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1. Introduction 
 

When conducting dynamic response analyses of linear 
elastic structures, mode superposition is a useful technique 
for reducing computational efforts. This is because that the 
dynamic response of a structure can be reliably 
approximated by a superposition of a small number of the 
eigenmodes. In fact, good approximate solutions can be 
yielded via mode superposition with only first few mode 
shapes (Clough and Penzien 2003). Similarly, it is not 
necessary to accurately integrate all vibration modes to 
achieve an accurate solution in the time integration of 
inertial problems. In fact, a reliable solution can be obtained 
if the low frequency responses are accurately integrated 
while there exists no instability for high frequency modes. It 
is well recognized that a total solution is generally 
dominated by low frequency responses while high 
frequency responses contribute insignificantly for an inertial 
problem. Thus, a dissipative integration method is best 
suited to solving inertial problems since numerical damping 
can be applied to filter out the unimportant high frequency 
modes (Belytschko and Hughes 1983, Har and Tamma 
2012). In general, the concept of mode superposition is also 
implied by conventional integration methods (Park 1975, 
Chang and Mahin 1993, Armero and Romero 2001, Chang 
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2001, Civalek 2007, Gao et al. 2012, Hadianfard 2012, 

Alamatian 2013, Soares 2014, Su and Xu 2014, Shojaee et 

al. 2015, Wen et al. 2017, Rezaiee-Pajand et al. 2018, Du et 

al. 2018, Kim and Lee 2018, Kim and Choi 2018, Kim 

2019) and they use the same difference equations to solve 

each modal equation of motion. There is a great motivation 

to develop an integration method also based on a mode 

superposition concept but applying different difference 

equations to solve each modal equation of motion. 

An eigen-based theory can be applied to develop a novel 

type of integration methods, where each modal equation of 

motion is solved by utilizing different displacement and/or 

velocity difference equations. This developing procedure is 

described next. In general, a coupled equation of motion for 

a multiple degree of freedom system can be uncoupled into 

a set of modal equations of motion. Next, an eigen-

dependent integration method is proposed to solve each 

modal equation of motion, where the natural frequency of 

the modal equation of motion will be involved in 

developing an eigen-dependent integration method. Hence, 

coefficients of the displacement and/or velocity difference 

equations can be assumed to be functions of the product of 

natural frequency and step size. These eigen-dependent 

integration methods are required to reliably integrate low 

frequency modal equations of motion while no instability is 

guaranteed in solving high frequency modal equations of 

motion. Although a superposition of the eigenmodes can 

give the solution of the coupled equations of motion, it is 
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Abstract.  A novel family of controllable, dissipative structure-dependent integration methods is derived from an eigen-based 

theory, where the concept of the eigenmode can give a solid theoretical basis for the feasibility of this type of integration methods. 

In fact, the concepts of eigen-decomposition and modal superposition are involved in solving a multiple degree of freedom system. 

The total solution of a coupled equation of motion consists of each modal solution of the uncoupled equation of motion. Hence, an 

eigen-dependent integration method is proposed to solve each modal equation of motion and an approximate solution can be yielded 

via modal superposition with only the first few modes of interest for inertial problems. All the eigen-dependent integration methods 

combine to form a structure-dependent integration method. Some key assumptions and new techniques are combined to successfully 

develop this family of integration methods. In addition, this family of integration methods can be either explicitly or implicitly 

implemented. Except for stability property, both explicit and implicit implementations have almost the same numerical properties. 

An explicit implementation is more computationally efficient than for an implicit implementation since it can combine 

unconditional stability and explicit formulation simultaneously. As a result, an explicit implementation is preferred over an implicit 

implementation. This family of integration methods can have the same numerical properties as those of the WBZ-α method for 

linear elastic systems. Besides, its stability and accuracy performance for solving nonlinear systems is also almost the same as those 

of the WBZ-α method. It is evident from numerical experiments that an explicit implementation of this family of integration 

methods can save many computational efforts when compared to conventional implicit methods, such as the WBZ-α method. 
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time consuming for conducting an eigenvalue analysis for 

each time step for a system with a large number of degrees 

of freedom and also a mode superposition. As an 

alternative, all the eigen-dependent integration methods can 

be converted into a Structure-Dependent Integration 

Method (SDIM) by means of a reverse procedure for 

uncoupling the original equations of motion. As a result, 

these coefficients are no longer of eigen dependent but 

structure dependent and thus an eigenvalue analysis and a 

modal superposition of the eigenmodes of interest for each 

time step are avoided. 

The numerical dissipation of an integration method is 

helpful to deal with a system with unresolved high 

frequency modes induced by spatial discretization since it 

can be used to reduce or eliminate the spurious growth of 

high frequency modes. Besides, the use of numerical 

damping to filter out the spurious oscillations of the high 

frequency modes in the solution of nonlinear problems can 

improve the convergence of nonlinear iterations. 

Consequently, it is preferable for an integration method to 

have numerical damping for solving inertial problems. 

Many integration methods with favorable numerical 

damping have been proposed for time integration, such as 

the Wilson- method (Wilson et al. 1973), HHT- method 

(Hilber et al. 1977), WBZ- method (Wood et al. 1981), 

generalized- method (Chung and Hulbert 1993), -

function method (Chang 1997), -function method (Chang 

2000), and the methods developed by Zhou and Tamma 

(2004); Xing et al. (2019). Most of these methods are 

implicit methods except for the -function method and -
function method. Although these implicit methods can have 

unconditional stability and second order accuracy, they will 

involve nonlinear iterations for each time step, which is 

time consuming for large order matrices. Meanwhile, 

although the -function method and -function method can 

combine an explicit formulation and desired numerical 

damping together, they are conditionally stable. 

SDIMs can be found in the literature (Chang 2002, 

2007, 2009, 2010, 2014b, 2015b, Chang et al. 2015, 2016, 

Gui et al. 2014, Tang and Lou 2017) although there is lack 

of a theoretical foundation to affirm their feasibility for 

nonlinear dynamic analysis. Some SDIMs were claimed 

that they were derived from a discrete control theory (Chen 

and Ricles 2008, Gui et al. 2015, Tang and Lou 2017). 

However, it is still lack of a theoretical basis and a fatal 

defect of weak instability is found (Chang 2015a, 2017, 

2018a). Besides, some other drawbacks still exist in current 

SDIMs (2015a, Chang 2017, 2018a). Hence, a novel family 

of dissipative SDIMs will be developed by using an eigen-

based theory, where two important considerations will be 

addressed. One is to affirm that an eigen-based theory can 

provide a solid theoretical basis for developing a general 

SDIM that can simultaneously combine unconditional 

stability and explicit formulation, and then the Dahlquist 

barrier can be overcome (Dahlquist 1956, 1963). The other 

is to present an improved family of SDIMs with adequately 

high frequency numerical damping. Notice that this 

development can be treated as a typical procedure for 

developing a dissipative SDIM. It will be also shown that 

the proposed family of SDIMs can be both explicitly and 

implicitly implemented although the development of this 

investigation is aimed at developing an explicit SDIM. 

 

2. Eigen-dependent integration method 
 

After decomposing the coupled equation of motion for a 

multiple degree of freedom system into a series of modal 

equations of motion, an eigen-dependent integration method 

can be applied to solve each modal equation of motion 

based on an eigen-based theory. A modal equation of 

motion or an equation of motion for a single degree of 

freedom system can be written as: 

mu cu ku f+ + =  (1) 

where m , c , k  and f  represent the generalized mass, 

viscous damping coefficient, stiffness and dynamic loading 

for a specific mode, respectively (Clough and Penzien 

2003). An eigen-dependent integration method will be 

proposed to solve Eq. (1). Two prerequisites are considered 

for deriving this integration method. One is to have desired 

numerical damping and the other is to be a semi-explicit 

integration method, where an explicit displacement 

difference equation and an implicit velocity difference 

equation will be adopted. It is found from conventional 

integration methods that an asymptotic equation of motion 

is generally adopted for a dissipative integration method, 

such as the HHT- method (Hilber et al. 1977), WBZ- 

method (Wood et al. 1981) and generalized- method 

(Chung and Hulbert 1993). Herein, the asymptotic equation 

of motion and the velocity difference equation adopted by 

the WBZ- method are chosen for this development. In 

addition, an explicit displacement difference equation is 

assumed since this study is intended to propose a semi-

explicit integration method. Thus, the eigen-dependent 

integration method can be written as: 
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 (2) 

where id , iv , ia  and 
i

f  denote the nodal displacement, 

velocity, acceleration and external force at the i-th time 

step, respectively; 𝛺𝑖 = 𝜔𝑖(𝛥𝑡) and 𝜔𝑖 = √𝑘𝑖/𝑚  is the 

natural frequency determined from the generalized stiffness 

at the end of the of i-th time step 
i

k  and generalized mass 

m  (Clough and Penzien 2003). Besides, the coefficients of 

  and   are scalar constants while those of 
1

 , 
2

  

and 
3

  are assumed to be eigen dependent. Clearly, the 

displacement difference equation is explicit since it 

involves no current step data for determining the current 

displacement 1id + . On the other hand, the velocity 

difference equation is implicit since the determination of 

𝑣𝑖+1 will involve the current step data 𝑎𝑖+1. 

