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1. Introduction 
 

The subway system has been fast developed for public 

transportation. The dynamic analysis of the subway vehicle-

track coupling system is very important to ensure the 

serviceability of the track and the safety of the train 

vehicles. The dynamic analysis of the vehicle-track 

coupling system has been studied by many researchers. 

Among most of the previous studies, the parameters of the 

system are assumed to be deterministic (Chen 2018, Chen et 

al. 2017). The variation in parameters is often taken into 

consideration by assuming a series of values within certain 

ranges in advance. Then the deterministic analysis is 

conducted according to all these parameters with different 

values (Deng and Cai 2010, Liu et al. 2013). However, in 

practice, both the vehicle and the track are subjected to 

many types of uncertainties, which are unavoidable and 

difficult to forecast. In order to predict the system’s 

dynamic responses accurately, non-determinism has to be 

taken into account. 

Non-determinism approach is typically adopted in 

whole process of the design. There are different sources of 
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uncertainties, such as parametric non-determinism, non-

determinism in the mathematical modeling and numerical 

error (Farkas et al. 2010). Normally, there are three main 

methods to deal with these uncertainties, namely 

probabilistic theory (Wang et al. 2014, Tannert and Haukaas 

2013), interval analysis (Wang and Matthies 2019, Zou et 

al. 2016) and fuzzy set (Chong and Zhi 2014, Doan et al. 

2019). The probabilistic theory has been widely used in the 

analysis of many engineering problems (Chen and Xiao 

2015, Obrien et al. 2010). It normally treats the uncertain 

parameters as random variables whose probability 

distributions are known in advance. Sufficient statistical 

data are needed to build reliable probability distributions of 

these variables. Therefore, the probabilistic theory is limited 

to certain circumstances, such as cases when valid data are 

inaccurate or sparse and the uncertain parameters are not 

random naturally (Ma et al. 2014). 

Interval analysis and fuzzy approaches are becoming 

increasing popular to solve non-probabilistic uncertain 

problems. A fuzzy variable is actually a generalization of an 

interval variable (Adhikari et al. 2011). When the interval 

method is used to model an uncertain variable, the bounds 

of the variable are determined. The fuzzy approaches 

develop this concept by producing a membership function. 

A fuzzy finite element analysis aims to obtain the bounds of 

certain output responses by giving the membership of data 

in the set of input variables. It is actually an uncertainty 

propagation problem, which in principle can be solved 
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based on the so called direct Monte Carlo method. In real 

cases, the direct Monte Carlo method usually requires a 

great amount of computing time, thus, the most important 

task is to reduce the computational cost. As the fuzzy 

variables are a generalization of interval variables, the 

methods used in interval analysis such as classical interval 

arithmetic (Moore 1966), affine analysis (Manson 2005, 

Degrauwe et al. 2010) and vertex theorems (Qui et al. 

2005) can be adopted. Many methods (Hinke et al. 2009, 

De et al. 2008, De et al. 2009) have been developed for 

fuzzy uncertainty propagation. Among these methods, the 

high dimensional model representation (HDMR) method 

(Alis and Rabitz 2001, Li et al. 2001, Sobol 2003) has been 

extensively studied. The HDMR method (Chowdhury 2008) 

is developed to express the complex input-output 

relationship in terms of hierarchical correlated function 

expansions. The uncertain analysis of the approximated 

function can then be well estimated by a Monte Carlo 

method. For the finite element analysis, the approximated 

function are quantitatively reduced, and computational cost 

can be reduced severely without compromising accuracy. 

