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1. Introduction 
 

The safety of in-service engineering structures has 

attracted increasing attentions in recent years. Structural 

damage detection (SDD), a technology to timely detect 

potential damages, can effectively help to ensure the safety 

of structures and achieve long-term structural health 

monitoring (SHM) (Chen and Yu 2017, Lakshmi 2019). 

In the existing methods, the finite element (FE) model 

based SDD methods have advantages to accurately locate 

and quantify structural damages (Ha et al. 2017, Vahidi et 

al. 2019). An accurate FE model is necessary for SDD 

because it is taken as a benchmark model for real structures. 

If the FE model cannot be used to describe damage 

characteristics of real structures, it will fail to effectively 

locate and quantify structural damages by using these 

methods. That is to say, reasonable model updating results 

are the premise for effective SDD. Thus, the differences of 

characteristics between the FE model and the real structure 

should be carefully reduced at first (Behmanesh et al. 2018, 

Zhang et al. 2019). 

For model updating, structural parameters of FE model 

are changed during the updating process (Arora 2014). 

Dependent variables of structural parameters should be 
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reasonably selected because they will greatly affect the 

updating process and results. It is common to select the 

dependent variables which are sensitive to structural 

parameters and insensitive to measurement noises (Goksu et 

al. 2017). Meanwhile, with the help of sensitivity analysis, 

sensitivity-based parameter updating method can effectively 

achieve the process of model updating (Link 1999, Batou 

2019). Commonly, sensitivity analysis relates the changes 

in dependent variables to the changes in structural 

parameters. Due to this important ability, sensitivity 

analysis has been widely investigated for model updating in 

existing studies. For example, based on the sensitivity of 

frequencies, Cao et al. (2019) proposed a multistage model 

updating method for establishing an effective model of 

stitched sandwich composite. Based on frequency response 

function and sensitivity analysis, enhanced decomposed 

transfer function (EDTF) was introduced to mitigate the 

influence of incomplete measurement. Comparative studies 

with dynamic expansion of measured mode shapes proved 

the superiority of the proposed method for model updating 

(Pedram and Esfandiari 2019). Moreover, Esfandiari et al. 

(2018) accurately detected stiffness parameters by using the 

sensitivity of power spectral density (PSD) functions. 

Identified results of the truss model illustrated that the 

sensitivity based model updating method has great ability 

for parameter estimation under the influence of noise. 

On the other hand, the model updating problem is a 

well-known ill-posed problem, because the structural 

parameters should be indirectly updated from the output 

information of structure. It is effective to improve the ill-
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posedness of this problem by constraining the ranges of 

corresponding parameters. 

Penalties in regularization methods can constrain 

solution in a limited range (Wang and Yang, 2012), so 

regularization methods, such as the lq (0 < q ≤ 1), l2 and l∞ 

norm regularization methods, perform well in solving ill-

posed problems. However, because the characteristics of 

penalties are usually different, these regularization methods 

have different application scopes. 

Among these three regularization methods, the lq (0 < q 

≤ 1) norm penalty has the strongest constrained function for 

updating parameters (Xu et al. 2012, Fan et al. 2018, Ding 

et al. 2019), which can be used to obtain sparse solutions. It 

is obvious that the lq norm regularization methods are 

inappropriate strategies for solving the model updating 

problem because the updating parameters are usually not 

sparse. 

Contrary to the lq norm penalty, the l2 norm penalty does 

not restrict the number of nonzero elements, but limits the 

sum of squares in solution. Therefore, dense solutions are 

obtained from the l2 norm regularization. This 

regularization method has been widely studied for model 

updating problem (Hua et al. 2011, Zhang and Guo 2016). 

For example, regularization parameter controls the 

balance between regularization errors and perturbation 

errors. Based on the l2 norm regularization, the effect of 

regularization parameter for model updating results has 

been investigated in the existing studies (Mares et al. 2002, 

Hua et al. 2009). Moreover, based on incomplete modal 

data, Chen and Maung (2014) employed the l2 norm 

regularization incorporating the L-curve criterion method 

for updating model parameters. 

However, the l2 norm regularization method is not 

reasonable for all situations (Deo and Walker 1997). 

Magnitudes of individual elements are not controlled by the 

l2 norm penalty, so it is easily misestimated in model 

updating problem due to the influence of noises. 