The displacement difference equation as shown in Eq. 

(2) is assumed to be eigen-dependent and explicit. In the 
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pilot study, only the previous data, i.e., the data at the i-th 

time step, are applied to determine an appropriate 

displacement difference equation and then a desired 

dissipative integration method. However, it cannot result in 

a family of integration methods that can have desired 

numerical properties. Hence, as an alternative, both the i-th 

and (i-1)-th step data are used to determine the difference 

equation. There is a great idea to replace the (i-1)-th step 

data with the i-th step data by using the asymptotic equation 

of motion. For this purpose, the term of 
2

1
( )

i
t a

−
  is 

replaced by:  

( ) ( )( ) ( )
2 2 2

1
1 2 /

i i i i i i i
t a t a t v d F  

−
  = − −  +   + −
 

 (3) 

As a result, −𝛽1[𝛺𝑖
2𝑑𝑖 + 2𝜉𝛺𝑖(𝛥𝑡)𝑣𝑖]  is introduced 

into the second line of Eq. (2). Notice that a loading-

dependent term 
1i

p
+

 is also adopted in this equation since 

it can be used to eliminate an amplitude growth in high 

frequency steady-state responses for an eigen-dependent 

integration method. The cause of this overshoot and the 

determination of the loading-dependent term for eigen-

dependent or structure-dependent integration methods can 

be found in (Chang 2018a, b, c). 
 

2.1 Determination of 𝛽𝑖 
 

The determinations of the coefficients of 𝛽1, 𝛽2 and 

3
  are the most important task of this development. Based 

on an eigen-based theory, low frequency modes must be 

accurately integrated while no numerical instability occur in 

high frequency modes. There is a possible way to meet 

these requirements by assuming that each of 𝛽1, 𝛽2 and 

𝛽3  is a fraction of 𝛺0 , where 𝛺0 = 𝜔0(𝛥𝑡)  and 𝜔0 =

√𝑘0/𝑚 is the initial natural frequency of the mode and is 

determined from the initial generalized stiffness 𝑘0  and 

generalized mass m . Besides, the numerator and 

denominator of 𝛽1 to 𝛽3 are assumed to be polynomial 

functions of 𝛺0. As a result, they can be expressed as: 

0

2

0 0

2
, 1,2,3

2

i i

i

x y
i

p q r






+ 
= =

+  + 
 (4) 

where p , q , r , 
i

x  and 
i

y  are scalar constants. An 

appropriate determination of 
i

  plays the key issue to 

successfully develop an eigen-dependent integration 

method. In unconditionally stable integration methods, low 

frequency modes are reliably integrated while instability is 

prohibited for high frequency modes. This prerequisite must 

be also met for SDIMs and is a fundamental basis for an 

eigen-based theory. Thus, low frequency modes must be 

integrated as accurately as a conventional integration 

method in the limit 𝛺0 → 0. This can be achieved if 
i

  

generally reduces to a constant and a nonzero constant term 

is adopted both in the numerator and denominator. Notice 

that an instability will experience if 𝛽𝑖 becomes infinity in 

the limit 𝛺0 → ∞. To avoid this condition, the maximum 

order of the polynomial of 𝛺0 for the numerator must be 

no more than that of the denominator. Consequently, the 

denominator is assumed to be 𝐷 = 1 − 𝛼 + 𝛾2𝜉𝛺0 + 𝛽𝛺0
2 

to simplify the determination of 
i

 , where   represents a 

viscous damping ratio. This assumption of D  is referred 

to the implementation of the WBZ- method. In addition, 

the numerator is assumed to be a linear polynomial function 

of 𝛺0, i.e., 𝑥𝑖 + 𝑦𝑖2𝜉𝛺0. 

Since a numerical method must be a convergent method, 

the satisfaction of convergence is required for the proposed 

eigen-dependent integration method. Thus, both consistency 

and stability must be satisfied based on the Lax equivalence 

theorem (Lax and Richmyer 1956). Consequently, they can 

be used to determine 𝛽𝑖. Besides, the proof of consistency 

relies upon the determination of the order of accuracy of the 

integration method and it can be determined from its local 

truncation error. Hence, based on the assumed formulation 

of 𝛽𝑖  in Eq. (4), the local truncation error in 

correspondence to Eq. (2) for zero dynamic loading can be 

derived (Belytschko and Hughes 1983) and is found to be: 
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 (5) 

where 𝐵 = 1 − 𝛼 + 𝛾2𝜉𝛺0  is defined. In general, a 

second-order accurate integration method is of interest since 

it can be competitive to the other currently available 

integration methods. Thus, the coefficients of the terms that 

have an order of accuracy less than 2 must be equal to zero. 

As a result, some equalities can be obtained for determining 

i
x  and 𝑦𝑖. One can easily find that 𝑥2 = 1 − 𝛼 and 𝑦2 =

𝛾. In addition, the following equations can be also obtained: 

( )( )

( ) ( )

( ) ( )

1
22

1 2 3

1
21 2 3 1

1 0

1 1 0

1

y

x x x

y y y y

   

  

     

− + − − + =

− − + + − =

+ + − − + = − + −

 (6) 

The first line of this equation will lead to 𝛾 =
1

2
− 𝛼 

after substituting 𝑦2 = 𝛾 into it. On the other hand, the 

adoption of 𝑦1 = 0  can eliminate the term 

−𝑦12𝜉𝛺2𝜉𝛺2𝜉𝜔�̇�𝑖/𝐵𝐷 . Since 𝑦1 = 0 and 𝑦2 = 𝛾 , it is 

straightforward to derive the result of 𝑦3 =
1

2
𝛾 − 𝛽  by 

using the third line of Eq. (5). In addition, after substituting 
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2
1x = −  into the second line of Eq. (6), one has 𝑥1 +

𝑥3 =
1

2
(1 − 𝛼). 

Apparently, the use of local truncation error is unable to 

determine all the coefficients of 𝑥𝑖 and 𝑦𝑖 . However, they 

can be further determined by using the other requirement to 

satisfy unconditional stability. In general, the characteristic 

equation of the amplification matrix A  can be obtained 

from |𝑨 − 𝜆𝑰| = 0. Next, the limiting cases of 𝛺0 → ∞ 

and 𝛺0 → 0 will be examined. Thus, in the limit 𝛺0 → 0, 

the characteristic equation is found to be: 

3 2

1 2 3
0A A A  − + − =  (7) 

where 
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 (8) 

In general, 𝜆3 is a parasitic solution for Eq. (7) and the 

best choice is zero. The third line of this equation reveals 

that the choice of 𝑥1 = 𝛽 will lead to 𝐴3 = 0 and then 

𝜆3 = 0. As a result, 𝑥3 =
1

2
(1 − 𝛼) − 𝛽 is found. Thus, 

i
x  and 

i
y  are completely determined and the coefficients 

of 𝛽1, 𝛽2 and 𝛽3 are found to be: 

( )

( ) ( ) 
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1
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 = − − − −  

 (9) 

On the other hand, after substituting the resultants of 
1

x  

and 𝑥3 into Eq. (8), the characteristic equation of Eq. (7) in 

the limit 𝛺0 → ∞ can be simplified to be: 

2 1
2 1 0

 
  

 

    −
− − + + =    
    

 (10) 

If this characteristic equation has a double root, it is very 

straightforward to obtain 𝛽 =
1

4
(1 − 𝛼)2. In addition, the 

two principal eigenvalues are found to be:  

1,2

1 1
1

2 1

 


 

− +
= − = −

−
 (11) 

Since an unconditional stability requires that |𝜆𝑖| ≤ 1 

for 𝑖 = 1,2,3, thus the stability condition of −∞ ≤ 𝛼 ≤ 0 

must be met. This conclusion can be manifested from Fig. 

1, where the variations of the three eigenvalues with   

are plotted. 

Similarly, the characteristic equation corresponding to 

the limiting case of 𝛺0 → 0 is found to be: 

( )
2

1 0
1


 



 
− + = 

− 
 (12) 

 
Fig. 1 Variations of eigenvalues of 𝑨  with 𝛼  as 𝛺0 

tends to infinity 

 

 

Fig. 2 Variations of eigenvalues of A  with   as 0
  

tends to zero 

 

 

Clearly, the principal roots are 𝜆1,2 = 1 and the spurious 

root is 𝜆3 = −𝛼/(1 − 𝛼). The variations of the three roots 

with 𝛼 are plotted in Fig. 2. This figure implies that the 

stability condition in the limit 𝛺0 → 0  is −∞ ≤ 𝛼 ≤
1

2
. 

Hence, the constraint on 𝛼 for the limiting cases of 𝛺0 →
0  and 𝛺0 → ∞  is combined to be −∞ ≤ 𝛼 ≤ 0 . This 

stability analysis in conjunction with a second order 

accuracy implies the convergence of the proposed family of 

the integration methods based on the Lax equivalence 

theorem (Lax and Richmyer 1956). 

