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1. Introduction 
 

Reliability analysis aims at estimating structural failure 

probability under the influence of uncertainties in material, 

external loads, geometric dimensions, etc. In reliability 

analysis, the failure probability Pf is expressed as 

( )
( ) 0

df X
G

P f


=  x
x x  (1) 

where x is a vector containing M uncertainties, i.e. x=[x1,…, 

xM] and fX(x) denotes the joint probability density function 

(PDF) of x. G(x) denotes the structural performance 

function and as long as G(x) is greater than 0, the structure 

is safe, otherwise it fails (Jagan et al. 2019). 
To perform the reliability analysis, various algorithms 

have been proposed over the last decades. They mainly 
include the sampling-based techniques (i.e. Monte Carlo 
Simulation (MCS), Line Sampling (LS) (Shayanfar et al. 
2017), Subset Simulation (SS) (Au and Beck 2001, Zhang 
et al. 2018), Importance Sampling (IS) (Yonezawa et al. 
2009, Yun et al. 2018), etc.), the approximate analytic 
methods (Yao et al. 2019) (i.e. First-order reliability method 
(FORM), Second-order reliability method (SORM), etc.), 
the numerical integration methods (i.e. Point Estimate 
Method (PEM) (Napa-García et al. 2017), Spare grid 
integration (SGI) (Xiong et al. 2010), Direct Optimized 
Probabilistic Calculation (DOProC) (Krejsa et al. 2013, 
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2016), etc.) and the surrogate-model-based methods 

(Gaspar et al. 2014, Zhao et al. 2017, Sun et al. 2017). 

When using these methods to perform the reliability 

analysis, the original random vector space is usually 

mapped into the mutually independent standard normal 

space in view of some unique properties of the normal 

distribution. The commonly used transformation techniques 

include Hermit polynomials (Winterstein 1988), Rackwitz-

Fiessler transformation (Roudak and Karamloo 2018), 

Rosenblatt transformation (Wang and Li 2017), Nataf 

transformation (Doh et al. 2020), etc. 

During recent years, the reliability analysis methods 

based on surrogate models have drawn growing attention 

due to their high efficiency and versatility. Generally 

speaking, the surrogate models can be divided into two 

categories: regression-based and classification-based. The 

regression-based models mainly include Response Surface 

Method (RSM) (Su et al. 2015, Zhao et al. 2016, Fang et al. 

2017), Kriging model (Wang et al. 2017, Wang and Sun 

2018, Zhang et al. 2019), Support Vector Regression (SVR) 

(Fei and Bai 2013), Artificial Neural Network (ANN) 

(Elhewy et al. 2006), Polynomial Chaos Expansions (PCE) 

(Xu and Wang 2019), etc. The classification-based ones 

include Support Vector Classification (SVC) (Alibrandi et 

al. 2015), ANN, Gaussian process classification (GPC) 

(Nguyen et al. 2019, Garcia-Fernandez et al. 2019), etc. 

The difference between the two categories is that the former 

predicts the response of sample through regression analysis, 

while the latter infers the class label of sample by 

constructing a classifier. Furthermore, the regression-based 
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models only deal with the problem whose output is 

continuous, while the classification-based ones can handle 

the case where the output is continuous or discontinuous. 

Although various surrogate-model-based reliability 

evaluation algorithms have been proposed, they are 

primarily confined to the structures with continuous 

response. However, there are many structures with 

discontinuous response in engineering practice, i.e. arch 

structures, truss structures, structures involving collision 

and impact, etc. Unfortunately, the researches on the 

reliability analysis for such structures are rare and primarily 

based on SVC or ANN (Alibrandi et al. 2015). 

Nevertheless, those methods based on SVC or ANN still 

have some intractable defects. ANN requires large numbers 

of labeled samples and a long training time for obtaining an 

accurate estimation of failure probability. Besides of 

abundant labeled samples, SVC also has difficulties in 

reasonably determining its kernel function, kernel 

parameters and loss function. 

GPC, as a branch of Gaussian process, has a strict 

theoretical basis of statistics and gains attention 

increasingly in machine learning. Compared with ANN and 

SVC, GPC has good adaptability to deal with complex 

problems such as small samples, high dimensionality and 

nonlinearity, and can adaptively obtain the optimal hyper 

parameters. Furthermore, GPC can also provide the 

predicted class label with a probabilistic significance 

(Garcia-Fernandez et al. 2019). Therefore, this paper adopts 

GPC to evaluate the reliability of the structures with 

discontinuous response. 

However, the time complexity of GPC performing 

inference is cubic of the number of training samples 

(Nguyen et al. 2019). Moreover, the performance function 

should be called as little as possible when performing 

reliability analysis. Therefore, the adaptive DoE strategy is 

increasingly attracting attention and several types of GPC-

based DoE strategies have been proposed from different 

perspectives. Kapoor et al. (2009) and Rodrigues et al. 

(2014) regard the sample with classification probability 

closest to 0.5 as the new training sample and add it to DoE. 

