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1. Introduction 
 

The functionally graded materials (FGMs) are advanced 

composites and play an important role in engineering fields. 

FGMs have continuously varying fractions of the 

constituent materials (Madenci 2019). Typically, FGMs are 

made mixture from metal-ceramic materials thus the 

ceramic can resist high temperature while the metal can 

decrease the stresses due to high temperature gradient. 

Unlike classical layered composites (Kaci et al. 2018, Zine 

et al. 2018), FGMs don’t have sharp layer changes. In this 

way, delamination or no sudden stress changes along the 

thickness coordinate of FGMs. Since FGM structures, and 

beams in particular, used in several engineering sectors, 

understanding their behavior is important under load types 

(Beldjelili et al. 2016, Bousahla et al. 2016, Gemi et al. 

2016, Abdelaziz et al. 2017, El-Haina et al. 2017). 

The research reports on flexure stiffness, free vibration, 

thermal stress and buckling behavior of FGM structures 

have considerable in the literature during the last decade 

(Prakash and Ganapathi 2006, Zhang and Zhou 2008, Talha 

and Singh 2010, Bouderba et al. 2013, Belabed et al. 2014, 

Bouhadra et al. 2015, Abdelhak et al. 2016, Adim and 

Daouadji 2016, Adim et al. 2016, Adim et al. 2016, 

Benferhat et al. 2016, Benferhat et al. 2016, Daouadji and 

Adim 2016, Daouadji and Benferhat 2016, El-Haina et al. 

2017, Nejad et al. 2017, Belabed et al. 2018, Benyamina et 

al. 2018, Bourada et al. 2018, Ebrahimi and Dabbagh 2018,  
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Ersoy et al. 2018, Hadi et al. 2018, Nejad et al. 2018, 

Solmaz and Civalek 2018, Akgün and Kurtaran 2019, Hadj 

et al. 2019, Rabia et al. 2019). But studies on FGM beams 

are limited (Ziane et al. 2015, Trinh1a et al. 2016, 

Mirjavadi et al. 2017, Arioui et al. 2018). Some of these 

studies: the thermo-elastic behavior of FGM beams 

investigated based on first-order shear deformation theory 

by Chakraborty et al. (2003). An elasticity solution for 

simply-supported FGM beam based on Euler-Bernoulli 

beam theory was derived by Sankar (2001). Madenci (2019) 

obtained a refined functional based on general shear 

deformation beam theories and used for static analysis of 

FGM beams. The mixed-finite element method is employed 

to obtain the element matrices. Pradhan and Chakraverty 

(2013) presented free vibration analysis of FGM beams 

with the different boundary conditions. The governing 

equations are obtained by the Rayleigh-Ritz method. Jing et 

al. (2016) developed a finite volume method based on first 

order shear deformation theory for static and free vibration 

analysis of FGM beams. The first-order shear deformation 

beam theory for static and free vibration of axially loaded 

rectangular functionally graded beams is developed by 

Nguyen et al. (2013). 

The design of structures and components using newly 

advanced composite materials usually requires extensive 

and expensive testing programs (Gemi 2018, Gemi et al. 

2018, Gemi et al. 2019). Also, the theoretical analysis has 

more complex equations than isotropic materials (Madenci 

et al. 2020). As mentioned in (Cho and Shin 2004) and 

(Kou et al. 2012), there are some challenges in the design of 

FGM. Some of them are: a large number of parameters or 

design variables are required to model heterogeneous FGM 
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distributions, the computational costs and the choice of the 

sensitivity analysis scheme incorporated with the volume 

fraction discretization. Therefore the optimum design will 

provide essential. To tackle the above-mentioned challenges 

in the design of FGM, an ANN model is proposed in this 

paper. Artificial neural networks (ANNs) are an effective 

method for predicting and classifying variables and have 

emerged as a superior modeling and optimization tool 

(Peng-hui et al. 2015, Yavuz 2016). The ANNs are the 

information processing method developed by inspiring the 

human brain’s information processing technique. The 

application areas of ANNs are quite wide which are often 

used in the field of engineering, science, medicine, 

business, finance. The ANNs can solve many types of 

problems. The main ones are the optimization, 

classification, clustering, and prediction and pattern 

recognition problems (Hore et al. 2016, Karina et al. 2017, 

Zhao et al. 2017, Azqandi et al. 2018, Chang et al. 2019). 