In summary, this proposed family of the eigen-

dependent integration methods can have unconditional 

stability, second-order accuracy, and favorable numerical 

dissipation, which will be shown later, if the following 

relationships are chosen: 

( )
2

1 1
4 20 , 1 and    −   = − = −  (13) 

This equation reveals that only a free parameter is 

involved for the subfamily of the proposed family of eigen-

dependent integration methods. This family of integration 

methods is referred as the Chang Dissipative integration 

Method and is abbreviated as CDM for brevity. It will be 
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analytically shown and numerically corroborated later that 

CDM can be either explicitly or implicitly implemented for 

time integration and it may have different performance in 

the solution of nonlinear systems. Hence, CDM-E and 

CDM-I are adopted to denote Explicit and Implicit 

implementations of CDM, respectively. On the other hand, 

CDM is generally used to denote for both implementations. 

Notice that CDM-E will become the same as that of CDM-I 

for linear elastic systems. 

 

2.2 Determination of 𝑝𝑖+1 
 

It has been shown by Chang (2018c) that an appropriate 

loading-dependent term is needed in the displacement 

and/or velocity difference equations for general SDIMs so 

that an adverse overshoot in high frequency steady-state 

responses can be removed. Hence, the loading-dependent 

term 𝑝𝑖+1 as shown in the second line of Eq. (2) must be 

appropriately determined. The root cause of this unusual 

amplitude growth and a remedy to overcome it has been 

investigated and thus the details will not be elaborated here 

again.  

The technique to determine a loading-dependent term 

involves a local truncation error constructed from a non-

homogeneous equation of motion. For this purpose, the 

local truncation error for CDM is found to be: 
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 (14) 

This equation reveals that CDM can generally have a 

first order accuracy for zero dynamic loading while it can 

have a second order accuracy if 𝛾 =
1

2
− 𝛼 is adopted. On 

the other hand, for nonzero dynamic loading, it generally 

has a first order accuracy even if 𝛾 =
1

2
− 𝛼 is taken. In 

addition, the term 𝛽𝛺0
2�̈�𝑖/𝐷  is the only quadratic error 

term of 𝛺0 as 𝛾 =
1

2
− 𝛼 and it will result in an unusual 

overshoot in high frequency steady-state responses, which 

has been explored in the reference (Chang 2018c). It is 

required to determine an appropriate loading-dependent 

term 𝑝𝑖+1 to eliminate the dominant error term 𝛽𝛺0
2�̈�𝑖/𝐷 

in the local truncation error. In fact, it can be removed by 

using the second derivative of the equation of motion: 

2 2 21

0 0
( ) 2 ( ) ( )mi i i i

u t f t u t u  =  −   +    (15) 

where the quadratic term of 𝛺0 is replaced by zero and 

linear order terms of 𝛺0 . Hence, a high frequency 

overshoot in steady-state responses can be removed. After 

substituting Eq. (15) into Eq. (14), one can choose an 

appropriate 𝑝𝑖+1 to eliminate all the loading terms, whose 

order of accuracy is no more than 2. Consequently, the 

loading-dependent term is found to be: 

( ) ( ) ( )
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1 1
m mi i i i

p t f f t f
D D
 

+ +
=  − +   (16) 

It is evident that the addition of the loading-dependent 

term in the displacement difference equation is intended to 

alter the local truncation error. In fact, Eq. (14) will be 

simplified to be: 
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 (17) 

Clearly, CDM has a second order accuracy if 𝛾 =
1

2
− 𝛼 

is chosen for any viscous damping and any dynamic 

loading. 

A simple example is examined to confirm the 

importance of the inclusion of the term 𝑝𝑖+1  in the 

formulation of CDM. For this purpose, the following 

problem is solved: 

( )2 2

0 0
sinu u t  + =  (18) 

where 
0

  is the natural frequency of the system; and   

is the driving frequency of the sine loading. The theoretical 

solution of this equation is found to be: 

( ) ( )02 2

1
sin sin

1 1

s
u t t

s s
 = −

− −
 (19) 

where 𝑠 = �̄�/𝜔0 is a ratio of frequency. For a small s  or 

a high frequency mode, the response u  is controlled by 

the steady-state response while it is governed by the 

transient response for a large s  or a low frequency mode. 

In these numerical illustrations, 𝜔0 = 103  and �̄� =

0.5 rad/s  are specified and thus 𝑠 = 5 × 10−4 is found. 

Clearly, the solution of 𝑢 is governed by the steady-state 

response since 𝑠 is small. It can be determined from Eq. 

(18) that the asymptotic value of u  is 𝑠𝑖𝑛( �̄�𝑡) in the 

limit 𝑠 → 0. This implies that an accurate solution can be 

obtained if the steady-state response is accurately 

integrated. It has been shown (Chang 2006) that a harmonic 

load can be accurately seized if 𝛥𝑡/�̄� ≤
1

12
 is met, where 

�̄� is the period of the harmonic load. Eq. (18) is solved by 

using CDM with 𝛼 = 0 and −, either without or with 

the loading-dependent term 𝑝𝑖+1. The time step of 𝛥𝑡 = 1𝑠 

is chosen to carry out time integration and it is small 

enough to accurately calculate the steady-state solution 

since the value of /t T  is as small as 1
12

1/ (4 )  . The 

results are plotted in Fig. 3. An overshoot is found in Figs. 

3(a) and 3(b) for both members of CDM if there exists no 

loading-dependent term. Hence, it is affirmed that a high 

frequency overshoot will appear in steady-state responses if  
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Fig. 3 Forced vibration responses of SDOF system for 

using CDM 

 

 
Fig. 4 Variation of spectral radius with 

0
/t T  

 

a loading-dependent term is excluded from the 

displacement difference equation for a SDIM. In contrast, it 

can be seen in Figs. 3(c) and 3(d) that the results obtained 

from both members of CDM with the loading-dependent 

term almost overlap with the exact solution. Consequently, 

it is evident that the loading-dependent term 𝑝𝑖+1 for CDM 

is capable to eliminate the high frequency overshoot in 

steady-state responses. Hence, it is substantiated that an 

appropriate loading-dependent term must be included in the 

difference equation for a SDIM. 

 

 

3. Constraint on free parameter  
 

Numerical properties of CDM can be obtained from the 

eigen-analysis of its amplification matrix. The application 

of CDM to solve the free vibration response to a linear 

elastic single degree of freedom system can be written in a 

recursive matrix form as: 

1i i+
=X AX  (20) 

where 𝑿𝑖+1 = [𝑑𝑖+1 (𝛥𝑡)𝑣𝑖+1 (𝛥𝑡)2𝑎𝑖+1]𝑇  is defined; 

A is an amplification matrix and it is invariant for a 

completely integration procedure for linear elastic systems. 

The explicit expression of A  is found to be: 

( )
( )

11 2 3

2 21
20 22 0

2 2

0 0 0 33

1
1

2

A D D

A
D

A

 

    



 
 

= −  − − + −  
 − −  + 

A  (21) 

where the terms of 𝐴11 = (1 − 𝛽1𝛺0
2)𝐷 , 𝐴22 = 1 − 𝛼 +

(𝛽 − 𝛾)𝛺0
2 and 𝐴33 = − [𝛼 + (1 − 𝛾)2𝜉𝛺0 + (

1

2
− 𝛽) 𝛺0

2] 

are specified. The characteristic equation of A  can be also 

expressed as that shown in Eq. (7) except that the 

coefficients for a general value of 𝛺0 are found to be: 

( )

( )

21
1 0 2 0

21
2 0 2 0

3

1
2 2

1
1 2 2

1

A
D

A
D

A
D

  

  



 = − +  + +  

 = − +  + −  

= −

 (22) 

The constraints on 𝛼, 𝛽 and 𝛾 as shown in Eq. (13) 

are simply derived from the limiting cases of 𝛺0 → 0 and 

𝛺0 → ∞. More rigorous constraints can be further derived if 

a general value of 𝛺0 is considered. For this purpose, the 

eigenvalues of the matrix A  for a general 𝛺0 are found 

and explored. The spectral radius of A  can be determined 

from 𝜌 = 𝑚𝑎𝑥(|𝜆1|, |𝜆2|, |𝜆3|). Variations of spectral 

radii with 𝛥𝑡/𝑇0 are displayed in Fig. 4 for CDM with 

different 𝛼 values. Fig. 4 reveals that the spectral radius is 

always less than or equal to unity for each curve. Thus, it is 

indicated that CDM can have an unconditional stability in 

the range of −∞ ≤ 𝛼 ≤ 0 for a linear elastic system. Each 

curve shows that the spectral radius 𝜌 is 1 for small 𝛥𝑡/𝑇0 

while it will become a certain constant when 𝛥𝑡/𝑇0  is 

large enough, say 100. It is seen that the 𝛼 value in the 

range of −1 ≤ 𝛼 ≤ 0 leads to 0 ≤ 𝜌 ≤ 1 while that in 

−∞ ≤ 𝛼 ≤ −1 it results in −1 ≤ 𝜌 ≤ 0. At first glance, it 

seems that CDM can provide a controllable numerical 

damping as   either in the range of −1 ≤ 𝛼 ≤ 0  or 

−∞ ≤ 𝛼 ≤ −1. However, the curve corresponding to   

in the range of −∞ ≤ 𝛼 ≤ −1, such as 𝛼 = −2 and −5 in 

Fig. 4, exhibits an abrupt change of slope. Consequently, it 

is of interest further study the cause of this abrupt change.  