In this paper, the parameters of the vehicle-track 

coupling system are defined as fuzzy variables to consider 

the uncertainty of the railway system. A new approach 

based on the HDMR method is proposed to calculate the 

bounds of the system dynamic response. Firstly, the 

dynamic responses of the vehicle-track coupling system 

with fuzzy variables are expressed by a component function 

based on the HDMR method. Then the component function 

is transformed into Lagrange interpolation function. Finally, 

the bounds of the system’s dynamic responses are estimated 

by the dynamic responses of several sample points. This 

method predicts the bounds of the system’s dynamic 

responses by using the Monte Carlo method on the 

interpolation polynomials of Lagrange interpolation 

function. This avoids directly the expensive Monte Carlo 

process on the motion equation of the vehicle-track 

coupling system, which greatly shortens the calculation 

time and improves the efficiency. A numerical example of 

the vehicle-track coupling system is analyzed to verify the 

proposed method. The calculated results are compared with 

those calculated by the direct Monte Carlo method, which 

shows that the proposed method is effective and efficient to 

predict the bounds of the system’s dynamic responses with 

fuzzy variables. 

 

 

2. Dynamic response analysis with uncertainty  
 

For the vehicle-track coupling system, e.g. vehicle 

system or track system, there is more or less uncertainty, 

thus, it is particularly important to analyze its uncertainty. 

Assuming that the vehicle-track coupling system has 

uncertain parameters 𝒛 = [𝑧1, 𝑧2, . . . , 𝑧𝑁𝑐𝑎𝑙]
𝑇 , where Ncal 

represents the total number of uncertain parameters, which 

are defined as L-R fuzzy variables (Li et al. 2020). 

According to the motion equation of the vehicle-track 

coupling system (Ye et al. 2019), the motion equation of the 

vehicle-track coupling system with fuzzy variables can be 

expressed as 
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where 𝑴𝑎(𝑧), 𝑪𝑎(𝑧), and 𝑲𝑎(𝑧) are the mass, damping 

and stiffness matrices of the vehicle system with 

uncertainties, respectively; �̈�𝑎(𝑧), �̇�𝑎(𝑧), and 𝒙𝑎(𝑧) are 

the acceleration, velocity and displacement response vectors 

of the vehicle system with uncertainties, respectively; 

𝒇𝑔(𝑧) is the gravity vector with uncertainty; 𝒇𝑤𝑟(𝑧) is the 

vehicle-track interaction force vector with uncertainty; Da1 

and Da2 represent the indicator matrices of the position of 

the gravitational load and the normal load of the wheel and 

rail of the vehicle model, respectively, and have values of 0 

or 1; 𝑴𝑏(𝑧), 𝑪𝑏(𝑧), and 𝑲𝑏(𝑧) are the mass, damping 

and stiffness matrices of the track system with uncertainties, 

respectively; �̈�𝑏(𝑧) , �̇�𝑏(𝑧) , and 𝒙𝑏(𝑧)  are the 

acceleration, velocity and displacement response vectors of 

the track system with uncertainties, respectively; Db is an 

indicator matrix of the external load position of the track 

model, and has values of 0 or 1; Nb is a track integral shape 

function composed of a set of shape functions of all units of 

the track system; Dw and Dr represent the indicator matrices 

for the transformation of the local displacements to the 

global displacements; Kw is a contact constant; Xirr is the 

track irregularity; and the superscript T represents the 

transpose of the matrix. When the system parameters are 

known, the Eq. (1) can be solved by the numerical method 

(Ye et al. 2019). 

According to the concept of L-R fuzzy variables (Li et 

al. 2020), the uncertainty interval of fuzzy variables of the 

vehicle-track coupling system can be obtained. The bounds 

of the system’s dynamic responses are predicted by the 

direct Monte Carlo method. However, as the motion 

equation of the vehicle-track coupling system is very 

complex, it takes long time to solve the motion equation of 

the system. Therefore, it is extremely inefficient by using 

the Monte Carlo method directly to predict the bounds of 

the system’s dynamic responses. In this paper, the HDMR 

method (Li 2001) is introduced to express the system’s 

dynamic responses with fuzzy variables by a component 

function as 

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

1 2

1 2
1 2

1 2

1
1 2

1 2

1 2

1 1
0

1 ...