ANNs have recently been used in mechanical behavior, 

monitoring and modeling the manufacturing of composites. 

Zhang and Friedrich (2003) discussed a review study on the 

ANNs applied to composite structures. Nielsen and 

Pitchumani (2001) studied the manufacturing process 

optimization of composite materials by using ANN. There 

are many publications on applications of the ANNs for the 

purpose of prediction for composites (Litak et al. 2008, 

Wang et al. 2013). Pidaparti and Palakal (1993) presented 

modeling of composites using the ANN for predicting the 

non-linear stress–strain behavior of graphite–epoxy 

laminates. Labossiere and Turkkan (1993) obtained failure 

analysis of composites by using polynomial theory and 

applied ANN to predict under plane stress conditions. 

As emphasized in (Kou et al. 2012), there are not 

enough optimization studies for FGM beams. In the aim of 

this present study, is develop an ANN model that 

optimization of FGM beams by using soft computing 

technique. By using variational techniques, mixed finite 

element matrices of FGM beam is obtained. Then the static 

analysis is presented and maximum displacements obtained 

for different effect data combinations. After that, the ANN 

model is carried out to derive an explicit ANN formulation 

for the optimization of FGM beam. The model is 

established within four parameters which are Young’s 

modulus ratio, different shear correction factors, power-law 

exponent and length to thickness ratio. 

Thanks to the ANN technique, we show that optimal 

FGM design can be flexibly and efficiently conducted. 

This article is organized as follows: Section 2 presents 

the theoretical formulation of FGM beam. The ANN 

algorithm and the performance metrics are presented in 

Section 3. Section 4 reveals the experimental results and 

analysis of ANN in optimization of FGM beams. Finally, 

the article is concluded in Section 5. 

 

 

2. Theoretical formulation of FGM beam 
 

In this part, the theoretical formulation of FGM beam 

based on first order shear deformation beam theory via a 

mixed finite element method is obtained such as Madenci  

 

Fig. 1 Geometry of FGM beam 

 

 

(2019). The partial field equations are transformed to 

functional and mixed finite element matrices is obtained. 

 
2.1 Functionally graded material beam model 
 

In this study FGM beam made of ceramic and metal 

phases is considered as shown in Figure 1. The cartesian 

coordinates x-y-z are taken along the length, width, and 

height of the beam respectively. The geometry of FGM 

beam, consider a FGM beam with length “L” and 

rectangular cross section, with “b” being the width and “h” 

being the height. 

The material properties of FGM beams are assumed to 

vary continuously through the thickness. The power-law 

distribution method used to calculate the effective material 

properties which are Young’s modulus “E(z)”, bulk modulus 

“G(z)” and poisson ratio “v(z)”, and given in the general form 

( )( )z t b t bP P P V P= − +  (1) 

where “Pt” is the denote the values of the mechanical 

properties of the top at “z=h/2” and bottom at “z= –h/2” 

respectively. In the present study, it is assumed a full metal 

at the bottom of the FGM beam and a full ceramic at the top 

of the FGM beam. The parameter “Vt” is called volume 

fraction of FGM beam and defined as 

1

2

n

t

z
V

h

 
= + 
 

 (2) 

In power-law variation, “n” is a power-law exponent 

and it is a non-negative variable parameter (n≥0). 

 

2.2 Kinematics 
 

The purposed mathematical model can be represented in 

terms of first order shear deformation beam theory as 

0( , ) ; ( , ) 0; ( , )xU x z z V x z W x z w= = =  (3) 

where “w0” is the transverse displacement, “𝜙𝑥” is the 

total bending rotation of the cross-section at any point on 

the neutral axis. 