The l∞ norm penalty is conductive to obtain the anti-

sparse representation of solution and reduce errors in 

elements of solution. Previously, the l∞ norm regularization 

method has been used in the minimum effort problem for 

minimizing the amplitude of the control input required 

(Cadzow 1971). Then, Fuchs (2011) proposed anti-sparse 

representations based on the l∞ norm to represent a vector 

on a redundant basis. Because of the ability to spread 

energy equally, the l∞ norm regularization method has 

numerous applications (Studer et al. 2012). A binarization 

scheme based on l∞ penalty for high dimensional vectors 

was proposed and performed well in the approximate 

nearest neighbor search (Jégou et al. 2012). In wireless 

communication and control system, the l∞ norm 

regularization method was introduced to reduce peak-to-

average power ratio (PAPR) by Shen and Gu (2015). 

Moreover, for promoting anti-sparsity, the l∞ norm has been 

applied to define probability distribution, which is called as 

democratic distribution (Elvira et al. 2016). 

For the model updating problem, magnitudes of 

updating parameters are usually of the same order. Based on 

this characteristic, the l∞ norm regularization method is 

considered for model updating in this study. 

For the model updating problem, this paper focuses on 

the situation that magnitudes of updating parameters are of 

the same order, and a novel model updating method is 

proposed. Rather than the l2 norm regularization, the l∞ 

norm regularization is introduced for its ability to obtain an 

anti-sparse representation of solution. Based on sensitivity 

analysis, the l∞ norm penalty is added to define an objective 

function. Then, a fast iterative shrinkage thresholding 

algorithm (FISTA) is adopted to solve the objective 

function for updating results. Numerical simulations on a 2-

DOF spring-mass model and experimental verifications on 

a six-storey aluminum alloy frame fabricated in laboratory 

are conducted to investigate the performances of the 

proposed method. Meanwhile, comparative studies with the 

l2 norm regularization method are also studied in these 

examples. 
 

 

2. Theoretical background 
 

2.1 Sensitivity analysis 

 

The FE model should be updated to approximate the real 

structure. For obtaining a reasonable FE model, both 

physical and geometric parameters are updated in the model 

updating problem (Friswell et al. 2001, Khademi-Zahedi 

and Alimouri 2019). For these parameters, the following 

relationship between the FE model and the real structure is 

given at first: 

( )1RE FE

j j jp p = −  (1) 

where, 
RE

j
p  (j = 1, 2, …, n) and 

FE

j
p (j = 1, 2, …, n) 

represent the jth parameters of the real structure and the FE 

model, respectively. αj (j = 1, 2, …, n) is the design variable 

of the jth parameter. n is the total element number of 

updated parameters. 

Frequencies and mode shapes are important modal 

parameters for model updating. Herein, these two modal 

parameters are used to update FE model. Based on 

sensitivity analysis, the following expression can be 

obtained: 

 1 2

Δf
S S S Δα SΔα Δf

Δfn





 
=  =  

 
 (2) 

where, Δfυ and Δfφ represent differences in frequencies and 

mode shapes between the real structure and corresponding 

FE model, respectively. Δα is the difference of design 

variables. S is the sensitivity matrix. Sj (j = 1, 2, …, n) is the 

sensitivity matrix obtained by the forward finite difference 

approach (Li et al. 2015): 

( ) ( )f f
S

j j j

j

j

  



+  −
=


 (3) 

where, f(γj + Δγj) represents the vector of modal parameters 

when the design variable γj changes into γj + Δγj. The value 

of Δγj is important for accurate model updating. In this 

study, the step of Δγj is selected as 0.0001. 
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The least squares (LS) method can be used to solve Δα 

from Eq. (2) by minimizing sum of the squared errors 

between SΔα and Δf: 

2

LS 2

1
( ) arg min

2Δα

Δα SΔα ΔfJ = −  (4) 

However, model updating problem is ill-posed, and the 

modal parameters are inevitably polluted by noise. As a 

result, stable solutions cannot be obtained by the LS method 

(Hansen et al. 2007). 

Regularization methods have good performance in 

improving the ill-posedness of model updating problem by 

constraining solution ranges of updating parameters.  

It should be noted that, the constraint effects to solution 

ranges by using different regularization methods are 

different. For example, the lq (0 < q ≤ 1) norm 

regularization methods are suitable for solving the problems 

with sparse properties (Hou et al. 2018). On the contrary, 

the l∞ norm regularization method can obtain dense 

solutions. 

