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1. Introduction 
 

Wind loads in practical engineering often exhibit the 

nonstationary characteristics, which need to be modeled as 

nonstationary random processes, especially in extreme wind 

environments such as tornadoes, typhoons and downburst, 

the nonstationary characteristics of wind loads are more 

prominent. With the continuous appearance of modern 

large-span structures, more and more attentions have been 

paid to nonstationary wind loads, and the accurate and 

efficient numerical simulation of nonstationary processes is 

the premise for the study of the aerodynamic characteristics 

of structures (Huang et al. 2015, Zentner et al. 2016, Lin et 

al. 2017, Tao and Wang 2019). Currently, the time series 

method and the spectral representation method (SRM) are 

two main families of simulation methods for nonstationary 

random processes (Huang et al. 2020). Especially, SRM is 

based on the evolutionary power spectral density (EPSD)  
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with clear physical models describing the time and spectral 

energy of nonstationary processes. So, SRM has the 

advantages of high accuracy, clear theory and unconditional 

stability, and has been widely used in the simulation of 

nonstationary random processes (Priestley, 1965, Liang et 

al. 2007, Li et al. 2013, Liu et al. 2016, Lin et al. 2018, Wu 

et al. 2018, 2019). 
However, since the evolutionary power spectrum is the 

function of both frequency and time, the Cholesky 
decomposition will be carried out at each frequency point 
and time point during the simulation of the non-stationary 
random process. So, the decomposition times will be greatly 
increased. The interpolation method has been used in the 
simulation of stationary wind field, Ding et al. (2018) 
introduced the Lagrange interpolation to simplify the 
computation of Cholesky decomposition of the cross-
spectral density matrix. Tao et al. (2018) discussed the 
effects of different interpolation functions, the interpolated 
points distribution, and interpolation intervals on the 
accuracy and efficiency of the calculation results. To 
improve the computational efficiency of SRM for the 
simulation of non-stationary wind filed, Tao et al. (2018) 
proposed efficient reduced-Hermite bifold-interpolation 
schemes, in which only fixed number of Cholesky 
decomposition is needed in each simulation. Also, Bao et al. 
(2019) conducted Cholesky decomposition at some specific 
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dimension with time-varying coherence based on the wavenumber-frequency spectrum. The simulated multivariable 

nonstationary wind field with time-varying coherence is transformed into one-dimensional nonstationary random waves in the 

simulated spatial domain, and the simulation by wavenumber frequency spectrum is derived. So, the proposed simulation 

method can avoid the complicated Cholesky decomposition. Then, the proper orthogonal decomposition is employed to 

decompose the time-space dependent evolutionary power spectral density and the Fourier transform of time-varying coherent 

function, simultaneously, so that the two-dimensional Fast Fourier transform can be applied to further improve the simulation 
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along the transmission line to illustrate its performances. 
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points in the time and frequency domain considering the 
smoothness and continuity of cubic spline interpolation. 

When the number of simulating points of the wind field 

becomes quite large, such as the simulation of wind field on 

the transmission tower-line system, the dimension of the 

power spectrum density matrix is too large to conduct the 

Cholesky decomposition. To solve such problem, Benowitz 

and Deodatis (2015) proposed a novel stochastic wave-

based model with the specific expression of the 

wavenumber-frequency joint power spectrum. The method 

circumvents the complex Cholesky decomposition. Peng et 

al. (2017) presented a simulation method for multi-point 

nonstationary random processes based on wavenumber-

frequency spectrum, and shown that the proposed approach 

may enhance the simulation efficiency by thousands of 

times when the simulation number is quite large. Some 

researchers (Chen et al. 2018, Song et al. 2018, 2019) 

extended the evolutionary wavenumber-frequency joint 

power spectrum to the simulation of homogeneous or 

nonhomogeneous fluctuating wind field in two-spatial 

dimensions, and proposed uneven discretization strategies 

to reduce the number of discrete points and computational 

cost. 