Peng et al. (2014) select the most probable point (MPP) as 

the new training sample for improving the accuracy of 

Gaussian process classifier and the efficiency of reliability 

analysis. To apply GPC to the multi-classification problems, 

Sun et al. (2015) propose three strategies to select the most 

valuable samples. However, the training samples selected 

by existing strategies are easily overlapped or clustered, 

which must increase redundant calls of performance 

function. Furthermore, when selecting the new training 

sample, they only consider improving the classification 

accuracy of the selected training sample instead of 

improving that of the region around it. 
Moreover, MC-based adaptive DoE strategies and 

reliability analysis methods are no longer applicable for the 
structures involving small failure probability due to 
enormous evaluations of MC samples (Yang et al. 2018). 
Fortunately, the reliability analysis methods combining 
variance reduction techniques (Yun et al. 2017, En et al. 
2019) (i.e. LS, SS, IS, etc.) can overcome this defect, 
among which IS-based methods are the most widely 
researched and used. Furthermore, the IS methods based on 

kernel density estimation (KDE) or adaptive KDE (AKDE) 
have advantages over those based on MPP or MPPs in 
efficiency and accuracy since they do not rely on MPP or 
MPPs and can cover the entire failure region well. Although 
Yang et al. (2018) developed a reliability evaluation 
technique integrating Kriging with KDE-based IS, there is 
no relevant research on GPC-based reliability analysis 
method for structures involving discontinuous response and 
small failure probability. Moreover, their method not only 
needs to utilize optimization algorithm for selecting the new 
training sample but employs two stages to complete the 
reliability evaluation, which is tedious and easily falls into 
the local optimum. 

To this end, a creative adaptive DoE strategy, taking into 

account the classification uncertainty, the sampling 

uniformity and the regional classification accuracy 

improvement, is proposed in this research. Furthermore, a 

novel reliability analysis method combining adaptive GPC 

and AKDE-based IS for structures with discontinuous 

response and small failure probability is also developed, 

which is termed as AGPC-IS. This research primarily 

includes the following contents. Section 2 introduces the 

fundamental principles about GPC and IS. Section 3 

introduces the AGPC-IS and its implementation procedures 

in detail. By several examples, Section 4 verifies its 

efficiency, accuracy and feasibility. Section 5 summarizes 

the conclusions. 

 

 

2. Gaussian process classification and importance 
sampling 

 

2.1 Gaussian process classification 
 

The theoretical fundamental of GPC is compendiously 

introduced in this subsection. In the field of reliability, 

structural state is usually treated as a binary classification 

problem, i.e. whether it is safe or invalid. For this problem, 

GPC usually utilizes the class labels y=+1 or -1 to 

distinguish the structural state, i.e. y=+1 means that 

structure is safe, whereas y=-1 denotes that structure fails. 

According to the given N training samples X and their 

corresponding class labels Y, GPC classifies the structural 

state through the mapping relationship (called latent 

function f(x)) between X and Y and simultaneously assigns 

a corresponding probability to the classification result (Peng 

et al. 2014). 

To classify an unobserved sample x*, one must first 

obtain the distribution of its corresponding latent variable f* 

by (Nguyen et al. 2019, Garcia-Fernandez et al. 2019) 

( ) ( ) ( ), , , , , dp f p f p   = X Y x X x f f X Y f  (2) 

where f denotes the vector of latent variables corresponding 

to X, i.e. f=[f(x1), f(x2), … , f(xN)]T, p(f*|X, x*, f) represents 

the conditional prior distribution of latent variable f* and 

p(f|X,Y) denotes the posterior distribution of latent vector f. 

The conditional distribution p(f*|X, x*, f) relies on the 

joint prior distribution p(f*, f|X, x*) of f* and f. Furthermore, 

it is difficult to obtain the distribution p(f|X,Y). To this end, 

GPC first assumes that the prior distribution p(f|X) obeys 
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the Gaussian distribution, that is, 

( ) ( ),p N=f X m K  (3) 

where m is the mean vector and K (K=[k(xi,xj)]NN) denotes 

the covariance matrix. In general, m is usually set to zero 

mean vector. Furthermore, various types of covariance 

functions are available, among which the Squared 

Exponential covariance function (SE) is the most common 

in use, and its expression is 

( )
2

2

2
, exp

2

i j

i j fk
l


 − −
 =
 
 

x x
x x  (4) 

where σf is employed to control the extent of local 

correlation and the exponent part represents the distance 

correlation between two samples, i.e. if the distance 

between two samples is very small relative to the distance 

scale l, they are highly correlated, conversely, their 

correlation is low. 

Subsequently, the distribution p(f*, f|X, x*) of f* and f is 

( ) T
, , ,p f N

m k



  

 

   
 =         

x

x x x

K Km
f X x

K
 (5) 

where ( ) ( )
T

1 N, ,...., ,k k
  =   x

K x x x x , ( ),k k
  =

x
x x  

Then, the distribution p(f*|X, x*, f) can be expressed as 

( )

( )( )T 1 T 1

, ,

,

p f

N m k
    

 

− −= − + −
x x x x x

X x f

K K f m K K K
 (6) 

Moreover, one can also obtain the posterior distribution 

p(f|X,Y) by Bayesian rules. 

