu, H. B. and Xiao, W. S.
(2018), “Nonlinear bending and vibration analysis of
functionally graded porous tubes via a nonlocal strain gradient
theory”, Compos. Struct., 203, 614-623.

https://doi.org/10.1016/j.compstruct.2018.07.063.

Simsek, M. (2019), “Some closed-form solutions for static,
buckling, free and forced vibration of functionally graded (FG)
nanobeams using nonlocal strain gradient theory”, Compos. Struct.,
224, 111041. https://doi.org/10.1016/j.compstruct.2019.111041.

Taghizadeh, M., Ovesy, H. R. and Ghannadpour, S. A. M. (2015),
“Nonlocal integral elasticity analysis of beam bending by using
finite element method”, Struct. Eng. Mech., 54(4), 755-769.
https://doi.org/10.12989/sem.2015.54.4.755 .

Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi,
A., Bousahla, A. and Mahmoud, S. R. (2019), “Vibration
analysis of different material distributions of functionally graded
microbeam”,  Struct.  Eng.  Mech., 69(6), 637-649.
https://doi.org/10.12989/sem.2019.69.6.637.

Tounsi, A., Houari, M. S. A. and Bessaim, A. (2016), “A new 3-
unknowns non-polynomial plate theory for buckling and
vibration of functionally graded sandwich plate”, Struct. Eng.
Mech., 60(4), 547-565.
https://doi.org/10.12989/sem.2016.60.4.547 .

Waksmanski, N. and Pan, E. (2017), “An analytical three-
dimensional solution for free vibration of a magneto-electro-
elastic plate considering the nonlocal effect”, J. Intelligent Mater:
Syst. Struct., 28(11), 1501-1513.
https://doi.org/10.1177/1045389X16672734.

Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari,
M. S. A. (2018), “A novel nonlocal refined plate theory for
stability response of orthotropic single-layer graphene sheet
resting on elastic medium”, Smart Struct. Syst., 21(1), 15-25.
https://doi.org/10.12989/sem.2018.68.6.661.

Zarga, D., Tounsi, A., Bousahla, A. A., Bourada, F. and Mahmoud,
S. R. (2019), “Thermomechanical bending study for
functionally graded sandwich plates using a simple quasi-3D
shear deformation theory”, Steel Compos. Struct., 32(3), 389-
410. https://doi.org/10.12989/s¢s.2019.32.3.389.

Zaoui, F. Z., Ouinas, D. and Tounsi, A. (2019), “New 2D and
quasi-3D shear deformation theories for free vibration of
functionally graded plates on elastic foundations”, Compos. Part
B, 159, 231-247.
https://doi.org/10.1016/j.compositesb.2018.09.051.

Zemri, A., Houari, M. S. A., Bousahla, A. A. and Tounsi, A.
(2015), “A mechanical response of functionally graded nanoscale
beam: an assessment of a refined nonlocal shear deformation
theory beam theory”, Struct. Eng. Mech., 54(4), 693-
710. https://doi.org/10.12989/sem.2015.54.4.693

Zeighampour, H., Beni, Y. T. and Dehkordi, M. B. (2018), “Wave
propagation in viscoelastic thin cylindrical nanoshell resting on a
visco-Pasternak foundation based on nonlocal strain gradient
theory”, Thin-Walled Struct., 122, 378-386.
https://doi.org/10.1016/j.tws.2017.10.037.

cC


https://doi.org/10.1016/j.compstruct.2018.05.061
http://dx.doi.org/10.12989/sem.2015.54.6.1061
http://dx.doi.org/10.12989/sem.2015.54.4.755
http://dx.doi.org/10.12989/sem.2016.60.4.547
http://dx.doi.org/10.12989/sem.2015.54.4.693