Instead of plotting the variation of spectral radius with 

0
/t T , the variations of the real and imaginary parts of each 

principal root with 𝛥𝑡/𝑇0 for CDM are plotted in Fig. 5, 

where the calculated results for 𝛼 = 0, −5 and −1 are 

shown in Figs. 5(a) and 5(b) while those for 𝛼 = −2 and 

−5 are plotted in Figs. 5(c) and 5(d). It is seen in Fig. 5(b) 

that the imaginary part of the two principal roots is nonzero 

for CDM with 𝛼 = 0, −5 and −1.0. Thus, these members 

of CDM can have two complex conjugate eigenvalues for 

any 𝛥𝑡/𝑇0 and they will lead to an oscillatory response. 

On the other hand, Fig. 5(d) reveals that the imaginary part 

of the two principal roots will become zero after a certain 

value of 𝛥𝑡/𝑇0 for CDM with 𝛼 = −2 and −5. Hence, it 

is implied that the two complex conjugate eigenvalues will 

bifurcate into two distinct, real eigenvalues and they will 

result in a response in an exponential decay. Hence, it can 

be drawn that CDM with a 𝛼 value in −1 ≤ 𝛼 ≤ 0 is 

preferred. As a result, Eq. (13) is modified to be: 
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Fig. 5 Principal roots of CDM-E with different   values  

 

 
Fig. 6 Comparisons of numerical properties between HHT 

and CDM 

 

 

( )
2

1 1
4 21 0 , 1 and    −   = − = −  (23) 

The relationships defined in this equation for the 

parameters of 𝛼,𝛽, 𝛾 are strongly recommended for using 

CDM in practical applications.  

It is of great interest to compare the numerical properties 

of CDM to those of the conventional dissipative integration 

method, such as HHT, since CDM is a dissipative 

integration method. For this purpose, the variations of 

spectral radius, relative period error and numerical damping 

ratio versus 
0

/t T  are plotted in Fig. 6. Notice that −
1

3
≤

𝛼 ≤ 0 is in correspondence to the spectral radius of 
1

2
≤

𝜌∞ ≤ 1 in the limit 𝛺0 → ∞ for HHT while −1 ≤ 𝛼 ≤ 0 

corresponds to 0 ≤ 𝜌∞ ≤ 1 for CDM. It is found that the 

member of 𝛼 = 0 for HHT and CDM has a unit spectral 

radius, zero numerical damping and the smallest relative 

period error since this degenerate member of the both 

integration methods is the constant average acceleration 

method. HHT with 𝛼 = −
1

3
 and CDM with 𝛼 = −1 

possess the largest high frequency numerical damping of 

each integration method. In general, each curve can have a 

unit spectral radius for small 𝛥𝑡/𝑇0 ; then it decreases 

gradually; and finally it becomes a constant value of 𝜌∞ =
0.5 for HHT and 𝜌∞ = 0 for CDM as can be seen in Fig. 

6(a). Apparently, both integration methods can have desired 

numerical damping. In addition, CDM can have more high 

frequency numerical damping in contrast to HHT as shown 

in Fig. 6(c). It is revealed by Fig. 6(b) that the member of 

𝛼 = 0  for both integration methods has the smallest 

relative period error since it possesses no numerical 

damping. In general, a period distortion will increase with 

the increase of numerical damping for each integration 

method. 
 

 

4. Enlargement of stability range 
 

After comparing the characteristic equation of CDM to 

that of the WBZ- method, it is found that they possess the 

same characteristic equation for linear elastic systems. 

Thus, the numerical properties of CDM will be the same as 

those of the WBZ- method if these properties are derived 

from the same characteristic equation. Although CDM can 

have the same numerical properties as those of the WBZ- 

method for linear elastic systems it is of interest to further 

investigate its numerical properties in the solution of 

nonlinear systems. A parameter, which is referred as the 

instantaneous degree of nonlinearity, has been introduced 

for monitoring the stiffness change for a nonlinear system 

(Chang 2007). In general, it is the ratio of the stiffness at the 

end of the (i+1)-th time step over the initial stiffness and is 

1 1 0
/

i i
k k

+ +
= . Thus, 𝛿𝑖+1 = 1 implies that the instantaneous 

stiffness at the end of the (i+1)-th time step is equal to the 

initial stiffness; the stiffness hardening 𝛿𝑖+1 > 1 reveals 

that the instantaneous stiffness is larger than the initial 

stiffness at the end of the (i+1)-th time step; and it is 

revealed by the stiffness softening 0 < 𝛿𝑖+1 < 1 that the 

instantaneous stiffness is less than the initial stiffness. It has 

been found (Chang 2007) that an integration method 

derived from an eigen-based theory generally have 

unconditional stability as 
1

1
i


+
  and only has conditional 

stability as 𝛿𝑖+1 > 1. It will be shown later that CDM-E 

also shows this particular stability property. Hence, its 

application to time integration might be inconvenient or 

limited due to conditional stability for stiffness hardening 

systems. 

A methodology of using a stability amplification factor 

𝜎 to virtually enlarge an initial stiffness for a SDIM has 
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been applied to improve its stability property (Chang 

2015c). This can be explained next. In general, CDM-E can 

have an unconditional stability as 𝛿𝑖+1 ≤ 1. Thus, it is 

implied that an unconditional stability can be obtained if the 

instantaneous generalized stiffness 𝑘𝑖+1 is equal to or less 

than the initial generalized stiffness 𝑘0, i.e., 𝛿𝑖+1 ≤ 1. This 

implies that an unconditional stability range will be altered 

if the initial generalized stiffness is modified from 𝑘0 to 

𝜎𝑘0 . In fact, after this modification, an unconditional 

stability range will be altered from 𝑘𝑖+1 ≤ 𝑘0 to 𝑘𝑖+1 ≤
𝜎𝑘0. Consequently, an unconditional stability range can be 

arbitrarily enlarged if 𝜎 is chosen to be greater than 1. 

Whereas, it will be shrunk if 0 < 𝜎 < 1 is adopted. 

Applying this methodology to amplify an unconditional 

stability range for CDM-E, the only change of its 

formulation is to modify the denominator of the coefficients 

𝛽1  to 𝛽3  from 𝐷 = 1 − 𝛼 + 2𝛾𝜉𝛺0 + 𝛽𝛺0
2  to �̄� = 1 −

𝛼 + 2𝛾𝜉𝛺0 + 𝛽𝜎𝛺0
2. In addition, the numerator 𝑝𝑖+1 must 

be also modified to be: 

( ) ( ) ( )
2 2

1 1
1 1

1 1
i m i i m i

p t f f t f
D D
 

+ +
=  − +   (24) 

Apparently, this loading-dependent term is derived from 

the same way as that to derive the one shown in Eq. (15) by 

using �̄�  to replace 𝐷 . Thus, the order of accuracy is 

unaffected by the addition of the amplification factor. There 

will be no change in the formulation of CDM-E if 1 =  is 

adopted. Meanwhile, the numerical properties of CDM-E 

will be altered for 1  . Thus, the nonlinear performance 

of CDM-E must be further assessed. For a nonlinear 

system, its stiffness is no longer a constant and might vary 

for each time step and thus its amplification matrix A  will 

vary accordingly. Thus, the amplification matrix A  in Eq. 

(21) must be replaced by 
1i+

A , which is the amplification 

matrix for the (i+1)-th time step. As a result, the explicit 

expression of 
1i+

A  is found to be: 

( )

( )

2

1 2 1 3

1

1 2

1 1 1
1 1

1 1 1

i i

i
x y z

B B B

x y z
B B B

    

    



+

 
 −  − 
 
 = − − − − +
 
 
 − − − +
  

A  (25) 

where 𝑥 = (1 − 𝛽1𝛺𝑖
2)𝛺𝑖+1

2 , 𝑦 = 2𝜉𝛺0 + 𝛽2𝛺𝑖+1
2 −

𝛽12𝜉𝛺𝑖𝛺𝑖+1
2 ,  𝑧 = (1 − 𝛾)2𝜉𝛺0 + 𝛽3𝛺𝑖+1

2  and 𝐵 = 1 −
𝛼 + 𝛾2𝜉𝛺𝑖+1 are specified for nonlinear system. Besides, 

the denominator of 
1

  to 
3

  is also modified to be �̄� if 

a stability amplification factor is involved. Notice that 

𝛺𝑖
2 = 𝛿𝑖𝛺0

2 and 𝛺𝑖+1
2 = 𝛿𝑖+1𝛺0

2. In addition, 𝛿𝑖 = 𝛿𝑖+1 is 

also assumed in the subsequent study of nonlinear 

properties since the difference between 𝛿𝑖  and 𝛿𝑖+1  is 

small for the two consecutive time steps. 