,

,

, ,...,

, ,...,

, ,...,

, ,

j

j
j

Ncal

Ncal
r q qr qr r

q q q Ncalv v v q v q q

r q q q

q q Ncal
v q q q

r q q q

v q q

z zzz z

z z z z z

z z z

z z z

z z z

z z

=   

   

            
= + +       

             

 
 

+ +  
 
 

+ +

 



yyy y

y y y y

y

y

y

y ( )...,
Ncalqz

 
 
 
  

 

(2) 

where {𝒚𝑟(𝑧), 𝒚𝑣(𝑧)}0
𝑇

 are the average values of the 

system’s dynamic responses, which are constant terms; 

{𝒚𝑟(𝑧𝑞), 𝒚𝑣(𝑧𝑞)}
𝑇

 represent the system dynamic response 

calculated by only considering the fuzziness of zq in the 

vehicle-track coupling system; {𝒚𝑟(𝑧𝑞1 , 𝑧𝑞2), 𝒚𝑣(𝑧𝑞1 , 𝑧𝑞2)}
𝑇
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represent the system dynamic response with the fuzziness of 

zq1 and zq2 taken into account; Similarly, the more fuzzy 

variables are then included in the formula, and the response 

equation represents the system’s dynamic response 

calculated taking all their fuzziness into account; The last term 

{𝒚𝑟(𝑧𝑞1 , 𝑧𝑞2 , . . . , 𝑧𝑞𝑁𝑐𝑎𝑙), 𝒚𝑣(𝑧𝑞1 , 𝑧𝑞2 , . . . , 𝑧𝑞𝑁𝑐𝑎𝑙)}
𝑇

 represents the 

system’s dynamic responses considering the fuzziness of all 

parameters of the system. By defining �̄� =
{�̄�1, �̄�2, . . . , �̄�𝑁𝑐𝑎𝑙}

𝑇 as the reference point, the terms in Eq. 

(2) can be given as 
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(5) 

Substituting Eqs. (3)-(5) into Eq. (2), the system’s 

dynamic responses can be approximately expressed as 

where {�̃�𝑟(𝑧), �̃�𝑣(𝑧)}
𝑇  is the dynamic responses of the 

system; {𝒚𝑟(�̄�), 𝒚𝑣(�̄�)}
𝑇  is the calculated system’s 

dynamic responses when all the fuzzy variables are taken as 

reference values, and is a constant term; 

{𝒚𝑟(𝑧𝑞; �̄�
𝑞), 𝒚𝑣(𝑧𝑞; �̄�

𝑞)}
𝑇

 is the calculated system’s 

dynamic responses when zq is taken as a fuzzy variable 

while the others are taken as their reference values, namely 

𝑧𝑝 ≡ �̄�𝑝 ， 𝑝 ≠ 𝑞 ; {𝒚𝑟(𝑧𝑞1𝑧𝑞2; �̄�
𝑞1𝑞2), 𝒚𝑣(𝑧𝑞1𝑧𝑞2; �̄�

𝑞1𝑞2)}
𝑇
 

is the calculated system’s dynamic responses when zq1 and 

zq2 are taken as fuzzy variables while the others are taken as 

their reference values, namely 𝑧𝑝 ≡ �̄�𝑝, 𝑝 ≠ 𝑞1, 𝑞2; and τ is 

the order of the HDMR method, and satisfies 1 ≤ 𝜏 ≤
(𝑁𝑐𝑎𝑙 − 1). When τ is odd, the last term in Eq. (6) is 

preceded by "-"; when τ is an even number, the last term in 

Eq. (6) is preceded by "+". According to the HDMR method 

(Sobol 2003), only a few order polynomials of Eq. (6) are 

needed to achieve the accuracy of approximate substitution. 