The non-zero strains are given by 

,x x

x xz x

wU U W
z

x x z x x


  

   
= = = + = +
    

 (4) 

For the FGM beam, the external and internal virtual 

work expressions can be written as 
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0 0

0F u f udV dV 
 

 −  =   
(5) 

where the first integral “
0

F u dV


  ” is total internal 

works and the second integral “
0

f u dV


 ” is total 

external works done, respectively. The virtual work done by 

actual forces “F” and body forces “f” in a body “Ω0” in 

moving through the virtual displacements “ u “ is given by 

 , , ( )u F f

x

x

xz

xz

q x

w





 





 
   
   = = =   
   
  

 (6) 

Variation of virtual work calculated by 

  ( )

0 0

0

L L

x x xz xz x

A

dAdx q wdx     + =−    (7) 

Substituting Eq. (4) into Eq. (7) and integrating through 

the thickness of FGM beam, it can be rewritten in (Ö zütok 

and Madenci 2013) 
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 (8) 

Stress resultants bending moment “Mx” and shear force 

“Qx” are defined by 

   , ,

1
x x x xz

A

z

M Q dz 
 
 

=  
  

  (9) 

The Eular-Lagrange equations can be derived from Eq. 

(8) by integration the displacement gradients by parts and 

setting the coefficient “ w ” and “ x ” to zero separately. 

Then, the Euler-Lagrange equations can be obtained as 

,

,

: 0 0

: 0 0

x x

x x x x

w Q q

M Q

 → − − = 


 → − + = 

 (10) 

Using the material properties in Eq. (1), the linear 

constitutive relations are 

11

55

0

0

x x

xz xz

Q

Q

 

 

        
=     
         

 (11) 

where “ ,x xz  ” and “ ,x xz  ” are terms of the stresses and 

deformations, respectively. The transformed stiffness 

constants in the beam coordinate system are defined as 

( ) ( )

11 55 ( )2
,

2(1 )1 ( )

z z

z

zz

E E
Q Q G

vv
= = =

+−
 (12) 

Substituting Eqs. (10,11) into Eq. (9) and integrating 

through the thickness of The FGM beam, following 

constitutive equations are obtained 

11

55

0

0

x x

x xz

M D

Q A





      
=     

          

 (13) 

Extensional stiffness “ 55A ” and bending stiffness “ 11D ” 

are defined as follows 

 
2

2

2

11 55 ( ) ( ), ( , )

h

h

z z

s

z
D A E G dz

k−

  
=  

  
  (14) 

The “ sk ” denote the shear correction factor for first 

order shear deformation theory that doesn’t neglect the 

effect of the transverse shear deformation and consider a 

uniform transverse shear stress distribution through the 

beam thickness. Therefore, needs a shear correction factor 

to assume a linear shear deformation across the thickness of 

the beam. 

 
2.3 Variational formulations and mixed finite element 

matrix 

 
Eq. (10) and Eq. (13) obtained by combining the partial 

differential equilibrium and constitutive equations of the 

field equations are written in the operator form and after 

showing the potential of the first order shear deformation 

theory obtained by applying the variational methods of 

FGM beams depending on the function is derived. The 

procedure is summarized in (Eratll and Aköz 1997, 

Kadioglu and Akoz 2003, Ö zütok and Madenci (2017), 

Madenci 2019). The functional for the FGM beam based on 

first order shear deformation theory for the chosen mixed 

formulation written in terms of independent variables and 

dynamic and geometric boundary conditions as follows 
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= + + −

 

− − − −

− − − −

 
(15) 

Then, taking variations and equating to zero, allows 

obtaining eight linearly independent equations since the 

variable variations are arbitrary and independent. The 

independent variables are expressed in terms of 

interpolation functions as “w, ϕx, Mx, Qx, 
𝜕𝑤

𝜕𝑥
,

𝜕𝜙𝑥

𝜕𝑥
”. 
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(16) 

The approach utilized here to obtain the mixed finite 

element method is explained in detail in (Ö zütok and 

Madenci (2013), Ozutok et al. 2014, Madenci and Ö zütok 

2020) for the case of laminated composite beams. The 

functional is extremized with respect to nodal variables then 

the mixed finite element matrices is obtained in Eq. (16). 