Zhao et al. (2017) and Peng et al. (2018) discovered the 

time-varying coherence function in the measured 

nonstationary wind field, and there was a big difference 

between the calculated results of structural response with 

and without time-varying coherence function. Recently, 

Huang et al. (2020) applied S-transform-based method to 

measured typhoon winds to obtain time-varying wind 

coherence. So, the simulation of the nonstationary wind 

field with time-varying coherence function is of engineering 

signification. However, currently limited methods for the 

simulation of wind field simulation with time-varying 

coherent function are based on the traditional spectral 

representation method (Zhao et al. 2017, Peng et al. 2018, 

Bao et al. 2019). Due to the need for Cholesky 

decomposition, the simulation efficiency still needs to be 

improved, especially for the simulation of multi-variable 

wind field on the large-span structures or the transmission 

tower-line. 

On the other hand, due to the coupling of frequency and 

time in the evolutionary power spectra of nonstationary 

processes, it is impossible to use the Fast Fourier transform 

(FFT) in trigonometric series superposition. Li et al. (2017) 

employed Taylor series expansion to separate the frequency 

and time in the decomposition spectrum. Peng et al. (2017) 

proposed proper orthogonal decomposition (POD) to 

separate the frequency and time variables in the EPSD and 

speed up the calculation using 2D FFT. Zhao et al. (2017) 

studied the spectral representation method of nonstationary 

wind field with time-varying coherence function, and also 

adopted POD to separate the frequency and time variables 

in EPSD.  
In this paper, an efficient method is proposed for the 

simulation of one-spatial dimension nonstationary 
fluctuating wind field with time-varying coherence function 
based on the hybrid wavenumber-frequency spectrum and 
POD, which can avoid the time-consuming Cholesky 
decomposition and reduce the computing time due to the 
use of 2D FFT after variable separation using POD. The 

remaining part of the paper is organized as: In Sect. 2, the 
details of the proposed efficient simulation method are 
presented, which contain the description of one-spatial 
dimension nonstationary fluctuating wind field with time-
varying coherence by SRM in Sect.2.1, the derivation of 
wavenumber-frequency spectrum for one-spatial dimension 
nonstationary fluctuating wind field with time-varying 
coherence is descried in Sect.2.2, and the factorization by 
POD and simulation scheme via 2D-FFT are presented in 
sect. 2.3. In Sect. 3, the proposed method is applied to the 
simulation of multivariable nonstationary wind field on 
transmission tower-line to validate the performance and 
effectiveness of the proposed method. Finally, some 
conclusions are presented in the conclusion part. 

 

 

2. The proposed method via hybrid wavenumber-
frequency spectrum and FFT 

 
In the proposed simulation method, the multivariate 

nonstationary one-spatial dimension wind field with time-
varying coherence function is transformed into one-
dimensional nonstationary random waves in the space 
domain. The transform relationship between power spectral 
density with time-varying coherence and wavenumber-
frequency spectrum is derived, and finally, the simulation of 
nonstationary wind field via hybrid wavenumber-frequency 
spectrum and 2D FFT can be deduced. 

 

2.1 One- spatial dimension nonstationary 
fluctuating wind field with time-varying coherence 

 

At the height z (one-spatial dimension wind field), the 

nonstationary wind velocity time history of point i, 𝑈𝑖(𝑡) 

can be expressed as the sum of the time-varying mean wind 

velocity and the fluctuating constituent as: 

( )= ( ) ( )+i iU t U t u t
 

(1) 

in which 𝑈(𝑡) is the time-varying mean wind velocity, 

𝑢𝑖(𝑡) is the nonstationary fluctuating wind. For a n point 

multivariate nonstationary random fluctuating wind field

1 2( ) [ ( )  ( )    ( )]u
T

nt u t u t u t=  , the EPSD of the wind field 

with time-varying coherence can be constructed as: 
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where ω is circular frequency, Sii(ω,t) is the auto-spectral 
density at point i, Sij(ω,t) is the cross-spectrum density 
between points i and j. 