In this paper, only the first order model is used to 

approximate the system’s dynamic responses. The 

interaction between fuzzy variables and the influence of 

multiple fuzzy variables on the bounds of system’s dynamic 

responses are not considered. Equation (6) can be simplified 

as 
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(7) 

From Eq. (7), when k sample points are assumed for 

each fuzzy variable, in order to obtain the bounds of the 

system’s dynamic responses by using the direct Monte 

Carlo method, the number of parameter combinations is 

∑ [𝑁𝑐𝑎𝑙!/𝑖! (𝑁𝑐𝑎𝑙 − 𝑖)！](𝑘 − 1)𝑖1
𝑖=0 . The computation 

process is time consuming. To improve the calculation 

efficiency, Equation (7) is approximately simplified based 

on the Lagrange polynomial method. The bounds of the 

system’s dynamic responses is approximately simulated by 

the responses at a small number of sample points. Equation 

(7) can be rewritten as 
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(8) 

where s is the odd number of the dynamic response 

functions used in the Lagrange interpolation function (Ma et 

al. 2014); and 𝑧𝑞
𝑗
 represents the jth sample point of fuzzy 

variable zq. After obtaining the uncertainty interval [zqL, zqR] 

of fuzzy variable zq, a group of regularly spaced sample 

points are obtained according to  

𝑧𝑞
1 = 𝑧𝑞𝐿 , 𝑧𝑞

2 = �̄�𝑞 − (𝑠 − 3)(�̄�𝑞 − 𝑧𝑞𝐿)/(𝑠 − 1),  

𝑧𝑞
3 = �̄�𝑞 − (𝑠 − 5)(�̄�𝑞 − 𝑧𝑞𝐿)/(𝑠 − 1), ..., 

𝑧𝑞
(𝑠+1)/2

= �̄�𝑞, …, 

 𝑧𝑞
𝑠−2 = �̄�𝑞 + (𝑠 − 5)(𝑧𝑞𝑅 − �̄�𝑞)/(𝑠 − 1),  

𝑧𝑞
𝑠−1 = �̄�𝑞 + (𝑠 − 3)(𝑧𝑞𝑅 − �̄�𝑞)/(𝑠 − 1) and 𝑧𝑞

𝑠 = 𝑧𝑞𝑅.  

Here, �̄�, zqL and zqR represent the mean, minimum and 

maximum values of the fuzzy parameters, respectively, 

where the number of parameter combinations reduces to [(s-

1)×Ncal+1]. 𝜱𝑗(𝑧𝑞)  is the interpolation function. The 

moving least-squares interpolation functions (Balu and Rao 

2012) are used here, expressed as 
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Through the above approximation process, the dynamic 

responses of the vehicle-track coupling system are 

approximated as a component function based on the HDMR 

method. Then the component function is expressed as a set 

of interpolation polynomials of the Lagrange interpolation  

{
�̃�𝑟(𝑧)

�̃�𝑣(𝑧)
}

= ∑ {
𝒚𝑟(𝑧𝑞1 , … 𝑧𝑞𝜏 ; �̄�

𝑞1,…𝑞𝜏)

𝒚𝑣(𝑧𝑞1 , … 𝑧𝑞𝜏; �̄�
𝑞1,…𝑞𝜏)

}

1≤𝑞1<⋯<𝑞𝜏≤𝑁𝑐𝑎𝑙

− (𝑁𝑐𝑎𝑙 − 𝜏) ∑ {
𝒚𝑟(𝑧𝑞1 ,… 𝑧𝑞𝜏−1; �̄�

𝑞1,…𝑞𝜏−1)

𝒚𝑣(𝑧𝑞1 , … 𝑧𝑞𝜏−1; �̄�
𝑞1,…𝑞𝜏−1)

}

1≤𝑞1<⋯<𝑞𝜏−1≤𝑁𝑐𝑎𝑙

+
(𝑁𝑐𝑎𝑙 − 𝜏 + 1)!

2! (𝑁𝑐𝑎𝑙 − 𝜏 − 1)!
∑ {

𝒚𝑟(𝑧𝑞1 , … 𝑧𝑞𝜏−2; �̄�
𝑞1,…𝑞𝜏−2)

𝒚𝑣(𝑧𝑞1 ,… 𝑧𝑞𝜏−2; �̄�
𝑞1,…𝑞𝜏−2)

}

1≤𝑞1<⋯<𝑞𝜏−2≤𝑁𝑐𝑎𝑙

 

−. . . ∓
(𝑁𝑐𝑎𝑙 − 2)!