Thus, the mixed finite element matrices of FGM beam 

element based on first order order shear deformation theory 

which has four degree-of-freedom at the per node, total 

eight, is obtained for static deformation analysis. The 

unknowns are displacement, rotation, moment and shear 

force in Eq. (16). 
 
 

3. Artificial neural networks (ANNs) 
 

ANNs simulate the operation of the simple biological 

nervous system. The cells of the biological nervous system 

are called neurons (Rastbood et al. 2017). Neurons are 

connected to each other in various ways to form a network. 

Thus, neurons in ANNs can gain the ability of the 

biological nervous system. These networks are capable of 

learning, memorizing and revealing the relationship 

between data (Aggarwal 2018). 

There are various types of ANNs and it can be classified 

according to the number of layers, the topology and 

learning algorithm (Bahadır and Balık 2017). Some types 

are the feed forward, recurrent, single-layer, multi-layer, 

supervised and unsupervised networks. The main feature of 

the ANNs is the learning ability. This learning ability is 

realized by updating the weights of ANNs using the 

learning algorithms. In this paper, the feed forward back 

propagation neural network is used to solve the prediction 

problem. An ANN is composed of layers such as input layer, 

hidden layers, and output layer. The number of the hidden 

layers are defined by the user. The main structure of the 

ANN is shown in Fig. 2. Each layer has at least one neuron. 

Data are given to the input layer. The ANN processes the 

data and the output layer presents the result to the user. 

In the ANNs, the neurons work principle as follows: 

Each neuron has at least one input and only one output. 

These inputs are connected to the neuron through weights. 

also the input of another neuron. To process the data, the 

inputs of the neuron are multiplied with its weights. Thus,  

 

Fig. 2 The main structure of the artificial neural network 

(Bre et al. 2018) 

 

 

the effect of the input is scaled. After that, the calculated 

The output of a neuron except the neurons in the output 

layer is value is given to a function, called the activation 

function. Equation (17) shows how the neuron j processes 

the data to generate an output. 

𝑦𝑗 = 𝑓(𝑏𝑗 + ∑ 𝑤𝑖𝑗𝑥𝑖

𝑚

𝑖=1
) (17) 

Here 𝑦𝑗 is the output of the neuron j, 𝑥𝑖 is the input, 

𝑏𝑗 is the bias, 𝑤𝑖𝑗 is the weight and 𝑓(. ) is the activation 

function. One of the most important factors determining 

neuron behavior is the activation function. The result of the 

product of the inputs and weights is converted to the output 

of the neuron by the activation function. Thanks to the 

activation function, the ANN generates a linear or nonlinear 

model. The most used activation functions are the sigmoid, 

hyperbolic tangent, rectified linear unit, and softmax 

function. In this paper, the sigmoid activation function is 

used and its formulation is given in Eq. (18). 

𝑓(𝑎) = 1 (1 + 𝑒−𝑎)⁄  (18) 

The steps of the application of the artificial neural 

network are as follows: 

- collecting data 

- preparing data 

- defining network architecture 

- initializing weights and bias 

- training network 

- validating network 

- using network 

 
3.1 Collecting data 
 
The collecting data is the first step of the application of 

the ANN learns from the data. Therefore, data should 

coherent and should not contain missing values. To create a 

good neural network, 252 different design mixed data-set 

obtained based on static analysis of simply-supported FGM 

beam by using Eq. (16). Where the input data are non-

dimensional Young’s modulus ratio (Et/Eb), a shear 

correction factor (ks) as Jing et al. (2016), power-law 

exponent (n) and length to thickness ratio (L/h); output data 

is maximum displacement (w) respectively. The 

combination parameters of input data are given in Table 1. 
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Table 1 Input data values 

Et/Eb ks n L/h 

0.25 1 0 4 

0.50 2 0.2 16 

1 3 0.5  

2  1  

4  2  

6  5  

  10  

 

Table 2 Statistical analysis of data 

Attribute Min Max Mean St. Dev. 