( ) ( ) ( ) ( ), = , ,  ,    ij ii jj ijS t S t S t t
 

(3) 

in which ρij(ω,t) is the time-varying coherence function of 

the point i and j. The time-varying characteristics of the 

coherence function have been observed under extreme wind 

conditions in recent years, so the extended Davenport 

coherence function ρij(ω,t) is employed herein as: (Zhao et 

426

javascript:;
javascript:;
javascript:;
javascript:;


 

Simulation of nonstationary wind in one-spatial dimension with time-varying coherence… 

 

al. 2017, Bao et al. 2019):  

 

 

Eq. (5) can be rewritten as: 
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(4) 

where λ is a decay factor, usually λ = 7 for horizontal decay, ε is distance between the two horizontal points. 𝑈𝑖(𝑡)and 
𝑈𝑗(𝑡) is time-varying mean wind velocity which both equal to 𝑈(𝑡) because this paper focus on the simulation of 
nonstationary wind along 1-D transmission line, the vertical dimension is ignored as a simplicity. Therefore, the 
coherence function is independent of point location and the subscript of the coherence function can be removed in Eq. 
(4).  

The correlation between the cross-correlation function Rij(t, t+τ) of two points i, j and the power spectral density is 

as follows: 
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(5) 

in which t is the lag time in the cross-correlation function, x is the spatial coordinate of the simulation point i. 
 

2.2 Wavenumber-frequency spectrum for one-spatial dimension nonstationary fluctuating wind field with time-
varying coherence 

 

For a one-dimensional nonstationary random wave in the space domain f(x,t), let A(κ, ω, x, t ) be the modulation function 

on wavenumber, frequency, space and time, Z(κ, ω) be the random processes with orthogonal increments, f(x,t) can be 

expressed as: (Priestley 1965, Peng et al. 2017, Chen et al. 2018, Song et al. 2018, 2019) 

( ) ( ) ( )
, = , , , ( , )

i
f x t A x t e dZ

 
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+ + +

− −   
(6) 

The wavenumber-frequency spectrum S(W–F)(x, κ, ω, t) of the nonstationary non-uniform random waves is: 

( ) ( ) ( )2

( , , , )= , , , ( , )
W F W F
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− −

 
(7) 

where S(W–F)(κ, ω) is the corresponding stationary and uniform wavenumber-frequency spectrum. The cross-correlation 

function of two points i and j with distance ε and time lag τ can be determined by (Deodatis and Shinozuka 1989, Peng et al. 

2017) 

𝑅𝑖𝑗(𝑡, 𝑡 + 𝜏) 
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(8) 

Let the Fourier transform of the coherence function ρ(ε,ω,t) in terms of the spatial distance ε between point i and j defined 

as: 
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(10) 

By comparing the cross-correlation function of random wave in Eq.(8) with that of random process in Eq.(10), the 
transformation of evolutionary power spectrum density (EPSD) with time-varying coherence to the wavenumber-
frequency spectral density S(W–F)(x,κ,ω,t) can be derived as:  
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(11) 

With Eq. (4) and Eq. (9a), the Fourier transform of the time-varying coherent function can be obtained as: 
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After obtaining the wavenumber-frequency spectrum of the random process, the spectrum representation method can be used 

for sample simulation (Deodatis and Shinozuka, 1989) by: 

𝑢(𝑥, 𝑡) 

= 2 ∑ ∑ √𝑆(𝑊−𝐹)(𝑥, 𝜅𝑚, 𝜔𝑙 , 𝑡)𝛥𝜅𝛥𝜔

𝑁𝜔

𝑙=1

𝑁𝜅

𝑚=1

[
𝑐𝑜𝑠( 𝜅𝑚𝑥 + 𝜔𝑙𝑡 + 𝜙𝑚𝑙

(1)
)

+ 𝑐𝑜𝑠( 𝜅𝑚𝑥 − 𝜔𝑙𝑡 + 𝜙𝑚𝑙
(2)

)
] 

(13) 

where Nκ and Nω is discrete points in the wavenumber domains and frequency domains respectively, κm= mΔκ, ωl = lΔω, 

Δ𝜅 =
𝜅𝑢𝑝

𝑁𝜅
, Δ𝜔 =

𝜔𝑢𝑝

𝑁𝜔
, κup and ωup are the truncation ceiling in the wavenumber domains and frequency domains, 

respectively, 𝜙𝑚𝑙
(1)

 and𝜙𝑚𝑙
(2)

 are the two uniformly distributed in [0.2π] and independent random variables. 

