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1. Introduction 
 

Structural damages affect structural performance and 

lead to structural collapse in even extreme conditions, 

which cause human and economic losses. Hence, structural 

damage identification (SDI), as a crucial step in the field of 

structural health monitoring (SHM), it is particularly 

important to assess the reliability, integrity and safety of 

bridge structures in real time through the SHM technologies 

(Seo et al. 2016). 

Most of the existing methods are based on the 

recognition of changes in the structural characteristic 

properties. In the SHM field, SDI and quality assessment 

can usually be divided into four stages (Zhu and Wu 2014): 

detecting presence or absence of structural damages, 

determining locations of structural damages, identifying 

damage severities, and estimating remaining life of 

structures. In order to make SDI theory and technology 

better applicable to practical engineering, a number of 

investigations have been conducted over the past decades, 

and some fruitful results produced (Cha 2015, Su et al. 

2016, Huang and Lu 2017, Gao and Khalid 2018, Zheng et 

al. 2018, Huang et al. 2018, Ghannadi and Kourehli 2019, 

Huang et al. 2019). For example, SDI methods based on 

neural networks (Kao 2003), wavelet analysis (Chang and 

 

Corresponding author, Professor 

E-mail: lyu1997@163.com 
a Post-Graduate Student 

 

 

Chen 2003), Bayesian (Hou et al. 2019), finite element 

model updating (Yuen 2010), genetic algorithms (Perera 

and Torres 2006), and sparse regularization (Ding et al. 

2019) have been extensively studied. However, the SDI 

methods based on dynamic fingerprints have disadvantages, 

such as poor robustness to noise and weak ability to 

recognize small damage. The neural network-based SDI 

method is an effective SDI method for bridges, but the 

neural network theory is not perfect yet, and there are still 

some difficulties in damage identification of bridge 

structures in practice.  
Beginning in the 1990s, the meta-heuristic methods, as a 

promising method in SDI optimization problems, have been 
developed rapidly, and achieved valuable research results. 
Among them, swarm intelligence (SI) optimization 
algorithms, such as ant colony optimization (ACO, Yu and 
Xu 2010), particle swarm optimization (PSO, Kang 2012, 
Huang et al. 2019), global artificial fish swarm algorithm 
(GAFSA, Li and Yu 2014), and cuckoo search (CS, Xu et 
al. 2016), are adopted in the SDI area. For example, Yu and 
Xu (2011) proposed an ACO-based algorithm for 
continuous optimization problems on SDI in the SHM field. 
Li and Yu (2014) verified the effectiveness and feasibility of 
applying GAFSA to damage detection based on model 
updating through numerical simulation of two-story rigid 
frame under different damage conditions and experimental 
verifications on three-story frame structure. Xu et al. (2016) 
proposed an approach for SDI based on modified cuckoo 
search (MCS). Meanwhile, they take frequency residual 
error and the modal assurance criterion (MAC) as indexes 
of damage detection in view of the crack damage, and the 
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Abstract.  Structural damage identification (SDI) is a crucial step in structural health monitoring. However, some of the existing 

SDI methods cannot provide enough identification accuracy and efficiency in practice. A novel whale optimization algorithm 

(WOA) based method is proposed for SDI by weighting modal data and flexibility assurance criterion in this study. At first, the SDI 

problem is mathematically converted into a constrained optimization problem. Unlike traditional objective function defined using 
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simply-supported beam and a 31-bar truss structures. For the given multiple structural damage conditions under environmental 

noises, the WOA-based SDI method can effectively locate structural damages and accurately estimate severities of damages. 

Compared with other optimization methods, such as particle swarm optimization and dragonfly algorithm, the proposed WOA-

based method outperforms in accuracy and efficiency, which can provide a more effective and potential tool for the SDI problem. 
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MCS algorithm is utilized to identify structural damages. 
However, there are some shortcomings in these algorithms, 
such as local optimum and slow convergence rate, and their 
robustness under noise effects are not so good.  

As a novel strategy, so called hybrid algorithm, is 

proposed to improve the performance of the existing 

methods, such as self-adaptive firefly–Nelder–Mead (SA-

FNM) algorithm (Pan et al. 2016), PSO-improved Nelder-

Mead (PSO-INM, Chen and Yu 2017), hybrid PSO (HPSO, 

Chen and Yu 2018), and PSO–CS algorithm (Huang et al. 