Et/Eb 0.25 6.00 2.29 2.08 

ks 1.00 3.00 2.00 0.82 

n 0.00 10.00 2.67 3.39 

L/h 4.00 16.00 10.00 6.01 

w 0.17 4.63 1.03 0.77 

 

 

Using the statistical parameters of the data are shown in 

Table 2. 

 

3.2 Preparing data 
 

The preparing data is the second step of the application 

of the ANN. In this step, the data are randomly divided into 

three distinct subsets (train, validation, and test). The ANN 

is trained using the train data. The prevention of 

overtraining on the training data is a key function 

performed by the validation data set. After that, the 

performance quality of the model of the ANN is evaluated 

using the test data (Cain 2016). And then, the ANN is ready 

to use. In this paper, the train data are 70% of the data, the 

validation data are 15% of the data, and the test data are 15% 

of the data. 

 

3.3 Defining network architecture 
 

As shown in Fig. 2, an ANN is composed of an input 

layer consists of input neurons which take the data from the 

outside, an output layer consists of output neurons which 

give the result of the ANN to the outside and one or more 

hidden layers between the input layer and the output layer. 

The architecture of an ANN affects the success of the 

prediction. Therefore, defining network architecture is an 

important step. The following variables must be determined 

in the design of the ANN: the number of input neurons, the 

number of hidden layers and hidden neurons, number of 

output neurons. The selection of these parameters varies 

according to the problem. 

The number of independent variables of the problem 

gives the number of input neurons of the ANN. The number 

of dependent variables of the problem gives the number of 

output neurons of the ANN. The important factor in the 

optimization of the ANN is to determine the number of the 

hidden layers and the number of neurons in these layers. 

The ANN with one hidden layer is successful in solving 

problems. However, sometimes 2 hidden layers may be 

needed when working with data that contain a very complex 

structure. Increasing the number of hidden layers causes the 

increase of the calculation time. In this study, there are 4 

neurons in the input layer since the number of the 

independent variables is 4 and there is 1 neuron in the 

output layer since the number of the dependent variable is 1. 

There is no fixed rule in determining the number of neurons 

in the hidden layer. It is usually started with a small number 

of neurons and is increased to a certain limit. In this study, 

the number of hidden neurons was started at 2 and was tried 

in order up to 10. Therefore, 9 different architectures were 

used to find the best model. In the ANN, activation 

functions affect the success of the prediction. In this study, 

the sigmoid activation function was used and its 

formulation is given in Eq. (2). 

 
3.4 Initializing weights and bias 
 

The initial values of the weights and biases affect 

finding the global optimum by the ANN. The initial values 

should be neither too big nor too small. A general approach 

is to assign the initial values in the range [-0.5, 0.5] or [-1, 1] 

(Raschka 2015, Rashid (2016)). In this study, the initial 

values of the weights and biases were generated randomly 

in the range [-1, 1].  

 

3.5 Training network 
 

The ANNs are a learning system with the help of 

examples. An objective function must be defined to 

measure the training performance of the network that is 

established and trained according to the problem. The mean 

square error in Eq. (5) is usually used as the objective 

function of ANNs, because it is defined in relation to the 

error term. In this study, the mean square error was used as 

the objective function of the artificial neural network, too. 

Furthermore, 70% of the data were used as the train data. In 

ANNs, there are many algorithms to train the network. One 

of the most popular and most widely used algorithms is the 

back-propagation algorithm (Skorpil and Stastny 2006). In 

this study, the back-propagation algorithm was used. A stop 

criterion should be determined before the back-propagation 

algorithm trains the network. This stop criterion is usually 

the maximum number of iterations. Training of the ANN by 

the backpropagation algorithm consists of 3 steps: The 

network input moves from the input layer to the output 

layer. Calculation of the error in the output layer and 

backward propagation. Updating the weights according to 

the error propagated backward. These steps continue until 

the maximum iteration number is reached. When the 

maximum iteration number is reached, training of the ANN 

is completed. In this way, ANNs with different network 

architectures are trained in order. 