Therefore, the wavenumber-frequency spectrum can be obtained by multiplying of self-power spectral density and the 
Fourier transform of time-varying coherence function, and then the simulation sample can be obtained. The proposed method 
does not require Cholesky decomposition and is suitable for the simulation of multivariable nonstationary random processes, 
especially for the simulation of wind filed on long span bridges or power transmission lines. However, due to the coupling of 
spatial and temporal variables with frequency and wavenumber variables in the wavenumber-frequency spectrum, it is 
impossible to directly use 2D FFT for trigonometric series superposition in Eq. (13), which is computational inefficiency. 

 

2.3 Factorization by POD and simulation scheme via 2D-FFT 
 

In the traditional spectral representation methods, many methods have been developed to decoupling variables, such as 
wavelet decomposition (Zhao et al. 2017), Taylor series expansion (Li et al. 2017), and POD (Huang, 2014). In the researches 
of wind field simulation based on wavenumber- frequency spectrum, Peng et.al (2017) used POD to decouple variables, and 
the algorithm is efficient, but the coherence function was assumed time-invariant. As POD is able to find the optimal 
orthogonal basis of matrix, the original matrix can be approximately reconstructed by using only a few feature vectors 
(optimal orthogonal basis), which dramatically reduce the matrix dimension. Therefore, POD is employed for variable 
separation in this paper. However, because of the influence of the time-varying coherence function, not only the spectral 
density S(ω, t, x) but also the Fourier transform of time-varying coherence function β(t, κ, ω) need to be decoupled. 
Therefore, the POD decoupling method is extended to treat time-varying coherence function in this paper, so that 2D FFT can 
be employed to accelerate the trigonometric series superposition. 

Simply, β(t, κ, ω) and S(ω, t, x) can be expressed as matrices with 𝑁𝑡 × 𝑁𝜅 ⋅ 𝑁𝜔 and 𝑁𝜔 × 𝑁𝑡 ⋅ 𝑛  dimensions, 

respectively 
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(15) 

where Nt is the time index number, n denotes the number of simulation points. Since the time-varying coherence is considered 

in this paper, P in Eq. (14) is taken as an example to be carried out by eigenvectors decomposition. R is the covariance matrix 

of P, which can be obtained by (Deodatis and Shinozuka,1989) 

1
=  T

tnN
R P P

 

(16) 

=p p pR 
 

(17) 

in which 𝜆𝑝and ϕp are the p-th eigenvalues and eigenvectors of R in Eq. (17), respectively. The eigenvalues 𝜆𝑝are arranged 

from large to small. The first few eigenvalues contain most information of the matrix, so reduced-order model is obtained, 

and P can be reconstructed as (Peng et al. 2017): 

( )
1 1
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N N
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(18) 
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in which, 𝑁𝑝is module truncation order, 𝑁𝑝 ≪ 𝑁𝜔. Eq. (18) 

is rewritten as follow: 
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Similarly, Q in Eq. (15) could also be carried out by 

eigenvectors decomposition, and the calculated 

eigenvectors are used as the orthogonal basis, √𝑆(𝜔, 𝑡, 𝑥) 

is reconstructed as 
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(20) 

Then, based on Eq. (11), Eq. (19) and Eq. (20), 

wavenumber-frequency spectrum can be reconstructed as 
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After POD for the separation of variables for both the 
time-space dependent evolutionary power spectral density 
and the Fourier transform of time-varying coherent 
function, 2D FFT can be adopted for efficient calculation of 
trigonometric series superposition.  

By inserting Eq. (21) into Eq. (13), spectrum expression 
after variable separation can be derived as 

𝑢(𝑥, 𝑡)

= 2 ∑ ∑ (∑ 𝜙𝑝

𝑁𝑝

𝑝=1

(𝑡)𝑎𝑝(𝜅𝑚, 𝜔𝑙)

𝑁𝜔

𝑙=1

𝑁𝜅

𝑚=1

⋅ ∑ 𝜑𝑞(𝑥, 𝑡)𝑏𝑞(𝜔𝑙)

𝑁𝑞

𝑞=1

) √𝛥𝜅𝛥𝜔 ⋅ (𝑐𝑜𝑠 (𝜅𝑚𝑥 + 𝜔𝑙𝑡 + 𝜙𝑚𝑙
(1)