To substantiate that a stability amplification factor   

can effectively enlarge an unconditional stability range, the 

variation of the upper stability limit with the instantaneous 

degree of nonlinearity is plotted in Fig. 7 for both 0 =  

and −0.5. Since the upper stability limit will be infinite for 

unconditional stability, a part of the curve disappears from 

 
Fig. 7 Variation of upper stability limit with 

1i


+
 for 

0 =  and 0.5−   
 

 
Fig. 8 Variation of spectral radius with 𝛥𝑡/𝑇0  for 

different 𝛼 and 𝛿𝑖+1 values  
 

 

this figure. Fig. 7(a) shows that CDM-E with 𝛼 = 0 can 

possess unconditional stability in the range of 
1i

 
+
  for 

𝜎 = 1, 2 and 3 while it will become conditionally stable in 

the range of 𝛿𝑖+1 > 𝜎 for different viscous damping ratios 

of 𝜉 = 0, 0.1 and 0.2. It is also found that the upper 

stability limit in the conditionally stable range will decrease 

with the increase of 𝛿𝑖+1. A very similar phenomenon is 

also found in Fig. 7(b) for 𝛼 = −0.5. However, it is seen 

that the stability amplification factor for CDM with 

0.5 = − can extend an unconditional stability range to be 

considerably larger than that of 𝛿𝑖+1 ≤ 𝜎 for CDM with 

0 = . In fact, it can be written as 𝛿𝑖+1 ≤ �̄�, where �̄� ≥ 𝜎. 

Thus, it is affirmed that the stability amplification factor   

can effectively alter an unconditional stability range from 

𝛿𝑖+1 ≤ 1 to 𝛿𝑖+1 ≤ 𝜎; and a large   will lead to a large 

unconditional stability range. 

As a summary, the final formulation of CDM can be, in 

general, expressed as: 

( )

( ) ( )( )

( )

( ) ( )

1 1 1 1

2

1 1 2 1

2

3 1

1 1

1

1 2

    +

1

i i i i i

i i i i i

i i

i i i i

ma ma cv kd f

d d t v

t a p

v v t a a

 

   



 

+ + + +

+

+

+ +

− + + + =

= −  + −  

+ 

 = +  − + 

 (26) 
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where  

( )

( ) ( ) 

( ) ( ) ( )

1 2 0

1 1
2 23 0

2 2
1 1

1 1

1
, 1 2

1
1 2

1 1
m mi i i i

D D

D

p t f f t f
D D


    

     

 
+ +

 = = − +  

 = − − − −  

=  − + 

 (27) 

The choices of the values 𝛼, 𝛽 and 𝛾 for conducting 

time integration are recommended in Eq. (23).  

 

 

5. Numerical properties 
 

The numerical properties of CDM-E will be altered after 

introducing 
1i


+

 and   into its original formulation. It is 

seen that the instantaneous stiffness of a real structure is 

very rare to be larger than twice of that of the initial 

stiffness, and thus 
1

2
i


+
  is of practical significance. On 

the other hand, the choice of 2 =  for CDM-E can have 

an unconditional stability range of 
1

2
i


+
 . Hence, 2 =  

is taken in the subsequent study. In the basic analysis of a 

nonlinear system, the Von Neuman assumption is adopted 

and is conducted only for the (i+1)-th time step but not for a 

whole integration procedure. However, this analysis can 

still provide a valuable information since an integration 

procedure consists of each time step. The general formulas 

for computing the relative period error and numerical 

damping ratio for nonlinear systems can be found in the 

references (Chang 2010, 2014a, 2015a) and will not be 

shown herein for brevity. 

 
5.1 Stability 
 

The variation of the spectral radius versus 𝛥𝑡/𝑇0  is 

shown in Fig. 8. In Fig. 8(a), the spectral radius is generally 

no more than 1 for 𝛿𝑖+1 ≤ 1 and finally approaches a 

certain constant smaller than 1 while it will become greater 

than 1 after a certain value of 𝛥𝑡/𝑇0  for 𝛿𝑖+1 > 1 and 

finally tends to a certain constant larger than 1. Whereas, in 

Fig. 8(b), the spectral radius is always less than or equal to 

1 as 𝛿𝑖+1 ≤ 2 . This is consistent with the analytical 

prediction that the application of 𝜎 to CDM-E will enlarge 

the unconditional stability range from 𝛿𝑖+1 ≤ 1 to 𝛿𝑖+1 ≤
𝜎. In general, each curve, except for the cases of 1 =  

with 𝛿𝑖+1 = 2, has a unit spectral radius for small 𝛥𝑡/𝑇0 

while it will decrease gradually and finally tend to a certain 

constant smaller than 1. This indicates that CDM-E can 

have desired numerical dissipation. 

 
5.2 Period distortion and numerical damping 
 

The variations of relative period errors and numerical 

damping ratios with 𝛥𝑡/𝑇0 for 𝜎 = 1 and 2 are plotted in 

Fig. 9. In general, the period is elongated for CDM-E and 

increases with the increase of 𝛥𝑡/𝑇0 for the given   

and𝛿𝑖+1 values. It is revealed by either Fig. 9(a) or 9(c) that 

the three curves corresponding to 𝛿𝑖+1 = 0.5, 1 and 2 

 
Fig. 9 Variation of relative period error and numerical 

damping with 𝛥𝑡/𝑇0 for different 𝛼 and 𝛿𝑖+1  

 

 

seemingly cluster together for a given 𝛼 value. It is also 

seen that the relative period error affected by 𝛼 is more 

significant than that by 𝛿𝑖+1. Notice that the decrease of 𝛼 

or 𝛿𝑖+1 will increase the period distortion. Comparing Figs. 

9(a) to 9(c) for each curve, correspondingly, the relative 

period error for 𝜎 = 2 is, in general, larger than that of 

𝜎 = 1 for a small value of 𝛥𝑡/𝑇0. In addition, numerical 

experiments also reveal that the increase of 𝜎 leads to the 

increase of period distortion for a small 𝛥𝑡/𝑇0 . Thus, 

although a large value of   can effectively enlarge an 

unconditional stability range from 𝛿𝑖+1 ≤ 1 to 𝛿𝑖+1 ≤ 𝜎, 

it causes more period distortion. In general, the relative 

period error is small for 
0

/ 0.05t T   in both Figs. 9(a) 

and 9(c). Hence, CDM-E with either 𝜎 = 1 or 𝜎 = 2 can 

give an acceptable solution with comparable accuracy for a 

nonlinear system, if 0
/ 0.05t T   is satisfied for the modes 

of interest. As a result, the choice of 2 =  for CDM-E is 

recommended for practical applications based on both 

stability and accuracy considerations since CDM-E with 

𝜎 = 2 can have an unconditional stability range of 
1

2
i


+
  

and a negligible period distortion as 𝛥𝑡/𝑇0 ≤ 0.05. On the 

other hand, the variations of numerical damping ratios with 

𝛥𝑡/𝑇0 for CDM-E with 𝜎 = 1 and 2 are plotted in Figs. 

9(b) and 9(d). In general, zero numerical damping can be 

achieved for 𝛼 = 0 for any 𝛿𝑖+1 for both 𝜎 = 1 and 2. 

Whereas, the numerical damping ratio generally increases 

with the increasing value of 𝛥𝑡/𝑇0 . In addition, it also 

increases with decreasing 𝜎  for a given 𝛥𝑡/𝑇0 . As a 

summary, a controllable numerical damping property can be 

generally obtained for CDM-E with an appropriate value of 

𝜎 ≥ 1 and the choice of −1 ≤ 𝛼 ≤ 0 if 𝛿𝑖+1 ≤ 𝜎 is met 

during the integration procedure.  
 
5.3 Overshoot 
 

An unusual overshoot, which shows an amplitude 

growth in contrast to an exact solution in the early transient 

response, has been found in an integration method although 

it can have unconditional stability (Goudreau and Taylor 

1972). Hence, this property must be assessed in developing  
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Fig. 10 Overshoot of CDM-E for linear elastic system  
 

 

an integration method. The overshooting potential of an 

integration method can be revealed by computing the 

discrete displacement and velocity in terms of initial 

conditions. The response behavior in the limit 
0

 → can 

give an indication of the behavior of the high frequency 

modes (Hilber and Hughes 1978). As a result, the following 

equations can be obtained in the limiting case of 
0

 → : 

( )1
2

1

1 0 0

1
1

1 1
2

i i

i i i

d d

v d v





 


 

+

+

 −
 − 
  

   
 −  + −   
   

 (28) 

No overshoot in displacement is seen in the first line of 

this equation for CDM-E while a tendency to overshoot 

linearly in 𝛺0  in the velocity equation is found in the 

second line due to the initial displacement term. 

An example is examined to corroborate the analytical 

prediction of overshooting behavior for CDM-E. In fact, the 

free vibration response to the initial conditions of 𝑑0 = 1 

and 𝑣0 = 0  for a single degree of freedom system is 

solved. A time step of 𝛥𝑡 = 10𝑇0 is used for each dynamic 

analysis. The calculated results are plotted in Fig. 10. 

Notice that the velocity term is normalized by the initial 

natural frequency of the system in order to have the same 

unit as displacement. Figs. 10(a) and 10(c) show that there 

is no overshoot in the displacement response for CDM-E 

with 𝛼 = 0 , −0.5 and −1 and for both 𝜎 = 1  and 2. 