(𝜏 − 1)! (𝑁𝑐𝑎𝑙 − 𝜏 − 1)!
∑ {

𝒚𝑟(𝑧𝑞; �̄�
𝑞)

𝒚𝑣(𝑧𝑞; �̄�
𝑞)
}

1≤𝑞≤𝑁𝑐𝑎𝑙

±
(𝑁𝑐𝑎𝑙 − 1)!

𝜏! (𝑁𝑐𝑎𝑙 − 𝜏 − 1)!
{
𝒚𝑟(�̄�)

𝒚𝑣(�̄�)
} 

(6) 
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Fig. 1 Flowchart of the process for estimating the bounds 

of the system’s dynamic responses 

 

 

function. The bounds of the system’s dynamic responses 

can be predicted by using the Monte Carlo method on the 

interpolation polynomials of the Lagrange interpolation 

function, avoiding adopting the Monte Carlo method on the 

motion equation of the vehicle-track coupling system. This 

transformation greatly reduces the amount of calculation 

and improves the calculation efficiency. The detailed 

procedure for calculating the bounds of the system’s 

dynamic responses with fuzzy variables can be described as 

follows: 

Step 1: Construct the equation of vehicle-track coupling 

system. Calculate the motion equation of the vehicle-track 

coupling system with fuzzy variables from Eq. (1).  

Step 2: Calculate the optimum left and right spreading 

coefficients α and β. Confirm the uncertainty interval [zqL, 

zqR] of fuzzy variable at membership degree ζ, which takes 

as a small value as possible. Generate a group of regularly 

spaced sample points according to 

𝑧𝑞
1 = 𝑧𝑞𝐿, 𝑧𝑞

2 = �̄�𝑞 − (𝑠 − 3)(�̄�𝑞 − 𝑧𝑞𝐿)/(𝑠 − 1), 

 𝑧𝑞
3 = �̄�𝑞 − (𝑠 − 5)(�̄�𝑞 − 𝑧𝑞𝐿)/(𝑠 − 1), ...,  

𝑧𝑞
(𝑠+1)/2

= �̄�𝑞, …, 

 𝑧𝑞
𝑠−2 = �̄�𝑞 + (𝑠 − 5)(𝑧𝑞𝑅 − �̄�𝑞)/(𝑠 − 1),  

𝑧𝑞
𝑠−1 = �̄�𝑞 + (𝑠 − 3)(𝑧𝑞𝑅 − �̄�𝑞)/(𝑠 − 1) and 𝑧𝑞

𝑠 = 𝑧𝑞𝑅. 

Estimate the system’s dynamic responses at all these 

sample points from Eq. (1).  

Step 3: Express the system’s dynamic responses as a 

component function based on the HDMR method from Eq. 

(7). Transform the component function to a set of 

interpolation polynomials of the Lagrange interpolation 

function. Calculate the interpolation function 𝜱𝑗(𝑧𝑞) from 

Eq. (9). 

Step 4: Calculate the bounds of the system’s dynamic 

responses from Eq. (8). In this process, the number of the 

motion equations of the vehicle-track coupling system 

needed to be solved is [(s-1)×Ncal+1].  

The flowchart of the prediction process of the system’s 

dynamic responses is shown in Fig. 1. 
 

 

3. Numerical example 
 

A vehicle-track coupling system with a car model of 10 

degree of freedoms and a discrete point-supported track 

model is analyzed to verify the applicability and efficiency 

of the proposed method. The models of the track and the 

vehicle are shown in Fig. 2-3.  

The calculated length of the track is 98.1 m. The track is 

divided into 180 units with the unit distance of 0.545 m 

according to the location of the sleeper. The beam has 181 

nodes and 540 degree of freedoms in total. 