)

+ 𝑐𝑜𝑠 (𝜅𝑚𝑥 − 𝜔𝑙𝑡 + 𝜙𝑚𝑙
(2)

))          

= 2 ∑ ∑ 𝜙𝑝(𝑡)𝜑𝑞(𝑥, 𝑡) ∑ ∑ 𝑎𝑝(𝜅𝑚, 𝜔𝑙)𝑏𝑞(𝜔𝑙)√𝛥𝜅𝛥𝜔

𝑁𝜔

𝑙=1

𝑁𝜅

𝑚=1

𝑁𝑞

𝑞=1

𝑁𝑝

𝑝=1

⋅ (𝑐𝑜𝑠 (𝜅𝑚𝑥 + 𝜔𝑙𝑡 + 𝜙𝑚𝑙
(1)

) + 𝑐𝑜𝑠 (𝜅𝑚𝑥 − 𝜔𝑙𝑡 + 𝜙𝑚𝑙
(2)

)) 

(22) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1 Flow chart of the proposed algorithm 
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By adjusting the order of series superposition, Eq. (22) 

can be simplified as 

( ) ( ) ( )
1 1

( ) 2 , , 
= =

= 
p qN N

p q pq

p q

u x,t t x t u x t

 

(23) 

𝑢𝑝𝑞(𝑥, 𝑡) = ∑ ∑ 𝑎𝑝(𝜅𝑚, 𝜔𝑙)𝑏𝑞(𝜔𝑙)√𝛥𝜅𝛥𝜔

𝑁𝜔

𝑙=1

𝑁𝜅

𝑚=1

⋅ (𝑐𝑜𝑠(𝜅𝑚𝑥 + 𝜔𝑙𝑡 + 𝜙𝑚𝑙
(1)

)

+ 𝑐𝑜𝑠(𝜅𝑚𝑥 − 𝜔𝑙𝑡 + 𝜙𝑚𝑙
(2)

)) 

(24) 

Eq. (24) can be expressed in discrete form:  

( )
1 2 1 21 2( ) Re  = +pq pq

pq k k k ku k x,k t E E
 

(25) 

where Re (·) denotes real number, 𝑘1 = 1,2, . . . 𝑀1, 𝑘2 =
1,2, . . . 𝑀2 . To avoid aliasing,  𝑀1 ≥ 2𝑁𝜅 and 𝑀2 ≥

2𝑁𝜔are required. By the sampling theorem, 𝛥𝜅𝛥𝑥 =
2𝜋

𝑀1
 , 

𝛥𝜔𝛥𝑡 =
2𝜋

𝑀2
. 𝐸𝑘1𝑘2

and 𝐸̃𝑘1𝑘2
can be calculated by 2D FFT:  

𝐸𝑘1𝑘2

𝑝𝑞
= ∑ ∑ 𝐷𝑛1𝑛2

𝑝𝑞

𝑀2

𝑛2=1

𝑀1

𝑛1=1

𝑒𝑥𝑝 (𝑖
2𝜋𝑛1𝑘1

𝑀1

+ 𝑖
2𝜋𝑛2𝑘2

𝑀2

) (26) 

𝐸̃𝑘1𝑘2

𝑝𝑞
= ∑ ∑ 𝐷̃𝑛1𝑛2

𝑝𝑞

𝑀2

𝑛2=1

𝑀1

𝑛1=1

𝑒𝑥𝑝 (𝑖
2𝜋𝑛1𝑘1

𝑀1

－𝑖
2𝜋𝑛2𝑘2

𝑀2

) (27) 

in which 

𝐷𝑛1𝑛2

𝑝𝑞

= {
2𝑎𝑝(𝜅𝑛1

, 𝜔𝑛2
)𝑏𝑞(𝜔𝑛2

)√𝛥𝜅𝛥𝜔 𝑒𝑥𝑝 (𝑖𝜙𝑛1𝑛2

(1)
)     1 ≤ 𝑛1 ≤ 𝑀1 ,1 ≤ 𝑛2 ≤ 𝑀2

0                                                                                             others
 (28) 