For the model updating problem, the updating 

parameters are not sparse in most cases. The elements in Δα 

usually have same order of magnitudes. By considering this 

feature, the l∞ norm regularization method is introduced into 

model updating problem to improve the ill-posedness. As a 

result, an anti-sparse representation of Δα can be obtained 

for the model updating result. 

 

2.2 L∞ norm regularization method 

 

A system of linear equations can be simply written as: 

Ax b=  (5) 

where, A ∈ R 
m × n is a matrix. both b ∈ R 

m and x ∈ R 
n are 

vectors. m and n are the number of row and column in 

matrix A, respectively. 

Multiple solutions of vector x can be obtained from Eq. 

(5) when A is a full rank matrix. To find an anti-sparse 

representation of vector x and improve the ill-posedness of 

the problem, the l∞ norm regularization is added into Eq. 

(5), which can be described as follows (Fuchs 2011): 

2

2

1
( ) arg min

2x R

x Ax b x
n

J 




 
= − + 

 
 (6) 

where, ( )1 2
max , , ,x

n
x x x


=  represents the l∞ 

norm of x. λ (λ > 0) is the regularization parameter. 

As explaining by Elvira et al. (2017), the l∞ norm 

regularization can obtain anti-sparsity solution, because the 

l∞ norm penalty spreads the energy of b equally over 

elements in the vector x with respect to A. 

However, the norm penalty ‖𝒙‖∞  is not a strictly 

convex function. To obtain a unique and stable solution 

from Eq. (6), the given matrix A must be restricted. 

Mangasarian and Recht (2011) derived necessary and 

sufficient conditions for an integer and unique solution by 

transforming the problem to some linear equations. It 

showed that the dimension of matrix A is a critical factor 

for successful solution. The ratio of row to column in A is 

stated that: 

1
P

2

m

n
=   (7) 

where, P is an increasing function. When n is fixed, m 

should be larger than half of n, so the most integer 

programming problems can be successfully resolved. 

For the model updating problem, the mathematical 

expression in Eq. (2) is same as Eq. (5). Meanwhile, by 

considering the characteristics of model updating problem, 

the l∞ norm regularization method can be introduced to 

spread the information for all elements in design variables 

equally. As a result, the vector Δα with the same order of 

magnitudes can be obtained. 

With the help of Eq. (6), the model updating problem 

based on sensitivity analysis and the l∞ norm regularization 

is described as follows: 

2

2

1
( ) arg min

2Δα R

Δα SΔα Δf Δα
n

J  


 
= − + 

 
 (8) 

Eq. (8) can be solved by the FISTA (Toh and Yun 2010). 

The l∞ norm regularization method offers a robust 

representation of solution by sharing information evenly, so 

errors in elements of vector Δα can be reduced well. 
 

2.3 L2 norm regularization method 
 

As a special case of Tikhonov regularization method, the 

l2 norm regularization method has been widely applied in 

many fields (Pan et al. 2017). The constrained function of l2 

norm penalty is weaker than the lq (0 < q ≤ 1) norm 

penalties, and the l2 norm regularization method can obtain 

dense solutions in many cases. 

For the model updating problem, the l2 regularization 

method has been used in the existing studies. To compare 

the updating results by respectively using the l2 norm and 

the l∞ norm regularization methods, the model updating 

problem based on sensitivity analysis method and the l2 

norm regularization method is expressed as follows:  

2 2

2 2 2

1
( ) arg min

2Δα R

Δα SΔα Δf Δα
n

J 


 
= − + 

 
 (9) 

The solution of vector Δα solved from Eq. (9) can be 

given as (Zhang and Xu 2016): 

( )
1

ˆΔα SS I S Δf
T T

−

= +  (10) 

where, I is the identity matrix. 

According to Eqs. (6) and (9), it should be pointed out 

that the regularization parameter λ greatly affects the 

updating results by controlling the balance between 

regularization error and perturbation error. To obtain 

reasonable solutions, the values of regularization parameter 

in different regularization methods are generally different. 

Thus, to effectively compare the l2 norm regularization with 

the l∞ norm regularization, the regularization parameters in 

different regularization methods are selected when same 

values of an indicator 𝜃 are obtained. The indicator is 

defined as follows: 

2
f f

RE FE = −  (11) 
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Fig. 1 Spring-mass model 
 

 

where, fRE is the rearranged vector of modal parameters for 

the real structure. fFE is the rearranged vector of modal 

parameters for FE model updated by the l2 norm 

regularization method or the l∞ norm regularization method. 