 

3.6 Validating network 
 

After the training is completed, the operation of the 

artificial neural network is always forward. The trained 
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network receives the input from the outside using the input 

neurons and gives the result to the outside using the output 

neurons. Although the training of the artificial neural 

network takes a long time, generating the result of the 

network for the new input data is very fast. To determine 

and compare the success rates of the ANNs with the 

different network architectures, these are tested with a 

validation dataset. Thus, the best performing ANN among 

them is put into use. In this study, 15% of the data were 

used as the validation dataset. 

 

3.7 Using network 

 

The trained network receives the input from the outside 

using the input neurons and gives the result to the outside 

using the output neurons.  Although the training of the 

ANN takes a long time, the test of the trained network using 

the test data is very fast. After determining the best 

performance ANN using the validation dataset, it is ready to 

use and its performance is measured using the test data. 

This test data is a dataset that the network has never used 

before. In this study, the test data are 15% of the data. 

 

3.8 Performance metrics 

 

The performance of an ANN can be evaluated in terms 

of computational time and estimation accuracy (Twomey 

and Smith 1995). The estimation accuracy is determined by 

the analysis of estimation errors. The estimation error is the 

difference between the actual observation value and the 

estimated value. In this study, in order to measure the 

accuracy of estimation, the statistical metrics which are 

frequently used in literature were used. These metrics are 

the correlation of the coefficient (R), the mean square error 

(MSE) and the mean absolute error (MAE). Their 

formulations are given in Eqs. (19)-(21). 

𝑅 = √1 − (∑(𝑂𝑖 − 𝑃𝑖)2

𝑁

𝑖=1

 ∑(𝑂𝑖 − �̅�)2

𝑁

𝑖=1

⁄ ) (19) 

𝑀𝐴𝐸 = (∑|𝑂𝑖 − 𝑃𝑖|

𝑁

𝑖=1

) 𝑁⁄  (20) 

𝑀𝑆𝐸 = (∑(𝑂𝑖 − 𝑃𝑖)
2

𝑁

𝑖=1

) 𝑁⁄  (21) 

Here N is the number of the instances, O is the observed 

value, P is the predicted value, and �̅� is the mean of the 

predicted values. 

 

 

4. Experimental Results 
 

In this section, the experimental results are presented. 

The technical features of the computer used in the 

experiments are as follows: Windows 10 operating system, 

intel i5 3 GHz, 4 GB memory, visual studio 2017, C# 

programming language. In this study, the number of hidden 

neurons was started at 2 and was tried in order up to 10. 

Therefore, 9 different architectures were used to find the 

best model. According to the experimental results, the 

hidden layer in the best model has 10 neurons. The 

architecture of the best model is 4-10-1. The values of the 

parameters used in the study are as follows: the number of 

the layers is 3 (input, hidden and output). The number of 

neurons in the input layer is 4, the number of neurons in the 

hidden layer is 10, and the number of neurons in the output 

layer is 1. The momentum and learning rate is 0.8 and 0.3, 

respectively. The maximum epoch number is 1000. 

The formulation of the generated model is shown in Eq. 

(22). The function f(.) represents the sigmoid activation 

function whois formulation is given in Eq. (18).  

𝑌 = 𝑓( 𝑓(𝑋 ∗ 𝐼𝐻𝑊 + 𝑏1) ∗ 𝐻𝑂𝑊 + 𝑏2) (22) 

Where X represents the input values. b1 represents the 

biases of the neurons in the hidden layer and b2 represents 

the biases of the neurons in the output layer. IHW represents 

the weights between the input layer and the hidden layer 

and HOW represents the weights between the hidden layer 

and the output layer. The values of the b1, b2, IHW, and 

HOW of the best model are given in Table 3 and Table 4. 