𝐷̃𝑛1𝑛2

𝑝𝑞

= {
2𝑎𝑝(𝜅𝑛1

, 𝜔𝑛2
)𝑏𝑞(𝜔𝑛2

)√𝛥𝜅𝛥𝜔 𝑒𝑥𝑝 (𝑖𝜙𝑛1𝑛2

(2)
)     1 ≤ 𝑛1 ≤ 𝑀1 ,1 ≤ 𝑛2 ≤ 𝑀2

0                                                                                             others
 (29) 

From above equations, space and time variables can be 

separated from frequency and wavenumber variables via 

POD decomposition on the wavenumber-frequency 

spectrum. 𝑁𝑝 ⋅ 𝑁𝑞 times 2D FFT need to be conducted on 

one sample simulation. Since the truncation order is low, 

often the first several modes contain most of the energy, 

only several 2D FFT is requested. So, the arithmetic speed 

of proposed method is obviously faster than the direct 

summation of trigonometric series. The flow chart of the 

proposed algorithm is shown in Fig. 1. 

 

 

3. Application to wind velocity field along a 1-D 
transmission line 

 

To validate the proposed method, a numerical 

simulation of a one-spatial dimensional nonstationary 

longitudinal wind field with time-varying coherence on 

transmission tower-line model is carried out. As shown in 

Fig.2, the height difference of each point in transmission  

 

Fig. 2 Transmission tower-line model 

 

 

Fig. 3 The evolutionary power spectral density 
 

 

line is ignored. The span of transmission line is 1000m, and 

1000 simulating points at equal intervals of 1m on the 

transmission line are simulated by the proposed method. 

Consider the time-varying characteristics of the coherence 

function between each point, and the time-varying 

coherence function is shown by Eq. (4). 

Evolutionary power spectrum and the time-varying 

coherence function can be obtained by updating the time-

varying mean winds (Kitagawa et al. 2003). Take Kaimal 

power spectrum as an example (Peng et al. 2017): 

2

5/3

200 ( )
( , )

2 ( ) 1 50
2 ( )







=
 
+ 

 

u t z
S t

z
U t

U t
 

(30) 

where 𝑢∗ =
𝐾𝑈(𝑡)

𝑙𝑛(𝑧/𝑧0)
, 𝑈̄(𝑡) is the time-varying mean wind 

velocity which satisfies 𝑈(𝑡) = 𝑈0 ⋅ 𝑑(𝑡) , 𝑑(𝑡) = 1 +

𝛼 𝑐𝑜𝑠( 𝜔′𝑡) with 𝛼=0.4, 𝜔′=0.006. At the height =50mz

, the designing wind velocity 𝑈0 = 30m/s , Karman 

constant K=0.4. To simulate the non-uniformity of power 

spectral density, in general, the surface roughness for the 

length between points 1 to 500 is assumed 𝑧0 = 0.001, 

while 𝑧0 = 0.005 is assumed for the length between points 

501 to 1000. The upper limit of cut-off frequency is 

𝜔𝑢𝑝=2𝜋  with discrete points in frequency domain 

𝑁𝜔=1024, the upper limit of cut-off wavenumber is 𝜅𝑢𝑝 =

𝜋, with discrete points in wavenumber domain𝑁𝜅=1024, 

the time interval is 𝛥𝑡=0.5s  and the interval distance 

among simulating points is 𝛥𝑥=1m. 
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It is worth noting that there are 1024 discrete points in 

wavenumber domain in this example, the number of 

simulation points in space domain is twice of discrete points 

in wavenumber domain, namely there are 2048 simulation 

points. Only the first 1000 simulation points are selected in 

this example. The selection of large discrete points in 

wavenumber domain is for the accurate simulation of wind 

field (Peng et al. 2017). Fig. 3 shows the evolutionary 

power spectral density with first 500 simulating points. It is 

clear that spectral density first increases with time and then 

decreases, the time-varying characteristic is obvious, and 

the energy is concentrated at high frequencies. 