 

 

3. Numerical simulations 
 

As shown in Fig. 1, a 2-DOF spring-mass model is used 

to intuitively analyze constrained functions of different 

norm penalties. The mass and stiffness of each DOF are 100 

kg and 150 kN/m, respectively. 

Different modal parameters polluted by noise are 

respectively simulated as follows: 

2( )
υ υs ec

i i iR
k

  
−

= +  (12) 

2( )
φ φs ec

ij ij ijR
lN

  
−

= +  (13) 

where, υi is the ith noisy frequency, φij is the jth element of 

the ith noisy mode shape. Superscript ‘c’ represents 

corresponding calculated modal parameters. υ and φ are 

vectors of frequencies and rearranged mode shapes, 

respectively. Subscripts ‘s’ and ‘e’ represent modal 

parameters of the real structure and the initial FE model, 

respectively. ευ and εφ are noise level for frequencies and 

mode shapes, respectively. Ri and Rij are random values 

drawn from the standard normal distribution.  

A scenario in Table 1 is used to illustrate constrained 

functions of the l∞ norm and l2 norm penalties.  

As shown in Fig. 2, the identified result obtained by the 

l2 norm regularization method is given, and the sketch map 

about the regularization error ‖Δα‖2
2 and the perturbation 

error ‖SΔα−Δf‖2
2  is also given. Similarly, the 

corresponding identified result and the sketch map obtained 

by the l∞ norm regularization are shown in Fig. 3. 

From Figs. 2 and 3, it is obvious that the updating result 

obtained by the LS method is far from the actual value due 

to the influence of noises. Meanwhile, the regularization 

methods can improve the ill-posedness of the model 

updating problem, and the updating results are better than 

that obtained from the LS method. 

From Fig. 2, it can be seen that both the perturbation 

error and the regularization error for the l2 norm 

regularization are circles, and these two errors are tangent to 

the result which closes to the result obtained from the LS 

method. The function of l2 norm penalty minimizes the sum 

of squares of Δα, but it cannot control amplitude of each  

 

Fig. 2 Sketch map and identified results for spring-mass 

model in scenario 1 by adding l2 norm penalty 
 

Table 1 Simulated scenario for spring-mass model 

Scenario 

no. 

Changes in 

mass (%) 

@ DOFs 

Values 

of m 

and l 

Noise 

level 
𝜃 

Regularization 

methods  
λ 

1 
10 @ D1, 

D2 

m = l = 

2 
15% 0.0755 

l2 3.882 

l∞ 0.100 

 

 

Fig. 3 Sketch map and identified results for spring-mass 

model in scenario 1 by adding l∞ norm penalty 
 

 

element in Δα. As a result, the updating result in the first 

DOF is larger than the true value, and the result in the 

second DOF is less than the true value. 

The maximum values of elements in vector Δα are 

constrained by adding the l∞ norm penalty. Compared the 

updating result in Fig. 3 with the true values, it is clear that 

the l∞ norm regularization is more reasonable than the l2 

norm regularization in this scenario. Moreover, the elements 

of Δα are equal. It indicates that the l∞ norm regularization 

is suitable for scenarios when the elements of Δα have the 

same order of magnitudes. 
 

 

4. Experimental verifications 
 

4.1 Experimental setup 
 

As shown in Fig. 4(a), to verify the effectiveness of the 

proposed method, a six-storey aluminum alloy frame is 

designed and fabricated in laboratory. 

The corresponding experimental setup is shown in Fig. 

4(b). The total height and width of the frame is 1.496 m and  
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(a) Frame (b) Experimental setup 

Fig. 4 Six-storey aluminum alloy frame 

 

Table 2 Initial parameters of FE model for six-storey 

aluminum alloy frame 

Elastic 

modulus 

(N/m2) 

Density 

(kg/m3) 

Width of 

column (m) 

Width of 

beam (m) 

Rotational 

stiffness 

(N∙m/rad) 

7×1010 2700 0.06 0.055 100 

 

 

0.245 m, respectively. The thickness of both columns and 

beams are 0.004 m. Six accelerometers are placed at nodes 

15-20. The frame is excited by a vibration exciter placed at 

node 20. 