( )
( ) ( )

( )
,

p p
p

p
=

Y f f X
f X Y

Y X
 (7) 

where 

( ) ( ) ( )
1 1

N N

h h h h

h h

p p y f y f
= =

= =  Y f   

( ) ( ) ( )dp p p= Y X f X Y f f   

The distribution of latent variable f* can be obtained by 

introducing the Eqs. (6)-(7) into Eq. (2). Subsequently, the 

probability that the class label y* of sample x* belongs to +1 

is 

( ) ( ) ( )1 , , , , dP y p y f p f f      = + = X Y x X Y x  (8) 

Unfortunately, since Eqs. (2) and (8) have no analytical 

solutions, it is necessary to adopt the analytical 

approximation methods to solve. Laplace and Expectation 

Propagation algorithms are two commonly used 

approximation methods, among which Laplace method has 

advantages over Expectation Propagation in keeping the 

balance of classification accuracy and computation time. 

Therefore, this research adopts the Laplace algorithm to 

obtain the approximate solution of the above integrals. 

By performing a second-order Taylor expansion on the 

log{p(f|X,Y)} at f̂ which maximizes the posterior 

distribution, Laplace method can gain an approximate 

Gaussian distribution q(f|X,Y) of the posterior distribution 

p(f|X,Y), i.e. 

( ) ( ) ( )( )-1
1ˆ, , ,p q N − = +f X Y f X Y f K U  (9) 

where U represents the negative Hessian matrix of 

log{p(f|X,Y)}. 

Therefore, Eq. (2) can be approximately expressed as 

( ) ( ) ( )

( )( )

2

1
1 T 1

, , , , ,

ˆ ,

p f q f N

N k

 

   

     

−
− −

 =

= − +
x x x x

X Y x X Y x

K K f K K U K
 (10) 

Furthermore, the parameters σf and l in the covariance 

function SE are obtained using maximum likelihood 

estimation. 

( ) ( ) T 1

1 2 1 2

1 ˆ ˆ ˆmax , log
2

1
log

2

fL l p −= − +

− +

f K f Y f

                        I U KU

 (11) 

where I denotes the identity matrix. 

Subsequently, the probability of class label y* belonging 

to +1 is 

( )

( ) ( )

( ) ( ) ( )2

1 , ,

, , d

, , d 1

P y

p y f q f f

f q f f  

 

    

     

= +



=  +





X Y x

X Y x

= X Y x

 (12) 

where σ(·) is the response function which maps f* to interval 

[0, 1]. In this research, we select the cumulative density 

function of standard normal distribution as the response 

function. 

( ) 21 1
exp

22

f

f u du
 −

 
= − 

 
   

Obviously, if the probability in Eq. (12) is greater than 

0.5, y* is 1, i.e. structure is safe, otherwise y* is -1 and 

structure fails. 
 

2.2 Importance sampling for reliability analysis 
 

Importance sampling technique aims at increasing the 

number of samples in the failure domain and reducing the 

number of samples required for reliability evaluation. After 

a Gaussian process classifier is established, the failure 

probability estimated using importance sampling is 

expressed as (Yun et al. 2017, Barkhori et al. 2018) 

( )
( )

( )
( )

( )
( )

( )
( )

( )

IS

ˆ 0

1IS

ˆ d d

1
                              

X

f X y
G

N
X i

y i

i i

f
P f I h

h

f
I

N h



=

= =



 



x

x
x x x x x

x

x
x

x

 (13) 

where NIS represents the number of samples from the 
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optimal importance sampling PDF h(x), and Iy(x) denotes 

the failure indicator function, that is, if the class label y is 

equal to -1, Iy(x) is 1, otherwise Iy(x) is 0. 

The corresponding variance and coefficient of variation 

of P̂f are 

( ) ( )
( )

( )

IS

2

2

1IS IS

1 1ˆ ˆvar
N

X i

f y i f

i i

f
P I P

N N h=

  
 = −     


x

x
x

 (14) 

( )ˆ
ˆ ˆvar

f
f fP

P P =  (15) 

 
 
3. AGPC-IS for structures with discontinuous 
response and small failure probability 

 

Taking into consideration the classification uncertainty, 

the sampling uniformity and the regional classification 

accuracy improvement, this section proposes an innovative 

adaptive DoE strategy based on GPC to avoid unnecessary 

calls of performance function. On this foundation, a novel 

reliability analysis method AGPC-IS, fusing with IS based 

on adaptive kernel density estimation, is developed for 

structures with discontinuous response and small failure 

probability. In addition, a new and more accurate stopping 

criterion for AGPC-IS is also developed. 
 

3.1 Existing GPC-based adaptive DoE strategies 
 

3.1.1 Most probable point 
In GPC, the most probable point (MPP) refers to the 

sample with a classification probability of 0.5 and the 

greatest contribution to the failure probability. Therefore, 

the fitting accuracy of Gaussian process classifier in the 

vicinity of MPP has a significant influence on the accuracy 

of the estimated failure probability. Consequently, Peng et 

al. (2014) regard the MPP as the new training sample for 

improving the accuracy of Gaussian process classifier. The 

MPP can be obtained approximately by 

( )

( )

max

s.t. 1 , , 0.5

Xf

p y

S




= + 




          x

  X Y x

                 x

 (16) 

where SΩ is a set of Monte Carlo random samples. 
 