2019). For example, Pan et al. (2016) proposed a hybrid 

SA-FNM algorithm as an exploring attempt to the SDI 

problem. Some new strategies on information exchange, 

random walk and self-adaptive method were then used to 

improve the performance of SA-FNM for solving the SDI 

problem. The Nelder-Mead (NM) algorithm was 

incorporated into the basic firefly algorithm (FA) for 

improving the local searching ability. A new strategy for 

exchanging the information was used to reduce the 

computation cost of FA. The illustrated SDI results show 

that the SA-FNM can effectively identify both damage 

location and damage extent with a better noise immunity. 

Chen and Yu (2017) proposed a PSO-INM algorithm, which 

combined PSO algorithm and an improved NM method to 

solve the multi-sample objective function based on 

Bayesian inference. The illustrated results show that the 

proposed method can provide a reliable SDI tool for the 

ASCE benchmark frame structure. Moreover, Chen and Yu 

(2018) proposed a new SDI strategy of HPSO combining 

PSO with NM method, and used the new strategy to 

embedding the powerful local search NM algorithm into 

PSO to enhance the global search capability of PSO. The 

effectiveness of the method was verified by Monte Carlo 

simulations and a series of experiments in laboratory. To 

perform SDI considering temperature variations and noises, 

Huang et al. (2019) proposed a damage identification 

method using PSO–CS hybrid algorithm, which applied the 

updated mechanism of PSO in CS, blind-searching was 

improved in PSO and the global search in CS was 

enhanced. It is validated with a numerical example of a 

simply supported beam, and the performance of PSO-CS is 

better than PSO and CS. And the robustness and 

practicability of the algorithm was verified by the damage 

identification of ASCE Benchmark frame. The 

abovementioned hybrid algorithms show a bright prospect 

in the SDI problems under environmental conditions. 

Although these hybrid methods have achieved fairly 

satisfactory SDI results, there still remain some challenges 

because the inherent shortcomings are still involved in the 

basic SI-based algorithms. For example, PSO is easy to fall 

into the local optimum in the later stage. ACO has a 

problem of instability in solving the high-dimensional 

objective optimization function. The AFSA efficiency is not 

high enough (Guo 2017). The Big Bang and Big Crunch 

optimization algorithm provides a good detection result 

only for structures with severe damage (Huang and Lu 

2017). 
Apart from trying to improve the insufficient accuracy 

and lower efficiency of existing SDI methods, the scholars 
never stop to explore new methods. As one of leading 
inventors in optimization algorithms, Australian scholar 

Mirjalili and his research group have proposed a large 
number of new algorithms, such as grey wolf optimizer 
(GWO, Mirjalili et al. 2014), moth-flame optimization 
(MFO, Mirjalili 2015), dragonfly algorithm (DA, Mirjalili 
2016), and whale optimization algorithm (WOA, Mirjalili 
and Lewis 2016). These algorithms have been widely and 
successfully applied in diverse engineering field (Precup et 
al. 2016, Alireza et al. 2018, Mafarja and Mirjalili 2018). 
And as a new meta-heuristic optimization algorithm for 
solving optimization problems, WOA simulated solutions of 
29 mathematical benchmark functions and 6 structural 
engineering optimization problems, and demonstrated 
excellent performance of WOA algorithm in terms of 
convergent rate and avoidance of local optimal solutions 
(Mirjalili and Lewis 2016). The main difference between 
WOA and some of the previously proposed algorithms is 
the simulated hunting behavior with random, the best search 
agent to chase the prey and the use of a spiral to simulate 
bubble-net attacking mechanism of humpback whales. In 
the past years, WOA has been successfully applied in many 
fields and has shown good performance (Oliv et al. 2017, 
Mafarja and Mirjalili 2018), but to the knowledge of 
authors, it has not been applied to the SDI problem yet. 