Table 5 shows the performance of the proposed ANN 

model. The values of the correlation of the coefficient (R) 

for the training, validation and test are 0.98, 0.982 and 

0.962, respectively. The larger the coefficient, the stronger 

the relationship, so that a correlation that is close to one 

indicates a very strong relationship, while coefficients that 

are near zero indicate very weak relationships (Bachman 

2004). Because the values of the correlation of the 

coefficient (R) for the training, validation and test are close 

to one, there is a very strong relationship. The values of the 

mean absolute error (MAE) for the training, validation and 

test are 0.051, 0.056 and 0.08, respectively. The values of 

the mean square error (MSE) for the training, validation, 

and test are 0.012, 0.007 and 0.027, respectively. Lower 

MSE and lower MAE indicate more accurate prediction. 

Fig. 3 shows the regression plots of the proposed ANN 

model. According to the plots for the training, validation, 

and test, the prediction performance of the proposed ANN 

model is very good. 

 

 

Table 3 The weights of the hidden layer 

IHW 

1,0427 -0,1787 -0,4650 0,0630 

-19,6590 -0,1219 -28,4935 -0,3401 

1,8004 -0,2771 -1,2107 0,7198 

-0,0469 -1,3333 0,1599 -1,1096 

-0,7450 -0,4551 0,3612 -0,5389 

1,6648 -0,0347 -8,2349 -0,5327 

5,2911 -0,1071 1,6932 0,0603 

-0,1657 0,1117 -0,4491 -0,4757 

0,2515 0,0055 0,1567 -1,2077 

2,3480 0,8533 0,2010 0,0572 
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Table 4 The weights of the biases and the output layer 

b1 HOW b2 

-1,8382 -0,7078 0,4827 

-1,4196 15,4210  

-1,6723 -1,5432  

-1,5416 -0,4508  

-1,5761 0,5240  

-1,7193 -3,5549  

-0,3296 -1,8421  

-2,0542 0,1376  

-1,7314 0,3614  

-2,0223 -0,6749  

 

Table 5 Performance of the proposed ANN model 

Criteria Training Validation Test 

Instance 176 38 38 

R 0.980 0.982 0.962 

MAE 0.051 0.056 0.080 

MSE 0.012 0.007 0.027 

 

Fig. 4 shows the error histogram plot of the proposed 

ANN model. It provides additional verification of the 

performance of the artificial neural network. It indicates 

outliers. The blue, green and red areas represent training, 

validation and test data respectively.  

 

 

 

Fig. 4 The error histogram 

 

 

The most data fall on zero error which provides an idea 

to check the outliers to determine if the data is bad, or if 

those data points are different than the rest of the data set. If 

the outliers are valid data points, but are unlike the rest of 

the data, then the network is extrapolating for these points 

(Yadav et al. 2015). As shown in Fig. 4, the density in the 

diagram is around zero. Therefore, the prediction success of 

the network is very high. 

 
 
5. Conclusions 

 

The proposed ANN based model was performed well 

for maximum displacement of FGM beams such as Young 

  
(a) Training subset (b) Validation subset 

  
(c) Test subset (d) All data 

Fig. 3  The regression results of the training, validation, test and all data 
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modulus ratio, length to thickness ratio, effect of shear 

correction factor, effect of power-low exponent. The main 

feature of the ANN is the learning ability. It learns from 

data. The main aim of this study is to develop a model 

which may predict the maximum displacement. The 

proposed ANN model is composed of one input layer, one 

output layer and one hidden layer between the input layer 

and the output layer. The architecture of the model is 4-10-1. 

In the experiments, we used 252 different data. The 

input data are the non-dimensional Young’s modulus ratio 

(Et/Eb), a shear correction factor (ks), power-law exponent 

(n) and length to thickness ratio (L/h). The output data is the 

maximum displacement (w). The train data are 70% of the 

data, the validation data are 15% of the data, and the test 

data are 15% of the data. The proposed ANN model is 

evaluated by the correlation of the coefficient (R), MAE 

and MSE statistical methods. The values of the R for the 

training, validation and test are 0.98, 0.982 and 0.962, 

respectively. Additionally, the values of the MAE and MSE 

are close to zero. In conclusion, the prediction ability of the 

ANN model is very good and the maximum displacement 

can be predicted in ANN without attempting any 

experiments. Thanks to the ANN technique, we show that 

optimal FGM design can be flexibly and efficiently 

conducted. 
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