Whereas, a significant overshoot in velocity is found in 

Figs. 10(b) and 10(d). Notice that the amount of overshoot 

in velocity for 2 =  is greater than that of 1 = , which 

is found after comparing Figs. 10(b) to 10(d). Hence, the 

overshoot phenomena both in displacement and velocity for 

CDM-E with 0 = , −0.5 and −1 are in good agreement 

with the analytical results shown in Eq. (28). 
 

 

6. Conversion  
 

After the assessments of the numerical properties of the 

family of eigen-dependent integration methods for CDM-E, 

it is affirmed that it can accurately integrate low frequency  

 

Fig. 11 Comparisons of numerical properties between 

CDM-E and CDM-I  

 

 

modes while there is no instability for high frequency 

modes. Thus, it can satisfy the requirement for developing 

an eigen-dependent integration method according to an 

eigen-based theory. Conceptually, each modal equation of 

motion can be solved by an eigen-dependent integration 

method for a given natural frequency. However, it is 

impractical to compute each modal response and then to use 

a mode superposition method to obtain a total response. 

Alternatively, one can apply a reverse procedure of an 

eigen-decomposition technique to convert all the eigen-

dependent integration methods, which correspond to all the 

eigenmodes of the coupled system, into a SDIM (Chang 

2019). As a result, the family of SDIMs for CDM-E can be 

expressed as: 
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 (29) 

where M  is the mass matrix of the structural system; and 

1i+
C  and 

1i+
K  are the viscous damping coefficient and 

stiffness matrices, respectively, at the end of the (i+1)-th 

time step. In addition, 
i

d , 
i

v , 
i

a  and 
i

f  are the nodal 

vectors of the displacement, velocity, acceleration and 

external force, respectively. The coefficient matrices of 1
B  

to 3
B  and the loading-dependent vector 1i+

p  are structure 

dependent and are found to be: 

( ) ( )

( ) ( )( ) 

( ) ( ) ( )

( ) ( ) ( )

1

1

1

2 0

1 1 1
3 2 2 0

2 21

1 1

2

0 0

1

1

1

i i i i

t

t

t t

t t



 

   

 

  

−

−

−

−

+ +

=

 = − +  

 = − − − −  

 =  − + 
 

= − +  + 

B D

B D M C

B D M C

p D f f f

D M C K

 
(30) 

where 0
K  is the initial tangent stiffness matrix and the 

stiffness matrix 1i+
K  at the (i+1)-th time step in the first 
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line of Eq. (29) is generally different from 
0

K  for a 

nonlinear system. Notice that the restoring force vector 

𝒓𝑖+1 is often introduced to replace 
1 1i i+ +

K d  in the step-by-

step solution procedure. Since the coefficient matrices of 

1
B  to 

3
B  and the loading-dependent vector 

1i+
p  are 

functions of 𝑴, 𝑪0 and 
0

K  as well as the step size, thus 

CDM-E becomes structure dependent after this 

transformation and is no longer eigen dependent.  

 

 

7. Implementation 
 

Unlike convention1al integration methods, a SDIM can 

be either an explicitly or implicitly implemented. For 

example, CDM can have an explicit implementation if the 

structure-dependent coefficients are kept invariant during a 

complete integration procedure. In contrast, it can be also 

implicitly implemented if these structure-dependent 

coefficients are updated with the change of the structural 

properties for each time step, where current structural 

properties are adopted to determine the structure-dependent 

coefficients. This can be explained next. 

The second line of Eq. (29) can be applied to determine 

the displacement vector 
1i+

d  and this solution procedure is 

numerically equivalent to solve the equation of: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )( ) ( )

2 2

1

0

2
1 1
2 2 0

1

1

i i i i i

i

i

t t

t t

t t

 

 

   

+
− = −  − 

 + − +   

 + − − − −   

D d d r C v

M C v

M C a

 (31) 

After determining the displacement vector 
1i+

d , the 

restoring force vector 1i+
r  in correspondence to 1i+

d  can 

be obtained from an assumed force-displacement 

relationship. Next, the velocity vector can be obtained from 

substituting the first line into the third line of Eq. (29) and is 

numerically equivalent to solve: 

( ) ( ) ( )( ) ( )

( )( )

0 1 1 1
1 1

1

i i i i

i

t t

t

   

 

+ + +
 − +  =  − + − 

+ − − 

M C v f r Mv

Ma
 (32) 

Finally, the equation of motion can be applied to 

determine the acceleration vector 
1i+

a  and can be 

alternatively written as: 

( ) 1 1 0 1 1
1

i i i i i
 

+ + + +
− = − − −Ma f Ma C v r  (33) 

A direct elimination method is generally adopted to 

solve Eqs. (31), (32) and (33). However, there is no need to 

employ a direct elimination method to solve Eq. (33) if M  

is a diagonal matrix. Similarly, Eq. (32) will involve no 

direct elimination methods if M  is a diagonal matrix in 

addition to zero damping matrix. A direct elimination 

method consists of a triangulation and a substitution; and a 

triangulation consumes much more time than for a 

substitution. Notice that the triangulation of the matrix of 

�̄� , (1 − 𝛼)𝑴 + 𝛾(𝛥𝑡)𝑪0  or (1 )− M  is needed to be 

done only once at the beginning of time integration since 

they remain invariant for a whole step-by-step integration 

procedure. This explains why a SDIM can be 

computationally efficient for the nonlinear dynamic analysis 

of inertial problems. 

Apparently, Eqs. (31) and (32) will become nonlinear 

equations if the initial structural properties adopted to 

determine the structure-dependent coefficients 
1

B  to 
3

B  

and the loading-dependent vector 
1i+

p  are replaced by the 

updated structural properties for the current time step. As a 

result, both equations must be solved iteratively and thus an 

implicit implementation is required. Clearly, the 

performance of the implicit implementation of CDM might 

be drastically different from that of the explicit 

implementation of CDM for nonlinear systems. Since an 

implicit implementation will involve nonlinear iterations, it 

is time consuming in contrast to an explicit implementation. 

In addition to computational efficiency, stability and 

accuracy are also closely related to the performance of 

CDM-I. It is straightforward to prove that CDM-I with 𝜎 =
1 can have an unconditional stability for any structural 

systems and any viscous damping if a perfect iteration is 

achieved for each time step. Hence, it is evident that there is 

no need to apply a stability amplification factor to enlarge 

an unconditional stability range for CDM-I. On the other 

hand, to examine the difference in numerical accuracy 

between explicit and implicit implementations, variations of 

relative period errors with 𝛥𝑡/𝑇0 are plotted in Fig. 11.  

It is seen in Figs. 11(a) and (c) that CDM-I and CDM-E 

generally has a small period distortion as 
0

/ 0.05t T   

and the difference between both integration methods is not 

very significant. This difference originates from the 

difference in denominator of 
1

B  to 
3

B  and 
1i+

p . In fact, 

for CDM-E, the denominator is 1 − 𝛼 + 𝛾2𝜉𝛺0 + 𝛽𝛺0
2 

while for CDM-I it becomes 1 − 𝛼 + 𝛾2𝜉𝛺𝑖+1 + 𝛽𝛺𝑖+1
2 . 

Since 𝛺𝑖+1 is close to 𝛺0 and both are very small for low 

frequency modes, thus, the denominator is dominated by 

1 −  and then a small difference in period distortion is 

expected. On the other hand, a large difference will be 

found for high frequency modes between the two different 

implementations. However, there is no attempt to accurately 

integrate high frequency modes since they contribute 

insignificantly to a total response for an inertial problem. 

Notice that the only requirement for high frequency modes 

is no numerical instability. Besides, it is found that CDM-E 

shows less period distortion than that of CDM-I for stiffness 

softening systems while contrary conclusions are found for 

stiffness hardening systems. Notice that the curves for 

linear elastic systems coincided together for CDM-E and 

CDM-I. Fig. 11(b) reveals that CDM-E and CDM-I have no 

numerical damping for 𝛼 = 0. Whereas, for 𝛼 = −0.5 , 

they can have favorable numerical damping as shown in 

Fig. 11(d). 

Although CDM-E cannot have an unconditional stability 

for any structural systems, i.e., any 𝛿𝑖+1 value, it can have 

an unconditional stability range of 𝛿𝑖+1 ≤ 2, which is large 

enough for practical applications. Meanwhile, it can have a 

comparable accuracy as that of CDM-I. The most important 

characteristic is that it can combine unconditional stability 

and explicit formulation together at the same time and thus 

CDM-E is more computationally efficient than for CDM-I 
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Table 1 Four specific members of CDM 

Member α σ 

Unconditional Stability 

Range Numerical 

Dissipation 
CDM-E CDM-I 

CDM1 0.0 1 𝛿𝑖+1 ≤ 1 0 < 𝛿𝑖+1 < ∞ No 

CDM2 −0.5 1 𝛿𝑖+1 ≤ 1 0 < 𝛿𝑖+1 < ∞ Yes 

CDM3 0.0 2 𝛿𝑖+1 ≤ 2 NA No 

CDM4 −0.5 2 𝛿𝑖+1 ≤ 2 NA Yes 

 

 

due to no nonlinear iterations for each time step. As a result, 

an explicit implementation of CDM is preferred over its 

implicit implementation. Hence, an explicit implementation 

of SDIMs is very promising for solving inertial problems. 