3.1.2 Most easily misclassified point 
According to Eq. (12), it can be easily concluded that 

the closer the classification probability of sample is to 0.5, 

the higher risk of being misclassified its class label has. 

Accordingly, Kapoor et al. (2009) and Rodrigues et al. 

(2014) define the most easily misclassified point, which is 

termed as MEMP in this paper, as the new training sample. 

Obviously, the point satisfying the Eq. (17) is the MEMP. 

2
arg min

1





 
=   

+ 
x  (17) 

 

Fig. 1 The contour distribution of classification probability 

 

 

Eq. (17) takes into consideration the posterior mean and 

the posterior variance of latent variable, and it is analogous 

to the learning function U proposed by Echard et al. (2011) 

in the Kriging-based reliability analysis. 

 

3.2 The proposed adaptive DoE strategy 
 
The adaptive DoE strategies based on MPP and MEMP 

ignore the sampling uniformity when determining the new 

training sample, resulting in aggregation or overlap of the 

training samples in DoE. Regrettably, this defect has little 

improvement on the accuracy of Gaussian process classifier 

while causing redundant evaluations of performance 

function. Furthermore, the above two strategies only 

consider improving the classification accuracy of a single 

sample, rather than refining that of the region near the 

determined training sample. This defect, as illustrated in 

Fig. 1, often makes some of more valuable samples 

overlooked. Fig. 1 shows the contour distribution of 

classification probability, where the classification 

probabilities of sample 1 (denoted by blue diamond) and 

sample 2 (denoted by red circle) are both approximately 

0.5. However, the contours near sample 2 are sparser than 

those near sample 1, that is, the gradient of classification 

probability of sample 2 is smaller, which means that the 

class labels of samples near sample 2 are more uncertain 

than those near sample 1. Therefore, taking sample 2 as the 

new training sample can improve the accuracy of Gaussian 

process classifier to a greater extent. 

To overcome these two defects, the Euclidean distance 

and the gradient of classification probability are introduced 

in this paper. In addition, according to GPC, the samples 

with a classification probability of 0.5 have the greatest 

impact on the accuracy improvement of Gaussian process 

classifier and they should be considered as the candidate 

samples. However, it is very difficult and unrealistic to 

directly generate or select the samples with a classification 

probability of 0.5. Therefore, this paper adopts the Markov 

Chain Monte Carlo (MCMC) (Au 2016) to generate NCS 

samples satisfying the Eq. (18) and regards them as the 

candidate samples. 

774



 

A novel reliability analysis method based on Gaussian process classification for structures with discontinuous response 

 

 

 

( )  1 , , 0.5p y = + − X Y x  (18) 

where [ε] is set to 0.01. 

The Euclidean distance is adopted to ensure the 

sampling uniformity and it can be obtained by 

( )
2

1

M
h h

s t

h

d x x
=

= −  (19) 

where xs and xt represent the candidate sample and the 

existing training sample, respectively. 

The gradient of classification probability is utilized to 

identify a more valuable sample. According to Eq. (12), the 

gradient of classification probability of x is expressed as 

( ) ( )

( ) ( )

( )

2

2

2 2

1.52 2

2

1

2 1

1 2 1

Grad  

   


 

=  +

 + − 
=   

+ + 

x

             

 (20) 

where φ(·) denotes the PDF of standard normal distribution. 

Unfortunately, it has difficulty in obtaining the gradient 

of classification probability in the framework of GPC. For 

this reason, this research proposes to introduce the Kriging 

surrogate model to obtain the approximate solution of 

gradient. As an accurate regression-based interpolation 

technique, the Kriging model can provide the prediction and 

its corresponding derivative. It should be paid special 

attention that instead of solving gradient by directly 

modeling classification probability function Ф(x)  

(Φ(x)= (μ(x)/ √1+σ2(x))), the Kriging surrogate models of 

posterior mean function μ(x) and posterior variance 

function σ2(x) are established to obtain the gradient. This is 

mainly because the classification probabilities of samples in 

the entire sampling space gradually approach 0 or 1 as the 

training  

 

 

samples in DoE increase. That is to say, Ф(x) presents a 

discontinuous trend on the whole, which easily leads to the 

poor accuracy of its corresponding Kriging surrogate 

model. Fortunately, μ(x) and σ2(x) are both continuous 

functions and can be well simulated by Kriging model. 

Next, the processes of establishing the Kriging model of 

μ(x) and obtaining its prediction and derivative are 

elaborately introduced. Firstly, a Gaussian process classifier 

is constructed using the existing training samples in DoE. 

Subsequently, NL random samples are extracted by the 

improved distributed hypercube sampling (IHS) 

(Beachkofski and Grandhi 2002) and their corresponding 

posterior mean values are obtained by the constructed 

classifier. The IHS is an improvement of Latin hypercube 

sampling (LHS), and samples obtained using IHS are more 

evenly distributed than those generated by LHS. Fig. 2 

describes the advantage of IHS over LHS. 