An excitation stinger is used to provide excitation 

connection between the vibration exciter and the frame. It 

should be pointed out that the stinger may affect dynamic 

characteristics of structure by introducing rotational 

stiffness into structure (Avitabile 2010). Thus, in this study, 

adding rotational stiffness is considered at node 20. 

After performing experimental modal analysis, the first 

four frequencies and mode shapes are obtained and used to 

updating the FE model. Initial parameters of the frame are 

given in Table 2. 

 

4.2 Benchmark model updating 

 

As mentioned above, to obtain the benchmark model of 

frame, both physical and geometric parameters should be 

updated. Thus, by considering machining errors of frame, 

parameters of elastic modulus, density, width of the column, 

width of the beam and rotational stiffness are selected as 

 
Fig. 5 Updated results of structural parameters by usin

g different regularization methods 
 

 

updated parameters, and the updating results are obtained 

based on the l2 norm and l∞ norm regularization methods, 

respectively. 

In Fig. 5, updated parameters 1-5 represent elastic 

modulus, density, width of the column, width of the beam 

and rotational stiffness, respectively. All parameters are 

simultaneously updated by the l∞ norm regularization 

method, and the changes in design variables are in the same 

order of magnitudes. Different from the l∞ norm 

regularization method, the rotational stiffness is hardly 

updated by the l2 norm regularization method, which shows 

the differences between these two methods. 

According to the updated values in design variables, the 

corresponding updating results can be seen in Table 3. 

Widths of column and beam updated by the two 

regularization methods have little difference. However, the 

updated parameters are close to the initial values and 

consistent with the actual values. Elastic modulus and 

density updated by the l∞ norm regularization is smaller 

than that updated by the l2 norm regularization. Moreover, 

the values of added rotational stiffness at node 20 are 

approximate by these two methods. 

By comparing the calculated frequencies with the 

measured frequencies, the percentage errors of frequencies 

are given in Table 4. The percentage errors of the first two 

frequencies obtained by the l∞ norm regularization are 

smaller than that obtained by the l2 norm regularization. On 

the contrary, the percentage errors of the other two 

frequencies obtained by the l∞ norm regularization are 

larger than that obtained by the l2 norm regularization. 

The updated FE models respectively obtained by the 

two methods are taken as the benchmark models, which will 

be used to verify the effectiveness of the model updating 

methods in the next section. 
 

4.3 Verification on effectiveness of proposed method 
 

To verify the effectiveness of the proposed method, six 

known masses are added to the frame, as shown in Fig. 6.  

 

Table 3 Updated parameters of FE models obtained by different regularization methods 

Regularization methods Elastic modulus (N/m2) Density (kg/m3) 
Width of 

column (m) 
Width of 
beam (m) 

Rotational stiffness 

(N∙m/rad) 
λ 𝜃 

l2 6.9570×1010 2716.4 0.0613 0.0538 100.0077 9.200 
2.8329 

l∞ 6.8376×1010 2670.7 0.0614 0.0537 102.3202 0.015 
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Table 4 Percentage errors of frequencies for updated FE 

models 

Mode 
Measured 

frequencies (Hz) 

Percentage error (%) 

l2 l∞ 

1 6.8423 0.5551 0.5092 

2 20.9105 0.5573 0.5358 

3 37.9170 0.0952 0.1143 

4 57.8745 0.0438 0.0549 

 

Table 5 Actual masses of aluminum alloy blocks in each 

storey 

Storey number Actual mass (kg) 

1 0.6832 

2 0.6622 

3 0.6586 

4 0.6670 

5 0.6726 

6 0.6646 

 

Table 6 Experimental scenarios for six-storey aluminum 

alloy frame with added masses 

Scenarios 

no. 

Scenarios 

description 
𝜃 

Regularization 

methods 
λ 

1 
Added masses 

in 1-2 storeys 
3.0837 

l2 33.082 

l∞ 0.295 

2 
Added masses 

in 1-3 storeys 
3.0609 

l2 24.961 

l∞ 0.252 

3 
Added masses 

in 1-4 storeys 
3.0917 

l2 5.891 

l∞ 0.434 

4 
Added masses 

in 1-5 storeys 
3.1088 

l2 18.373 

l∞ 0.445 

5 
Added masses 

in 1-6 storeys 
3.5585 

l2 24.177 

l∞ 0.808 

 

 

The actual masses of these aluminum alloy blocks are 

given in Table 5. By adding different numbers of masses, 

different scenarios can be obtained. 