The application of the initial structural properties to replace 

the current structural properties for determining structure-

dependent coefficients thoroughly explains why SDIMs can 

effectively overcome the Dahlquist barrier (Dahlquist 1956, 

1963), which has been claimed by Dahlquist that no explicit 

method among the linear multi-step methods is absolutely 

stable. 

 

 

8. Numerical examples 
 

An application of CDM to solve some structural 

dynamic problems will be conducted in the following 

numerical study. The numerical examples are intentionally 

designed to affirm the numerical properties of CDM, such 

as the unconditional stability, controllable numerical 

dissipation and comparable accuracy in contrast to the 

conventional integration methods with a second-order 

accuracy, such as the constant average acceleration method 

(AAM) and WBZ- method. Besides, the computational 

efficiency of CDM-E and CDM-I is also explored and is 

compared to that of the WBZ- method. The specified 

values of   and   corresponding to CDM1 to CDM4 

are defined in Table 1 for brevity. In addition, their 

unconditional stability range and the numerical damping 

property are also shown in this table for comparison. There 

is no need to define CDM3-I and CDM4-I since an implicit 

implementation of CDM can have an unconditional stability 

for any 0 < 𝛿𝑖+1 < ∞ and thus 𝜎 = 1 is always taken. 

 

8.1 Duffing equation 
 

The Duffing equation is generally a non-linear second-

order differential equation used to model certain damped 

and driven oscillators and thus is chosen for this study. It 

can generally describe the motion of a damped oscillator 

with a more complex potential than in simple harmonic 

motion. A simplified Duffing equation is considered and is:  

( ) ( )21 cosu u u t+ + =  (34) 

The stiffness of the system will be hardening after it 

deforms. The initial structural period is found to be 2 s  

for the system. The driving frequency �̄� is taken as 0.2

rad/s  and a zero initial condition is assumed. 

Numerical solutions of the Duffing equation are shown 

in Fig. 12(a) and the time histories of instantaneous degree 

of nonlinearity are plotted in Fig. 12(b). Notice that AAM 

with 𝛥𝑡 = 0.01𝑠  is used to solve this equation and is 

considered as a reference solution for comparison. 

Meanwhile, AAM, CDM1-I and CDM3-E with 0.2st =

are also adopted to calculate the numerical solutions. Since 

the Duffing equation is only a single degree of freedom 

system, there is no high frequency mode and thus CDM1-I 

and CDM3-E are chosen to compute the responses. Fig. 

12(a) shows that the results obtained from CDM1-I and 

CDM3-E are reliable and overlap the results obtained from 

AAM, which is a very commonly used implicit integration 

method. Besides, it is revealed by Fig. 12(b) that the system 

is encountered an instantaneous stiffness hardening case for 

each time step since 𝛿𝑖  varies between 1 and 1.75. 

Consequently, it can be concluded that CDM3-E can have a 

comparable accuracy with that of AAM and CDM1-I for 

such a highly nonlinear stiffness hardening system although 

it does not involve any nonlinear iterations for each time 

step. 
 

8.2 An elastic pendulum 
 

An elastic pendulum, as shown in Fig. 13, is considered. 

The instantaneous length of the pendulum can be calculated 

by 𝑒 = √(𝑢1)2 + (𝑢2)2  and an unstretched pendulum 

length is 
0

e . The tangent stiffness matrix for the system 

(Geradin and Rixen 1994) can be expressed as: 

2

0 0 1 0 1 23 3

2

0 1 2 0 0 23 3

1 1 1
1

1 1 1
1

e e u e u u
e e e

k

e u u e e u
e e e

 
− + 

=  
 − +
  

K  (35) 

 

 
Fig. 12 Numerical solutions for Duffing equation  

 

 
Fig. 13 A simple elastic pendulum 
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Fig. 14 Displacement response to a simple elastic pendulum  

 
 
In this example 𝑚 = 1 kg , 𝑘 = 100 N/m , 𝑒0 = 1 m 

and 𝑔 = 10 m/s2  are taken. A highly nonlinear system 

can be simulated if the elastic pendulum has a large 

deformation in its axial direction. The initial conditions of 

𝑢1(0) = 1.2 m , 𝑢2(0) = 0 , �̇�1(0) = 0  and �̇�2(0) = 0 

are taken for each analysis. The result obtained from NEM 

with 0.0001st =  is considered as a reference solution. In 

addition, WBZ with 𝛼 = −
1

2
, CDM2-I and CDM2-E are 

also used to calculate the responses by using 𝛥𝑡 = 0.02𝑠s 

and the results are plotted in Fig. 14. Both CDM2-I and 

CDM2-E can have comparable results as those obtained 

from WBZ. Clearly, either explicit or implicit 

implementation of CDM can provide reliable solutions for 

the highly nonlinear system. 

 

8.3 A five-story building 
 

A 5-story building is considered for illustrating that 

CDM can have high-frequency numerical damping. Hence, 

this building is intentionally designated to have a relative 

high frequency mode. On the other hand, the stiffness of 

each story consists of a linear part and a nonlinear part so 

that different stiffness types can be simulated. A constant 

stiffness is taken for the linear part and the nonlinear part is 

assumed to be a function of the story drift. Consequently, 

the explicit expression of the stiffness for each story is: 

( )0
1

j j j j
k k s u

−
= +   (36) 

where 𝑘0−𝑗 denotes the initial stiffness, 𝑠𝑗 is a constant 

and 𝛥𝑢𝑗 = 𝑢𝑗 − 𝑢𝑗−1 for 𝑗 = 1,2, ⋯ ,5 is a story drift at 

the 𝑗 − 𝑡ℎ  story. The shear-beam type building and its 

vibration properties are shown in Fig. 15. As a result, the 

initial natural frequencies of the lowest and highest modes 

for this building are found to be 6.16 and 2010 rad/s . 

In Eq. (36), the instantaneous stiffness 𝑘𝑗 can be less 

than, equal to or greater than the initial stiffness if 𝑠𝑗 is 

chosen to be a negative, zero or positive value, respectively. 

In this study, two different types of stiffness properties are 

simulated for the 5-story building by means of using 

different 𝑠𝑗 values. The simulation details are: 

B1 𝑠𝑗 = −1.0 a system with 𝛿𝑖+1 < 1 for each mode 

B2 𝑠𝑗 =   1.0 a system with 𝛿𝑖+1 > 1 for each mode 

The free vibration responses to B1 and B2 are computed 

and are used to examine the effectiveness of the high-

frequency numerical dissipation for CDM. The following 

two initial conditions are considered: 

I1  
1

(0) /10 and (0)= =u u 0    

I2  ( )1 5
(0) /10 and (0) = + =u u 0    

where 
1
  and 

5
  are shown in Fig. 15. Notice that I1 only 

contains the pure first mode while I2 consists of the first and 

fifth modes with equal weight. 
 

 
Fig. 15 A 5-story building and its vibration properties 

 

 
Fig. 16 Free vibration responses to B1 (a stiffness 

softening system)  

 
Fig. 17 Free vibration responses to B2 (a stiffness 

hardening system) 
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Fig. 18 A n-degree-of-freedom spring-mass system  

 

Table 2 The lowest and highest natural frequencies and time 

integration data 

n 𝜔0
(1)

(𝑟𝑎𝑑/𝑠) 𝜔0
(𝑛)

(𝑟𝑎𝑑/𝑠) ag(m/s2) 𝛥𝑡(𝑠) 𝑡𝑑  (𝑠) 𝑡𝑑/𝛥𝑡 

200 7.83 2000.00 12.5 0.02 4 200 

400 3.92 2000.00 3.00 0.04 8 200 

800 1.96 2000.00 0.75 0.08 16 200 

1600 0.98 2000.00 0.20 0.16 32 200 

 

 

At first, NEM with 0.0005st =  is applied to 

calculate the free vibration response to I1 and the calculated 

result is considered as a reference solution. This small step 

size is chosen to meet the upper stability limit 𝜔0
(5)

(𝛥𝑡) =

1.01 < 2 and thus a stable solution can be achieved. Notice 

that this time step is also small enough to accurately 

integrate the first mode. Meanwhile, the free vibration 

responses to I2 are computed by CDM1-E to CDM4-E and 

CDM1-I to CDM2-I with 0.02st =  for both B1 and B2. 

Notice that CDM1-E, CDM1-I and CDM3-E possess no 

numerical damping while CDM2-E, CDM2-I and CDM4-E 

can have high frequency numerical damping. The calculated 

results for B1 and B2 are shown in Figs.16 and 16, 

respectively. It is revealed by 
5
 , as shown in Fig.15, that 

the fifth mode only significantly contributes to the 3rd story 

while for the other stories its contribution is insignificant. 