Then, the Kriging surrogate model of posterior mean 

function μ(x) can be expressed as (Gao et al. 2012, Vahedi 

et al. 2018, Qin et al. 2019) 

( ) ( ) ( )
T

z = +x g x x  (21) 

where g(x)Tβ is the regression part and z(x) is a Gaussian 

stochastic process. 

Afterwards, the prediction and derivative of posterior 

mean of sample x can be obtained by 

( ) ( ) ( )1ˆ ˆˆ
    −= + −x r x R Y G

 
(22) 

( ) ( ) ( )

( ) ( )

( ) ( )

T
1

1T T 1 T 1

T 1

ˆ ˆ ˆ,...,

ˆ

M

g

r



 

  



−
− −

−

  =     

=

+ −

x x x x x

        J x G R G G R Y

          J x R Y G
 

(23) 

where 

  
(a) LHS (b) IHS 

Fig. 2 Distribution of samples obtained by LHS and IHS 
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( )

( ) ( )

( )( )

( ) ( )

( ) ( )

( ) ( ) ( )

L

L L

L
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1
T 1 T 1

T

1

2

1

T

1

1

ˆ

,...,

, ;

, ; exp

,...,

, ; ,..., , ;

N

i j
N N

M
k k

i j k i j

k

N

N

R

R x x

R R

 







 

−
− −



=

=

 
 

 = − −
  

 
 

 =
 



        G R G G R Y

          G = g x g x

              R = x x

x x

          Y = x x

 r x x x x x





 

  

Moreover, Jg(x) and Jr(x) are the Jacobian matrices of 

g(x) and r(x), respectively. For more detailed theory and 

details about the Kriging model, please refer to the 

publications (Gao et al. 2012, Vahedi et al. 2018, Qin et al. 

2019). 

Similarly, the prediction and derivative of the posterior 

variance of sample x are 

( ) ( ) ( )2 2 2

2 1ˆ ˆˆ
  

  −= + −x r x R Y G  (24) 

( )( )
( ) ( )

( ) ( )

( ) ( )

2

2 2

T
2 2

2

1

1T T 1 T 1
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Bring the Eqs. (22)-(25) into Eq. (20), the gradient of 

classification probability of sample x can be obtained 

approximately by 

( )
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Therefore, the sample with a higher probability of being 

misclassified, a lower gradient of classification probability 

and a greater distance from the existing training samples 

should be added to the DoE. Obviously, the new training 

sample is defined as 

 arg maxnew Gd= x  (27) 

where  , G  and d  are the normalized values of Ф(x), 

Grad(x) and dmin (the shortest distance from all the training 

samples in DoE), respectively, and they are expressed as 

( )
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 (28) 

The purpose of normalizing  , G  and d  is to 

eliminate the influence of the magnitude difference between 

them. 

 

3.3 Importance sampling based on adaptive kernel 
density estimation 

 

The construction of optimal importance sampling PDF 

h(x) is a key issue in IS. Since the optimal h(x) involves the 

real failure probability, it cannot be obtained in engineering 

practice. To this end, various construction methods of quasi-

optimal ( )ĥ x  are proposed, among which those 

combining kernel density estimation or adaptive kernel 

density estimation are superior to other methods (Au and 

Beck 1999, Yang et al. 2018). Therefore, the adaptive 

kernel density estimation is employed to construct ( )ĥ x  

in this paper. First, Nk failure samples are generated using 

MCMC, and then ( )ĥ x  can be obtained by 

( )
( )

k

1k

1 1ˆ
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M
i ii

h K
N =

 −
=  

 


x x
x  (29) 

where λi is the bandwidth factors, ω is the bandwidth and Nk 

usually takes as 1500. K(·) denotes the kernel PDF and this 

paper employs the widely used PDF of Gaussian 

distribution as K(·), i.e. K(·) is expressed as 

( )
( )

T 11
exp

22
M

K



− 
= − 

 

x x
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where Σ represents the covariance of Nk failure samples. 

Furthermore, the bandwidth factors λi and the bandwidth 

ω can be obtained respectively by 
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where α is the sensitivity factor and it is usually set to 0.5. 

The h-i(x) denotes the kernel density estimation by the 

leave-one-out cross validation, i.e. h-i(x) is obtained using 

all failure samples except xi. 

 

3.4 Stopping criterion 
 

Existing stopping criteria which are available for the 

reliability analysis of structures with discontinuous response 
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mainly include three types. However, they are unacceptable 

in engineering applications due to some inherent defects. 

1) Since the finite element analysis (FEA) of structure is 

very time-consuming, the iterative process terminates as 

soon as the total number of performance function 

evaluations reaches a certain value Nmax (Li et al. 2018). 

Obviously, the estimated failure probability is inaccurate if 

Nmax is small. Conversely, it will cause unnecessary 

performance function evaluations if Nmax is large. 