Based on the proposed method, 1000 points of 

transmission line model in Fig.2 are simulated. Objective  

 

 

 

 

Fig. 6 The time-varying variance of the 1st point 

  

Fig. 4 The comparison between the reconstructed and target spectra 

 

 

(a) The time history of fluctuating wind velocity at the 1st 

point 

(b) The time history of fluctuating wind velocity at the 10th 

point 

 

(c) The simulated time history of fluctuating wind velocity at the 100th point 

Fig. 5 The time history of fluctuating wind velocity at different simulating points 

431

javascript:;
javascript:;
javascript:;


 

Xiongjun Yang, Ying Lei, Lijun Liu and Jinshan Huang 

 

 

 

function is carried out by POD decomposition using Eqs. 

(19-20). The first three eigenvalues of P and Q are 4.41, 

0.014, 3.4×10-5 and 306.31, 3.05, 0.019 respectively. It is 

obvious that the first three modes contain the most energy 

of objective matrix. The comparison between the 

reconstructed values and the target values using the first 

three modes are shown in Fig.4, and it is demonstrated that 

the objective function can be reconstructed accurately by 

the first three modes. 

The simulated time history of fluctuating wind velocity 

at the 1st, 10th and 100th points are shown in Fig.5. The 

nonstationary characteristic of wind velocity is obvious. 

The variance of the 1st point at different times is shown in 

Fig.6, which first increases and then decreases with time, 

and reaches the maximums at 512s. 

 

 

The self-correlation function and cross-correlation 

function of two simulating points are calculated by: 

( ) ( ) ( )( ), =Eij i jR t t u t u t +  +
 

(31) 

in which E(·) denotes expectation. 

The correlation function is the joint function of time and 

time lag. The comparison of simulated self-correlation 

function, cross-correlation function and those of the target 

correlation function of the non-stationary wind field are 

shown in Fig.7. From Fig.7, the self-correlation function 

and cross-correlation function are obviously symmetrical 

and reach the maximums when time lag is zero. With the 

increasing of the distance between the simulating points, the 

peak value of the cross-correlation function decreases 

  

(a) Self-correlation of the 1st point (b) Self-correlation of the 10th point 

  

(c) Cross-correlation of the 1st and 10th points (d) Cross-correlation of the 1st and 100th points 

 

(e) Cross-correlation function of the 1st and 501th points 

Fig. 7 The comparison of the self and cross-correlation functions at different points (t=100s) 
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gradually, which conforms to the feature that correlation 

decreases with the increase of distance. The wavelets-based 

approach for estimating EPSD functions of nonstationary 

processes is adopted (Huang and Chen, 2009) and the 

comparison with target value are displayed in Fig.8. From 

the comparisons, the correlation function and EPSD of the 

simulated nonstationary fluctuating wind by the proposed 

method is well matched with the target values, which 

validate the effectiveness and accuracy of the proposed 

method. 

 

 

4. Conclusions 
 

Generally, the coherence function of the multivariate 

nonstationary process is time-varying, but current limited 

studies on the simulation of nonstationary fluctuating wind 

field with time-varying coherence are based on the 

traditional spectral representation method, which is 

inefficient for the simulation of multi-variable wind field to 

large span structures such as transmission tower-line. In this 

paper, an efficient method is proposed for the numerical 

simulation of nonstationary fluctuating wind field in one-

spatial dimension with time-varying coherence via the 

hybrid wavenumber-frequency spectrum and proper 

orthogonal decomposition. Based on the transformation 

relation between evolutionary power spectrum density and 

wavenumber-frequency spectrum for nonstationary process 

with time-varying coherence function, the simulation by 

wave number frequency spectrum is derived. The Cholesky 

decomposition in the traditional spectral representation 

 

 

method which may lead to the singular error is completely 

avoided. Moreover, the efficient proper orthogonal 

decomposition decomposes the time-dependent and space-

dependent evolutionary power spectrum density and the 

Fourier transform of time-varying coherent function 

simultaneously, so that the two-dimensional Fast Fourier 

transform can be applied in trigonometric series 

superposition to further enhance simulation efficiency 

greatly. This proposed algorithm is preferable for wind field 

simulation of long-span structures with large simulation 

numbers. A numerical example of simulating the multi-

variable nonstationary wind field with time-varying 

coherence along the longitudinal transmission tower line 

model has validated that the proposed method can simulate 

the nonstationary wind field efficiently and accurately, 

which provides a basis for the dynamic response analysis of 

the transmission tower-line system under nonstationary 

wind excitations. 
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