Herein, five scenarios are introduced as given in Table 

6. As a result, the updated results obtained by different 

regularization methods are given in Figs. 7-11. 

In different regularization methods, the values of 

regularization parameter λ are different. The indicator 𝜃 in 

Table 6 are calculated by Eq. (11) for reasonably selecting 

regularization parameter. To control identification accuracy 

of all scenarios, the difference in values of 𝜃 is small. As the 

numbers of masses adding, the values of regularization 

parameter change, but accurate results still are obtained. 

In Figs. 7-11, the added masses identified by the 

regularization methods are compared with the true values. It 

can be seen that the identified accuracy is different by 

adding different norm penalties into the objective function 

in Eq. (4). 

 

 

Fig. 6 Adding aluminum alloy blocks on frame 
 

 

By using the l2 norm regularization, percentage errors of 

identified masses are more than 5% except the storey 1 in 

Fig. 7, the storey 3 in Fig. 9, the storey 4 in Fig. 10, the 

storeys 3 and 6 in Fig. 11. For the given scenarios, some 

elements in identified masses are overvalued and other 

elements are undervalued. Amplitude of each element 

cannot be controlled by the l2 norm regularization, so the 

identified accuracy of all elements will be affected when an 

element is inaccurately evaluated. Moreover, when 

dimensions of identified masses increase, the updated 

results will be more inaccurate. 

On the other hand, percentage errors of identified 

masses obtained from the l∞ norm regularization is always 

less than 5% in the given scenarios. Identified mass in 

storey 1 is overvalued in all scenarios, but the identified 

results of other storeys are not affected. For different 

scenarios, the values of same identified masses are similar. 

The identified masses are spread to each storey equally, so 

the percentage errors are small. 

It indicates that the proposed method based on the l∞ 

norm regularization can obtain variables of the same order 

of magnitudes accurately and withstand errors in 

information with high stability. 
 
 

5. Conclusions 
 

In this paper, an anti-sparse representation method of 

model updating is proposed based on the l∞ norm 

regularization. According to the characteristics of structural 

model updating problem, the sensitivity of modal 

parameters and the l∞ norm regularization are introduced to 

define an objective function. Then, a fast iterative shrinkage 

thresholding algorithm (FISTA) is adopted to solve the 

objective function. As a result, an anti-sparse representation 

of solution is obtained by the proposed method. Numerical 

simulations on a 2-DOF spring-mass model have been 

carried out to investigate the performance of the proposed 

method under the influence of noises. Finally, to further 

verify the effectiveness of the proposed method, 

experimental verifications on a six-storey aluminum alloy 

frame are conducted. Meanwhile, comparative studies with 

the l2 norm regularization are conducted as well. Based on  
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(a) Identified mass in each storey (b) Percentage errors of identified mass in each storey 

Fig. 7 Updated results of FE model with masses in scenario 1 by using different regularization methods 

  
(a) Identified mass in each storey (b) Percentage errors of identified mass in each storey 

Fig. 8 Updated results of FE model with masses in scenario 2 by using different regularization methods 

  
(a) Identified mass in each storey (b) Percentage errors of identified mass in each storey 

Fig. 9 Updated results of FE model with masses in scenario 3 by using different regularization methods 

  
(a) Identified mass in each storey (b) Percentage errors of identified mass in each storey 

Fig. 10 Updated results of FE model with masses in scenario 4 by using different regularization methods 
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the updated results of numerical simulations and 

experimental studies, some conclusions can be made as 

follows: 

•  The proposed method has good performance in 

updating variables of the same order of magnitudes because 

the l∞ norm regularization has great ability to spread 

information equally. 

•  With the help of the l∞ norm penalty, errors in 

elements of updated parameters can be reduced well in the 

proposed method, so the updated results have high 

accuracy. 

•  Compared with the l2 norm regularization, the 

updated results obtained by the proposed method are more 

reasonable because it has great ability to describe the 

characteristics of the given model updating problem. 

•  The finite element (FE) model is needed to 

effectively reflect the changing rule of real structures, so FE 

model updated by the l∞ norm regularization will be used in 

structural damage detection (SDD) for investigating 

reasonability of the proposed method. 
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