2) The relative error of estimated failure probability or 

the change rate of class labels of NMC Monte Carlo samples 

in the i-1th and ith iterations is less than a specified 

threshold δ (Peng et al. 2014). Nevertheless, this stopping 

criterion can be easily satisfied if the new training sample 

makes little improvement on the classifier, i.e. the iterative 

process terminates in advance. Furthermore, this criterion is 

not applicable to the structures involving small failure 

probability. 

( ) ( )
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3) Basudhar and Missoum (2008) propose using an 

exponential curve to fit the Eq. (33) and they define the 

stopping criterion as 
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However, the thresholds ε1 and ε2 are different for 

different problems, i.e. it has difficulty in determining their 

specific values. Moreover, this criterion is also not 

applicable to the structures involving small failure 

probability. 

To overcome these defects, a novel stopping criterion is 

proposed in this research. As is known, the Gaussian 

process classifier gradually becomes accurate as the 

iteration progresses. Simultaneously, the extent of 

improvement of classifier also gradually decreases. This 

means that the estimation of failure probability gradually 

tends to be stable. Consequently, an innovative convergence 

criterion based on this stability is proposed, which is 

expressed as 

 
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where 
1

NP

∑ P̂f

ji+Np-1

j=i
 denotes the average of estimated failure 

probabilities obtained from the ith iteration and subsequent 

NP-1 iterations. 𝑃̂𝑓
𝑎 is one of the NP estimations of failure 

probability. The parameter ε is defined as the maximum 

relative stability and it is employed to characterize the 

extent of stability of estimated failure probability. 

Obviously, ε should be as small as possible. The estimation 

of failure probability can be considered to be steady and the 

iteration terminates once ε is less than or equal to a certain 

threshold [δ]. In this research, [δ] is set to 0.03. 

Furthermore, the parameter NP can neither be too large nor 

too small, otherwise the efficiency will decrease or the 

stopping criterion will be reached prematurely. In this 

research, NP is taken as 10. 

The new stopping criterion is analogous to Eq. (33) and 

it can be regarded as an improvement of Eq. (33). 

Compared with Eq. (33), the proposed convergence 

criterion effectively avoids the early termination of iteration 

and can also obtain an accurate estimation of failure 

probability. 

Furthermore, the relative error of P̂f is determined as 

IS

ˆ IS

ˆ ˆ

ˆf

f f

P

f

P P

P


−
=  (36) 

where P̂f

IS
is calculated by AKDE-based IS (termed as 

AKDE-IS in this research). In this research, P̂f

IS
 is regarded 

as the “true” failure probability of the structure. 

 

3.5 The process of AGPC-IS 

 

This subsection constructs an innovative adaptive 

reliability analysis method AGPC-IS integrating GPC with 

IS for the structures with discontinuous response and small 

failure probability. The main procedures of AGPC-IS are 

listed as follows and the process is presented in Fig. 3. 

Step 1 Adopt the Nataf transformation to map the 

original random vector space into the mutually independent 

standard normal space. The main reason for using the Nataf 

transformation is that it is of high calculation accuracy, 

wide application range and unnecessary to know the joint 

probability density function fX(x) of x. Then, generate N 

initial training samples SDoE=[x1, x2, …, xN] within the 

standard normal space using LHS, and obtain their 

corresponding real class labels YDoE=[y1, y2, …, yN]. 

Step 2 Construct a Gaussian process classifier using 

existing DoE. Subsequently, extract NL random samples by 

IHS and calculate the posterior means and the posterior 

variances of their corresponding latent variables. Then, 

establish the Kriging surrogate models of posterior mean 

function μ(x) and posterior variance function σ2(x), 

respectively. According to our experience, the Kriging 

surrogate models with good accuracy can be obtained by 

taking NL as 150. 

Step 3 Generate Nk failure samples using MCMC and 

construct the quasi-optimal ĥ(x)  by adaptive kernel 

density estimation. Then, estimate the failure probability by 

IS. As long as the stopping criterion in Eq. (35) is not 

satisfied, proceed to the next step, otherwise skip to Step 5. 

According to the publication (Yang et al. 2018), more than 

1000 failure samples are needed for obtaining an accurate 

quasi-optimal PDF ĥ(x). In addition, it should be noted that 

these failure samples are generated based on the current 

Gaussian process classifier instead of performing the 

performance function evaluations. 
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Step 4 Select the new training sample from the NCS 

candidate samples generated by MCMC according to the 

proposed adaptive DoE strategy in 3.2 at each iteration and 

add it to DoE. Subsequently, update the Gaussian process 

classifier and the Kriging surrogate models, i.e. return to 

Step 2. 

Step 5 Estimate the coefficient of variation of failure 

probability. If δP̂f
≤ 0.03 is satisfied, terminate the adaptive 

iteration and output the estimation of some concerned 

results. Otherwise, increase the number of random samples 

obtained by IS and return to Step 3 until δP̂f
≤ 0.03 is 

satisfied. 
 

 

4. Verification and application 

 

4.1 Piecewise function with two random variables 

 

A piecewise function with discontinuous output, 

obtained from the fusion of the publications (Guan and 

Melchers 2001, Yuan et al. 2013), is taken as the first 

example. The discontinuity of its output under two random 

inputs and the segmentation boundary of sampling space are 

 

 

shown in Fig. 4. The piecewise function is expressed as 
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 (37) 

where x1~N(0,1), x2~N(0,1) and they are mutually 

independent. 