On the other hand, the dynamic characteristics of 
structures will change due to structural damages. The 
structural modal parameters, such as frequency, damping 
and mode shapes will also change with structural damages. 
In the process of SDI, an objective function needs to be 
defined in order to evaluate the changes in modal properties 
because of the occurrence of damages. Most of existing SDI 
methods employed frequencies and mode shapes to define 
the objective function, which is also the most common 
practice (Ding et al. 2016). However, modal frequencies 
and mode shapes are not much sensitive to structural 
damages, especially for some minor damage cases, it is 
difficult to identify well if frequencies and mode shapes are 
used only. To this end, the flexibility matrix is introduced to 
the traditional objective function to improve the sensitivity 
of the objective function to structural damages as well as 
improving the accuracy of SDI methods. In addition, 
multiple weight strategies can provide a good way to 
balance the contribution of different parameters defined in 
the objective function (Chen and Yu 2020). 

The main contribution of this paper is to propose a new 
WOA-based SDI method and to define a new objective 
function related to SDI problem by weighting both modal 
parameters and flexibility assurance criterion so as to 
improve the SDI accuracy and efficiency for different 
structures. The probability thresholds of different predator 
mechanisms in WOA are reset to improve the iterative 
speed and optimization ability of the algorithm. Finally, 
under different noise levels and various structural damage 
conditions, numerical simulations on SDI problem are 
performed on simply-supported beam and a 31-bar planar 
truss structure to verify the effectiveness and feasibility of 
the proposed WOA-based SDI method. A comparison with 
PSO and DA is conducted as well. 

 

 

2. Theoretical background  
 

2.1 Damage model 
 

The structural modal parameters will obviously change 

446



 

A novel WOA-based structural damage identification using weighted modal data and flexibility assurance criterion 

 

as structural damages occur. These modal parameters can be 

used to establish the objective function, and then the 

parametric difference between calculated and measured 

results is minimized. Finally, the minimum value of the 

objective function is solved to perform the SDI. In general, 

the global stiffness and mass of a structure are divided into 

numerous element stiffness and masses, and the structural 

damage is simulated by reducing the element stiffness and 

masses. The stiffness reduction due to damage will be 

mainly considered. And the change in mass will be ignored 

as it makes less influence to modal parameters compared 

with stiffness reduction. The linear relationship between the 

global stiffness matrix and the element stiffness matrix of 

the structure is expressed as: 

1

(1 )
N

i i

i


=

= −K K

 

(1) 

where K and Ki denote global stiffness matrix and the i-th 

element stiffness matrix of the structure, respectively; N  

is the total number of elements; αi denotes the damage 

factor of the i -th element and its range is from 0 to 1, αi = 0 

means that the i -th element is undamaged. 

Traditionally, the changes in modal parameters, such as 

natural frequencies and mode shapes, are used to realize 

SDI, and these changes are related to the stiffness. An 

objective function based on frequencies and mode shapes is 

established, and the damage identification of the structure is 

achieved by finding the minimum value of the objective 

function. In other words, the SDI problem is converted to an 

optimization problem, which can be expressed as:  
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where f(αi) is objective function. When it reaches the 

minimum value, a series of related parameters αi can reflect 

the damage severities of the structure. 

 

2.2 Objective function 
 
For the SDI problem, most investigations define 

objective functions by natural frequencies and mode shapes 

of the structure. The expression is usually as follows: 

1
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(3) 

In Equation (3), MAC and ER are modal assurance 

criterion and frequency percentage error, respectively. Their 

expressions are as follows: 
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where s represents the considered modal number; (𝜔𝑖
ℎ, Φ𝑖

ℎ) 
denotes the i-th frequency and mode shape of healthy 

structure; (𝜔𝑖
𝑑 , Φ𝑖

𝑑) denotes the i-th frequency and mode 

shape of damaged structure. 

This study ignores the influence of mass change when 

the structural damages are simulated. According to 

structural mechanics, stiffness and flexibility are inversely 

related. Decreasing the stiffness of the structure will make 

the corresponding flexibility to increase, and the flexibility 

matrix will be more sensitive to damage. For SDI, they have 

different changes in frequencies, mode shapes and 

flexibility sensitivity of structures, so they are weighted in 

the objective function respectively to achieve their balance. 

The objective function is defined as: 

1
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(6) 

where α, β and λ are all weight coefficients. Fle denotes 

flexibility assurance criterion, and its expression is:  
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where 𝐹𝑖
ℎ and 𝐹𝑖

𝑑 denote the flexibility matrix before and 

after structural damage, respectively, which is expressed as 

follows: 

  2
1

1
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(8) 

In Equation (6), the relationship of the weight 

coefficients is α+β+λ=1. Among them, the frequencies are 

less affected by noise, it is easy to be measured and the 

measurement accuracy is higher, so β takes a larger value. 