This implies that the fifth modal response will only 

significantly appear in the displacement response of the 3rd 

story. Hence, the displacement response of the 3rd story is 

plotted in each plot of the both figures. In the following 

discussions, the response contribution from 𝜙5/10 is treat 

as the source of the spurious oscillations and the period of 

this mode will be significantly distorted due to a relatively 

large value of 𝛥𝑡/𝑇0
(5)

= 6.4, where 𝑇0
(5)

 is the structural 

period of the 5th mode. 

 

8.4 A spring-mass system 
 

Since CDM can be explicitly and implicitly 

implemented, it is of great interest to explore the 

computational efficiency between the two implementations. 

For this purpose, a system with a large degree of freedom 

will be considered. Besides, the system must be easily 

constructed and the number of the degree of freedom can be 

easily specified. As a result, a spring-mass system is 

designed and is shown in Fig. 18, where the spring stiffness 

𝑘𝑖  will decrease after the system deforms due to the 

nonlinear term −1010√|𝑢𝑖 − 𝑢𝑖−1|. Thus, the case of 𝛿𝑖 ≤
1 is found for each mode at each time step.  

Four different n  values of 200, 400, 800 and 1600 are 

specified and thus the four systems with the degrees of 

freedom of 200, 400, 800 and 1600 are simulated. Each 

system is excited by a constant acceleration at its base. The 

choice of a constant load is intended to avoid the difficulty 

to faithfully seize the dynamic loading. The lowest and 

highest initial natural frequencies and the time integration 

data for each system are listed in Table 2. A total number of 

200 steps is performed for each analysis. Four integration 

methods of NEM, WBZ with 𝛼 = −0.5 , CDM2-I and 

CDM2-E are used to calculate the responses. Since NEM is 

conditionally stable, the time step must be chosen to meet 

the conditional stability. As a result, 𝛥𝑡 = 0.001𝑠  is 

chosen for each system since the highest initial natural 

frequency of each system is as large as 2000 rad/s , which is 

shown in Table 2. Numerical solutions obtained from this 

time step can be considered as reference solutions for the 

four systems since this time step is much smaller than that 

required by accuracy consideration. On the other hand, 

WBZ, CDM2-I and CDM2-E all can have an unconditional 

stability and thus the step size for time integration is 

selected based on accuracy consideration. For each system, 

the step size t  to perform time integration for using 

WBZ, CDM2-I and CDM2-E, the loading duration 𝑡𝑑 and 

the total number of steps 𝑡𝑑/𝛥𝑡 are also listed in Table 2. 

The displacement responses of the four systems are 

shown in Fig. 19. Comparing the results obtained from 

WBZ, CDM2-I and CDM2-E to the reference solutions for 

each plot of this figure, the time steps of 0.02t = , 0.04, 

0.08 and 0.16s seem to be the maximum allowable time 

steps to yield acceptable solutions corresponding to the 200-

DOF, 400-DOF, 800-DOF and 1600-DOF systems. The 

calculated results obtained from CDM2-I and CDM2-E 

almost coincide those obtained from WBZ for the four 

systems. This attests that CDM can have comparable 

accuracy when compared to WBZ. On the other hand, the 

unconditional stability of CDM is also indicated since the 

value of 𝜔0
(𝑛)

(𝛥𝑡) is as large as 40, 80, 160 and 320 in 

correspondence to the 200-DOF, 400-DOF, 800-DOF and 

1600-DOF systems. 

 

 

 
Fig. 19 Displacement responses of spring-mass systems  
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Table 4 Comparisons of dissipative SDIMs 

Property C-1 C-2 KRM CDM 

Unconditional 

Stability 
Yes Yes Yes Yes 

Second-order 

accuracy 
Yes Yes Yes Yes 

Explicit 

formulation 
Yes Yes Yes Yes 

Controllable 

numerical 

responses 

Yes Yes Yes Yes 

Overshoot in 

transient 

responses 

No No No No 

Overshoot it 

steady-state 

responses 

Yes Yes Yes No 

Self-starting No No Yes Yes 

Weak 

instability 
No No Yes No 

C-1 The first family of Chang dissipative structure-

dependent integration method (Chang 2014a) 

C-2 The second family of Chang dissipative structure-

dependent integration method 

KRM = The dissipative structure-dependent integration 

method developed by Kolay and Ricles (2014). 

 

 

To evaluate the computational efficiency of CDM-I and 

CDM-E, the consumed CPU time for each dynamic analysis 

is recorded and listed in Table 3 for NEM, WBZ, CDM2-I 

and CDM2-E. The 5th column shows that CDM2-E involves 

much less computational efforts when compared to NEM, 

WBZ and CDM2-I. Apparently, NEM is inappropriate for 

solving an inertial problem since a small step size is 

required to satisfy stability conditions. Thus, it costs a large 

CPU time for each system. On the other hand, a large time 

step can be adopted for WBZ, CDM2-I and CDM2-E based 

on accuracy consideration due to unconditional stability. 

Since WBZ and CDM2-I are implicitly implemented and 

they consume many and roughly the same computational 

efforts as shown in the 3rd and 4th columns. This is because 

an iteration procedure is needed in each time step and it is 

very time consuming for a matrix of large order. Clearly, 

CDM2-E can combine explicit formulation and 

unconditional stability together and thus CDM2-E can save 

many computational efforts. It is found in the last three 

columns that the computational efficiency of CDM2-E will 

increase as the total number of the degrees of freedom 

increases. Notice that the CPU time consumed by CDM2-E 

is only about 0.25% of that consumed by WBZ and CDM2-

I for the 1600-DOF system. 

 

 

9. Conclusions 
 

The application of an eigen-based theory to develop a 

novel family of dissipative SDIMs is presented in this work. 

The successful development of this dissipative integration 

method can be applied to affirm the feasibility of the eigen-

based theory for developing a general SDIM. In addition, a 

canonical procedure is constructed for developing a SDIM 

that can have desired numerical properties. At first, an 

eigen-decomposition technique can be employed to 

decompose a coupled equation of motion into a series of 

uncoupled modal equations of motion. Then, an eigen-

dependent integration method is proposed to solve each 

modal equation of motion. Subsequently, all the eigen-

dependent integration methods are converted into a SDIM. 

Some key issues and techniques are involved in this 

development so that an improved SDIM is derived, such as 

the adoptions of an asymptotic equation of motion, a 

conversion of a two-step difference equation to a one-step 

difference equation, an appropriately assumed displacement 

difference equation, a stability amplification factor and a 

loading-correction term. Thus, a new dissipative SDIM is 

developed and it has desired numerical properties. To 

confirm the superiority of this SDIM over other SDIMs, the 

major properties of the four dissipative SDIMs are listed in 

Table 4. Clearly, these four integration methods can have 

the same first five numerical properties while they are 

different for the last three numerical properties. The defects 

for C-1 and C-2 are the adverse overshoot in high frequency 

steady-state responses and no capability of self-starting 

while the critical drawbacks of KRM are a weak instability 

and an adverse overshoot in high frequency steady-state 

responses. Clearly, the novel family of the SDIMs does not 

possess any adverse numerical properties. Besides, it is 

computationally efficient in the solution of inertia problems 

in contrast to conventional dissipative integration methods, 

such as HHT, WBZ and the generalized-a method, due to no 

involvement of nonlinear iterations for each step . 

It is verified that the proposed family of SDIMs can 

have an explicit implementation if the initial structural 

properties are adopted to calculate the structure-dependent 

coefficients while it can be also implicitly implemented if 

the structure-dependent coefficients are updated with the 

current structural properties for each time step. Both 

implementations can have the same numerical properties 

except for stability property. An implicit implementation 

can have unconditional stability for any structural systems if 

a perfect iteration is achieved for each time step. On the 

other hand, an explicit implementation can generally have 

an unconditional stability for linear elastic and stiffness 

Table 3 Comparisons of CPU time 

N-DOF NEM WBZ CDM2-I CDM2-E 
CDM2−E

NEM
 

CDM2−E

WBZ
 

CDM2−E

CDM2−I
 

200 2.85 20.98 20.97 0.20 0.070 0.0095 0.0095 

400 28.92 172.02 172.27 0.98 0.034 0.0057 0.0057 

800 395.08 1883.00 1857.58 6.48 0.016 0.0034 0.0035 

1600 5628.97 16833.41 16756.23 12.58 0.0076 0.0025 0.0025 
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softening systems. Notice that although it only has a 

conditional stability for stiffness hardening systems, an 

appropriate stability amplification factor can be applied to 

enlarge an unconditional stability range so that it can also 

have an unconditional stability for the stiffness hardening 

systems of practical significance. An explicit 

implementation will not involve any nonlinear iterations 

and thus it is more computational efficient than for an 

implicit implementation since it can simultaneously 

combine unconditional stability and explicit formulation. 

Thus, an explicit implementation is preferred over an 

implicit implementation. In general, the choice of −1 ≤

𝛼 ≤ 0 , 𝛽 =
1

4
(1 − 𝛼)2  and 𝛾 =

1

2
− 𝛼  is strongly 

recommended for practical applications. On the other hand, 

𝜎 = 1 can be taken if it is known as a priori that there 

experiences no stiffness hardening for the analyzed system. 

Otherwise, 𝜎 = 2 must be chosen. 
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