Twelve initial training samples extracted using LHS are 

employed to construct an initial Gaussian process classifier. 

The average results of 10 runs of GPC+MPP, GPC+MEMP 

and AGPC-IS are summarized in Table 1. The results of 

AKDE-IS are regarded as the “true” values and it needs 

5×104 calculations of the piecewise function. The reliability 

analysis methods based on GPC are also compared with 

SVC-based one in publication (Pan and Dias et al. 2017) 

(called as ASVC in this paper) and the results of ASVC are 

 
Fig. 3 The process of AGPC-IS 
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listed in Table 1. Moreover, GPC+MPP, GPC+MEMP and 

ASVC all take the samples generated by AKDE-IS as the 

candidate samples. Table 1 contains the following contents: 

the total calls of piecewise function Ncall, the estimated 

failure probability ˆ
fP  and corresponding coefficient of 

variation ˆ ,
fP

 the relative error ˆ .
fP

  Moreover, the 

variations of ˆ
fP  and maximum relative stability ε with the 

number of iteration Nit obtained using different methods are 

clearly depicted in Fig. 5. 

Obviously, the results obtained by GPC+MEMP and 

AGPC-IS approach to the “true” failure probability, while 

those using GPC+MPP and ASVC deviate greatly from the 

“true” value. In addition, compared with GPC+MEMP, 

AGPC-IS requires fewer calls of piecewise function. In 

other words, AGPC-IS is superior in efficiency to other 

methods while satisfying the accuracy requirements of 

reliability analysis. 

Furthermore, Fig. 6 shows the processes that the 

classification boundary estimated by different methods 

gradually converges to the segmentation boundary of the  

 

Table 1 Average results obtained by different methods 

Method Ncall ˆ
fP (10-4) ˆ

fP
 (%) ˆ

fP
 (%) 

AKDE-IS 5×104 1.246 1.40 - 

GPC+MPP >112 1.050 1.63 15.73 

GPC+MEMP 52.57 1.217 1.35 2.33 

ASVC >112 1.134 1.44 8.99 

AGPC-IS 42.06 1.228 1.39 1.44 

 

 

piecewise function. In Fig. 6, each column denotes the 

convergence process of GPC+MPP, GPC+MEMP, ASVC 

and AGPC-IS, respectively. Each row, containing 22, 32, 42 

training samples respectively, compares the distribution of 

training samples in these methods. The black line represents 

the actual segmentation boundary, while the green line 

denotes the classification boundary predicted by GPC or 

SVC. Obviously, the training samples selected by 

GPC+MPP are too centralized and have little improvement 

on the accuracy of Gaussian process classifier, and the 

classification effect of ASVC is poor when only a small 

number of labeled samples are available. In addition, it can  

  
(a) discontinuous output (b) segmentation boundary 

Fig. 4 Characteristics of piecewise function 

 

  

(a) Variations of ˆ
fP  with Nit (b) Variations of ε with Nit 

Fig. 5 Variations of ˆ
fP  and ε with Nit using different methods 

779



 

Yibo Zhang, Zhili Sun, Yutao Yan, Zhenliang Yu and Jian Wang 

 

 

 

be easily found that AGPC-IS can better converge to the 

real segmentation boundary of the piecewise function while 

sampling uniformly. 

 

4.2 Arch structure with snap-through behavior 
 

As a typical structure with snap-through behavior, the 

arch structure in publication (Basudhar et al. 2008) is 

researched in this example. Its geometry and force diagram 

are shown in Fig. 7(a). The curvature radius R of the arch 

structure is 8m and its central angle θ is 14°. The 

displacement response at the center A is affected by the 

parameters thickness t, width w and load F, which are 

independent of each other. Table 2 describes their 

corresponding distribution information. Furthermore, the 

displacement at node A has a snap-through behavior when 

the arch structure is buckling, i.e. the displacement at node 

A will abruptly change due to the transition of equilibrium 

state. Therefore, the whole sample space is divided into two 

categories: no-buckling (safety) and buckling (failure). 

Given the symmetry of the arch structure, only a quarter of 

its finite element model is established. Figs. 7(b) and 7(c) 

depict the displacements at A under no-buckling and 

buckling, respectively. 

Since the three random parameters obey the different 

distribution and are non-standard normal random variables, 

they are firstly converted into standard normal random 

varibles by Nataf transformation. Subsequently, twelve 

initial training samples are generated by LHS and their 

corresponding displacements at center A are obtained by 

finite element analysis. Similarly, GPC+MPP, GPC+MEMP, 

ASVC and AGPC-IS respectively run 10 times, and their 

 

Table 2 Distribution information of three variables 

Variable Distribution type Parameter 1 Parameter 2 

w (mm) Lognormal 400 12 

t (mm) Uniform 7 9 

F (N) Normal 4300 200 

 

Table 3 Average results using different methods for arch 

structure 

Method Ncall ˆ
fP (10-5) ˆ

fP
 (%) ˆ

fP
 (%) 

AKDE-IS 9×104 8.392 2.03 - 

GPC+MPP >212 6.029 2.11 28.16 

GPC+MEMP 125.57 8.161 2.08 2.75 

ASVC >212 9.007 2.12 7.33 

AGPC-IS 88.76 8.603 2.07 2.51 

*For lognormal distribution, parameters 1 and 2 
respectively are the logarithmic mean and logarithmic 
standard deviation. For uniform distribution, parameters 1 
and 2 respectively denote the lower limit and upper limit. 
For normal distribution, parameters 1 and 2 respectively are 
the mean and standard deviation. 