The flexibility matrix is inversely proportional to ω2, so its 

sensitivity is also higher, and λ takes a larger value. The 

measurement error of mode shapes is larger than the 

frequencies and the sensitivity is lower, so   is smaller. 

As a result, these weighted coefficients are determined as 

α=0.01, β =0.79 and λ =0.20 in this study, which also refers 

to the weighting method on frequencies and mode shapes 

by Chen and Yu (2020). 

 

2.3 Whale Optimization Algorithm (WOA) 
 
For WOA, a random or best search agent is used to track 

the prey’s simulated hunting behavior, and a spiral is used 

to simulate the humpback whale’s bubble net attack 

mechanism. The whole process of predation is mainly 

divided into three different stages: encircling prey, bubble-

net attack method and searching for prey. 

 

2.3.1 Encircling prey 
The process of surrounding the prey is expressed as 

follows: 

( ) ( )D C X t X t=  −
 

(9) 
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( 1) ( )X t X t A D+ = − 
 

(10) 

where t denotes the current iteration, both A and C are 

coefficient vectors, X* is the position vector of the optimal 

solution obtained so far, X is the position vector of the 

whale, and "  " is the product of the corresponding elements 

of the vector. A and C are defined as: 

12A a r a=  −
 

(11) 

2=2C r
 

(12) 

where r1 and r2 are random vectors in [0, 1], and a is 

linearly decreased from 2 to 0 as the number of iterations 

increases, which can be expressed as: 

2
=2

_

t
a

Max iter
−

 

(13) 

where Max_iter is the maximum number of iterations. 

 

2.3.2 Bubble-net attack method 
In order to simulate the bubble-net behavior of 

humpback whales, two mechanisms were designed: 

shrinking encircling mechanism and spiral updating 

position. In order to simulate the behavior of humpback 

whales contracting and spiraling at the same time, the 

algorithm assumes that the probability that the whale 

choosing the two mechanisms is the same. The 

mathematical model is: 

*

( )                        0.5
( 1)

' cos(2 ) ( )      0.5bl

X t A D if p
X t

D e l X t if p

 −  
+ = 

  +   

(14) 

where p is a random number in [0, 1], b is a constant used to 

define the logarithmic spiral shape, l is a random number in 

[-1, 1], and D′ is the distance between the whale and its prey 

(the best solution obtained so far), which can be expressed 

as: 

*'= ( ) ( )D X t X t−
 

(15) 

 

2.3.3 Search for prey 
In the prey search stage, the whales randomly search for 

prey according to each other’s position. A whale is 

randomly selected in the group as the current optimal 

solution to update its position, forcing the whale to stay 

away from its prey. The mathematical model can be 

expressed as: 

𝐷 = |𝐶 ⋅ 𝑋𝑟𝑎𝑛𝑑 − 𝑋| (16) 

𝑋(𝑡 + 1) = 𝑋𝑟𝑎𝑛𝑑 − 𝐴 ⋅ 𝐷 (17) 

where Xrand is the position vector of the whale randomly 

selected from the current population. 

 

2.4 Choose probability threshold 
 
In the prey phase, in order to simulate the simultaneous 

implementation of the two mechanisms, the probability that 

each mechanism is selected by the whale during the 

predation process is set to be 50%. However, this equal 

probability selection mode will make the whale unable to 

choose the most suitable predator mechanism, which will 

cause the algorithm to slow down the convergent rate and 

fall into a local optimal solution. Therefore, the selecting 

method for the probability threshold is as follows: 

2
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t
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(18) 

where λ is determined in the following form, 

2 _

'

Max iter

t
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(19) 

where t' is the number of iterations at convergence. At the 

beginning of the iteration, the value of p′ is relatively large, 

and the whale has a high probability to choose the shrinking 

enclosing mechanism. When it is close to convergence, the 

value of p′ is relatively small, and the whale has a high 

probability to choose the spiral update position mechanism 

to improve the iterative speed and global optimization 

ability. 

The flowchart of WOA-based SDI method is shown in 

Figure 1. 
 

 

3. Numerical simulations 
 

In order to assess the performance of the proposed 

WOA-based method for SDI problem, some numerical 

simulations on two structures, i.e., 10-element simply 

supported beam and 31-bar planar truss structure are carried 

out, some SDI results are illustrated in the following 

sections. 
 

3.1 A 10-element simply supported beam 
 

Figure 2 is a finite element model of a simply supported 

beam. The beam is 3m long and it is divided into 10 

elements with same element length. Each element has 2 

nodes and 4 degrees of freedom. The numbers above and 

below the beam are the node number and element number, 

respectively. The parameters of the beam are shown as 

follows: elastic modulus E=2.1×1011Pa, structural density ρ 

=7850kg/m3, area of cross section A=1.164×10-3m2 and 

moment of inertia I= 7.617×10-7m4. 

The simulated damage cases are shown in Table 1, 

which includes single damage, double damage and multiple 

damage conditions. The finite element analysis to damaged 

beam model is performed to obtain the modal parameters 

under each damage condition. The first five natural 

frequencies and corresponding mode shapes of the structure 

in the vertical degrees of freedom of each node are adopted. 

The influences of measurement noise on modal parameters 

are considered in the following form, 

( )1noise nr r L R= + 
 

(20) 

where rnoise and r denote the modal parameters with and 

without noise, respectively; L is the noise level; Rn 
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Fig. 2 Finite element model of simply supported beam 

 

Table 1 Damage cases for 10-element simply supported 

beam 

Damage type Scenarios Damage severity @ damage element 

Single damage 
1 15%@1 

2 10%@6 

Double 

damages 

3 15%@6 & 10%@10 

4 15%@5 & 15%@6 

5 10%@1 & 8%@9 

6 15%@3 & 15%@9 

Multiple 

damages 

7 15%@4 & 15%@5 & 15%@6 

8 12%@3 & 15%@5 & 10%@9 

 

 

represents a random matrix where each element is a random 

number in [0, 1].  

The numerical simulation process is completed by 

software MATLAB2016b. The parameters of WOA are set 

as: the number of whale populations SearchAgents=80; the 

maximum number of iterations Max_iter = 200; the variable 

dimension dim=10; the lower bound of the domain 

lb=zeros(1, dim); the upper bound of the domain ub=ones(1, 

dim). 

The SDI results by the WOA-based SDI method are 

listed in Table 2 in eight damage conditions. In these  

 

 
scenarios, the occurrence of damage near the support and 

the span of the beam was simulated in scenarios 1 and 2. 

Damage at the symmetric and asymmetric positions of the 

structure was simulated in scenarios 3-6, and the same and 

different damage levels were considered as well. Multiple 

damages with same and different damage levels in the 

structure are simulated in scenarios 7 and 8. Figures 3 to 4 

show the SDI results in partial damage conditions under 

different noise levels. In addition, under the same noise 

level, the partial SDI results based on the WOA and other 

optimization algorithms, i.e., particle swarm optimization 

(PSO) and dragonfly algorithm (DA) are compared in 

Figures 5-6. 

It can be seen from Table 2 that at the same noise level, 

the accuracy of SDI with slight damage is lower than that 

with severe damage, and the accuracy of SDI with 

symmetric damage is higher than that with asymmetric 

damage. In the case of multiple damages under the same 

noise level, the identification accuracy of the structure with 

slight damage is higher than severe damage. Under the 

same noise level, the continuous multi-damage 

identification accuracy is higher than the decentralized type. 

In summary, the SDI accuracy decreases with increasing 

complexity of the scenarios. 

It can be clearly seen from Figures 3-4 that in the cases 

of double and multiple damages, regardless of the presence 

or absence of noise, the damage locations and severities of 

the structure can be well identified, while in scenario 8, 

although the damage can be accurately located and 

quantified, some identification errors have increased 

significantly. Figures 5 and 6 show the comparison of the 

WOA-based SDI method results and other methods (PSO,  

Modal parameter of healthy structure

Modal analysis of damaged structure

Calculate the value of the objective 

function

Whether maximum iterations or 

precision condition is satisfied

Yes

No

Output damage identification results

Establishment of finite element model 

based on WOA initial parameters

Update finite element model

Update the parameters of WOA

 