 

 

average results are summarized in Table 3. The “true” 

failure probability obtained adopting AKDE-IS is about 

8.392×10-5, and it takes 9×104 finite element simulations 

and nearly 6 days to complete the reliability analysis. 

Furthermore, Fig. 8 also compares the variations of ˆ
fP  

and ε with Nit under different methods. Compared with other 

 
Fig. 6 Comparison of distribution of training samples and convergence process by different methods 
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Fig. 9 Two-bars truss structure 

 

 

methods, AGPC-IS only needs about 88.76 performance 

function evaluations to obtain satisfactory results, i.e. its 

efficiency is increased by nearly 29.31%. 

 

 

4.3 Two-bars truss structure 
 

Truss structures have also received extensive attention 

due to their discontinuous response. In the publication  

 
(a) geometry and force diagram 

  
(b) no-buckling (c) buckling 

Fig. 7 Arch structure 

 

  
(a) Variations of ˆ

fP  with Nit (b) Variations of ε with Nit 

Fig. 8 Variations of ˆ
fP  and ε with Nit by different methods 
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Table 4 Distribution information of five random variables 

Variable Mean Standard deviation 

l (mm) 1000 10 

h (mm) 150 1.5 

F (N) 21000 500 

E (MPa) 7e4 700 

A (mm2) 275 3 

 
 

(Niutta et al. 2018), the optimization design problem of 

two-bars truss structure shown in Fig. 9 is researched. In 

this subsection, it is analyzed from the perspective of 

structural reliability. The two-bars truss structure contains 

five independent normal random variables: height h, span 

2l, Young’s modulus E, load F and cross-sectional area A. 

Table 4 lists their corresponding distribution information. 

The no-buckling displacement (i.e. safety state) and 

buckling displacement (failure state) at mid-span are 

depicted in Fig. 10.  

Fifteen initial training samples are randomly extracted 

using LHS. Furthermore, the failure probability obtained by  

AKDE-IS with 2×105 finite element simulations is treated 

as the ‘true’ value. The average results of different methods 

are summarized in Table 5. The variations of ˆ
fP  and ε 

with Nit obtained by different methods are shown in Fig. 11.  

 

Table 5 Average results of two-bars truss structure 

Method Ncall ˆ
fP (10-5) ˆ

fP
 (%) ˆ

fP
 (%) 

AKDE-IS 2×105 1.367 2.39 - 

GPC+MPP >315 0.706 2.42 48.35 

GPC+MEMP 229.68 1.328 2.38 2.85 

ASVC >315 1.244 2.45 9.00 

AGPC-IS 170.12 1.332 2.41 2.56 

 

 

Obviously, GPC+MPP and ASVC-IS still do not 

converge after 315 simulations, while AGPC-IS only needs 

to perform about 170.12 simulations to converge. In 

addition, compared with GPC+MEMP, the number of 

simulations of AGPC-IS is reduced by nearly 60 times. 
 

 

5. Conclusions 

 

Integrating adaptive Gaussian process classification and 

importance sampling, this paper proposes a novel reliability 

analysis method AGPC-IS for structures with discontinuous 

response and small failure probability. 

•  An innovative adaptive DoE strategy is developed 

for gradually improving the accuracy of Gaussian process 

  
(a) safety state (b) failure state 

Fig. 10 Discontinuous displacement of two-bars truss structure 

  
(a) Variations of ˆ

fP  with Nit (b) Variations of ε with Nit 

Fig. 11 Variations of ˆ
fP  and ε with Nit using different methods 
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classifier. The MCMC algorithm is employed to generate 

the candidate samples with higher risk of being 

misclassified, and the Euclidean distance is used to ensure 

the sampling uniformity. Meanwhile, combining the 

Kriging surrogate model and the improved distributed 

hypercube sampling (IHS), the region with high 

classification uncertainty is identified. 

•  The quasi-optimal density function of IS is 

constructed by introducing the MCMC and the adaptive 

kernel density estimation. 

•  A more general and accurate stopping criterion is 

also developed from the perspective of stability of failure 

probability estimation. 

•  A piecewise function and two engineering structures 

are employed to verify the effect of AGPC-IS. Results 

indicate that compared with other techniques, AGPC-IS 

needs fewer evaluations of performance function while 

satisfying the accuracy requirements of reliability analysis. 

This will significantly improve the efficiency of reliability 

analysis, especially for the structures with time-consuming 

finite element analysis. 

In general, AGPC-IS can achieve good results when 

tackling with the structures involving discontinuous 

response, nonlinear performance function and small failure 

probability. 
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