Fig. 1 Flowchart of proposed WOA-based SDI method 
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Table 2 SDI results of 10-element simply supported beam 

by WOA-based method 

Damage 

type 
Scenarios 

Simulated 

damage 

Identified damage (%) under 

different noises 

No noise 1% noise 3% noise 

Single 

damage 

1 15%@1 15.01@1 15.32@1 15.60@1 

2 10%@6 10.03@6 10.22@6 10.38@6 

Double 

damages 

3 
15%@1 & 
10%@10 

15.25@1 & 
9.75@10 

14.90@1 & 
10.90@10 

15.67@1 & 
8.72@10 

4 
15%@5 & 

15%@6 

15.10@5 & 

14.76@6 

14.18@5 & 

15.53@6 

14.40@5 & 

14.45@6 

5 
10%@1 & 

8%@9 

10.23@1 & 

7.95@9 

9.87@1 & 

8.22@9 

10.32@1 & 

8.48@9 

6 
15%@3 

&15%@9 
14.72@3 & 

15.14@9 
14.6@3 & 
14.43@9 

16.27@3 & 
14.12@9 

Multiple 

damages 

7 
15%@4 & 

15%@5 & 
15%@6 

14.66@4 & 

14.47@5 & 
15.86@6 

15.61@4 & 

13.93@5 & 
14.43@6 

14.30@4 & 

16.17@5 & 
14.16@6 

8 
12%@3 & 

15%@5 & 
10%@9 

12.33@3 & 

14.86@5 & 
9.70@9 

11.72@3 & 

14.63@5 & 
9.29@9 

11.68@3 & 

15.53@5 & 
9.26@9 

 

 

DA) under double and multiple damage conditions, it can 

be seen that the WOA-based SDI method is obviously 

better than both of PSO and DA methods. The results show 

that at the same noise level, the WOA-based SDI method 

can provide the highest SDI accuracy, the DA-based 

method is next, and the PSO-based method has the worst 

accuracy among them.  

 

 

In addition, in order to assess the convergent rates of 

three methods, a comparison on convergence for different 

identification algorithms under 1% noise level is shown in 

Figure 7 in double damages condition. It can be found that 

the WOA-based method is the fastest SDI method among 

the three methods. Moreover, Table 3 listed the detailed 

executing time required to identify damages based on the 

WOA and other optimization algorithms (PSO, DA) in the 

same computer, the same noise levels and the same damage 

conditions. Obviously, the proposed WOA-based SDI 

method is the fastest one in three methods. 

The illustrated SDI results show that the WOA-based 

SDI method can not only effectively locate structural 

damages, but also quantify damages more accurately with a 

good robustness to noise. In a word, the WOA-based SDI 

method is significantly better than both PSO and DA 

methods. 

 

3.2 A 31-bar planar truss structure 
 

In order to apply the proposed WOA-based SDI method 

to a more complicated structure, some further numerical 

simulations on a 31-bar planar truss structure are conducted 

to assess the performance of the proposed SDI method. 

There are three main reasons. Firstly, in terms of the 

dimension of the FEM, since the FEM of the simply 

supported beam was divided into 10 elements in the 

 
Fig. 3 SDI result of double damage in Scenario 5 

 

 

Fig. 4 SDI result of multi-damage in Scenario 8 
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Table 3 Executing time for different methods under 

different damage cases 

Damage type SDI method Time(s) parameters 

Double 

damages 

PSO 51.99 1% noise 

Windows10 

i5-3230M 

CPU@2.60Hz  

RAM@8.0GB 

80SearchAgents =
 

_ 200Max iter =
 

DA 44.73 

WOA 10.69 

Multiple 

damages 

PSO 53.24 

DA 47.65 

WOA 10.76 

 

 

 

abovementioned simulation cases, it means that the search 

dimension in the recognition process is 10. There are 

31elements in the FEM of the truss structure, which means 

that the search number is increased to 31, and the multi-

dimensional feasibility of the proposed method can be 

studied. Secondly, in terms of structural dimensions, the 

simply supported beams are regarded as one-dimensional 

structure, while the truss is a two-dimensional structure. 

The numerical simulation of SDI problem in the two 

structures can further verify that the WOA is feasible and  

 

Fig. 5 Double damages SDI results by different identification algorithms 

 

Fig. 6 Multiple damages SDI results by different identification algorithms 

 

Fig. 7 Convergence curves of different identification algorithms 
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effective for structures of different dimensions. Finally, in 

terms of the complexity of the structure, the truss structure 

is more complicated and closer to the practical bridge than 

the simply supported beam. The numerical simulations on 

the planar truss structure can verify the feasibility of the 

proposed WOA-based method to identify the structural 

damages in more complicated structures.  

The finite element model of 31-bar planar truss structure 

is shown in Figure 8. The span of structure is 9.12m long 

and 1.52m high. The structure is divided into 31 elements, 

and each element has 2 nodes and 4 degrees of freedom. 

The specific parameters of the structure are shown as 

follows: elastic modulus E=7.0×1010Pa, structural density 

density ρ =2770kg/m3, area of bar cross section 

A=0.01×0.01(m2) and moment of inertia I= 

0.01×0.013/12(m4). The SDI results are listed in Table 4, 

and some of them by the WOA-based method are shown in 

Figures 9-10.   

 

 

Table 4 SDI results of 31-bar planar truss structure by 

WOA-based method 

Damage 

type 
Scenarios 

Simulated 

damage 

Identified damage (%) under 

different noises 

No noise 0.2% noise 1% noise 

Single 

damage 
9 8%@20 8.03@20 7.92@20 7.83@20 

Double 

damages 
10 

15%@7 & 

10%@25 

14.71@7 & 

10.12@25 

15.29@7 & 

9.40@25 

15.97@7 & 

8.85@25 

Multiple 

damages 
11 

10%@12 & 

15%@20 & 
12%@22 

9.48@12 & 

14.99@20 & 
11.75@22 

9.41@12 & 

14.71@20 & 
11.78@22 

8.43@12 & 

14.00@20 & 
11.63@22 

 

 

In a similar way as in the first simulation example, the 

single damage, double damages, and multiple damages are 

considered separately in these three scenarios. The 

difference is that there is an increased complexity of the 

structure, and the noise levels are reduced in all the 

 

Fig. 8 Finite element model of 31-bar planar truss structure 

 

Fig. 9 SDI result of double damages in Scenario 10 

 

Fig. 10 SDI result of multiple damages in Scenario 11 
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simulation cases. In Scenario 10, the damage is set in the 

7th and 25th elements, which are located on the upper and 

lower chord rods on both sides of the mid-span. The 

multiple damage locations in Scenario 11 are also located at 

the upper and lower chord rods. 

Figures 9 and 10 show that the WOA-based SDI method 

can locate and quantify the damage of the two-dimensional 

31-bar planar truss structure. Although there are some 

identification errors occurred in health elements, they do 

not affect the SDI results, even more do not lead to 

misjudgments, because they are too small to be considered.  

 

 
4. Conclusions 

 

A novel whale optimization algorithm (WOA) based 

structural damage identification (SDI) method is proposed 

by weighting modal data and flexibility assurance criterion 

in this study. The SDI problem is first converted into a 

constrained optimization problem in mathematics. Unlike 

traditional objective function defined using frequencies and 

mode shapes, a new objective function on the SDI problem 

is formulated by weighting both modal data and flexibility 

assurance criterion. Then, the WOA method with good 

convergent performance and global searching ability is 

adopted to provide an accurate solution to the SDI problem. 

Numerical simulations on a simply-supported beam and a 

31-bar truss structures are conducted to assess the 

performance of the proposed WOA-based SDI method. 

Meanwhile, the particle swarm optimization (PSO) and 

dragonfly algorithm (DA) are used to compare with the 

proposed method. Some conclusions can be made as 

follows: 

•  For the given multiple structural damage conditions 

under environmental noises, the WOA-based SDI method 

can effectively locate structural damages and accurately 

estimate severities of damages.  

•  Compared with both other optimization methods, 

such as PSO and DA, the proposed WOA-based method 

outperforms better in accuracy and efficiency, it can provide 

a more effective and potential tool for the SDI problem. 

•  The proposed WOA-based SDI method has fewer 

parameters, fast convergent rate, and strong global 

searching ability. 

•  Although the proposed WOA-based SDI method 

performs well in the numerical examples in this study, there 

is still much work to be done in the future. Smaller damage 

conditions and higher noise levels need to be considered, 

and more complicated structures are necessary for 

consideration. And it is necessary to carry out experimental 

verifications in laboratory, further field tests to verify the 

possibility of applying the proposed method to practical 

engineering. 
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