The parameters of the track and the vehicle are shown in 

Table 1-2. In this example, the vehicle parameters are 

defined as symmetric normal fuzzy variables distribution 

without considering the influence of the track parameters 

and track irregularity parameters on the bounds of system’s 

dynamic responses. It is assumed that the fuzzy variables 

are independent of each other. The prediction results of the 

bounds of the vehicle acceleration dynamic responses are 

utilized to verify the precision and efficiency of the 

proposed method. 

According to the properties of the membership function 

of the fuzzy variables, the membership function is 

determined by the spreading coefficient and the nominal 

value of the fuzzy variables. Different spreading 

coefficients produce different shapes of membership 

function, which affects the bounds of the fuzzy variables. In 

theory, the degree of a fuzzy variable changes with the 

requirement of the actual consideration of different projects, 

which is not available in advance. If the bounds of the fuzzy 

variables are too wide, the predicted results will be too 

conservative to lose the significance. Therefore, the fuzzy 

variables are simulated as the normal distribution based on 

the Monte Carlo method to find the optimum spreading 

coefficient initially. For an L-R fuzzy variable with normal 

distribution, the membership degree is always greater than 

0. The lower membership degree can be taken to make a 

horizontal cut in order to obtain the bounds of the fuzzy 

variable. The fuzzy variable can be described as an 

uncertainty set, which can be simulated by probabilistic  

 

 

Table 1 Parameters of the track 

Parameter Unit Value Parameter Unit Value 

E N/m2 2.06×1011 l m 0.545 

I m4 3.217×10-5 ρb kg/m3 1.8×103 

kb N/m 1.1×108 cp N/(m/s) 7.5×104 

mr kg/m 60.64 kp N/m 1×108 

ms kg 125.5 cb N/(m/s) 5.8×104 
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Fig. 3 Vehicle model with 10 degree of freedoms 

 

 

approaches, such as Monte Carlo method. Then the 

influence of fuzzy variables in the vehicle-track coupling 

system on the bounds of the system’s dynamic responses is 

investigated. The fuzzy variable zq is expressed as the 

standard form (zq
#, α, α)LR of the L-R fuzzy variable. The 

full range of the fuzzy variables at a special spreading 

coefficient can be obtained with a sufficiently small 

membership ζ. By assuming ζ=1×10-11, the calculated 

nominal values, spreading coefficient and fuzzy bounds of 

each L-R vehicle fuzzy variable are given in Table 3. 

The influence of the number s of the system’s dynamic 

responses on the predicted bounds is investigated according 

to Eq. (8). A set of regularly spaced sample points can be 

calculated with different s values. The total number of 

sample points is calculated by (s-1)×12+1. The system 

dynamic response at these sample points can be estimated 

according to the Eq. (1), which can be used to calculate the 

Lagrange interpolation function Eq. (9). The bounds of the 

system’s dynamic responses then can be calculated based on 

the Monte Carlo method. To verify the accuracy and 

efficiency of the proposed method, the results are compared 

with those calculated by using the direct Monte Carlo 

method in Eq. (1). The number of the Monte Carlo 

simulations is taken as 1000 in this example.  

Figure 4 shows the time history curve of the bounds of 

the vehicle acceleration response based on the proposed 

 

Table 3 Bounds of the input fuzzy variables of vehicles 

Parameter Unit zq
# α uL uR 

Mc kg 18600 3720 14880 22320 

Me kg 3200 127.17 2560 3840 

Mw kg 1400 111.27 840 1960 

Jc kg·m2 2.3×106 9.14×104 1.84×106 2.76×106 

Je kg·m2 3120 247.98 1872 4368 

Ks1 N/m 1.8×106 7.15×104 1.44×106 2.16×106 

Ks2 N/m 1.7×106 1.35×105 1.02×106 2.38×106 

Cs1 N·s/m 5×105 3.97×104 3×105 7×105 

Cs2 N·s/m 1.9×105 1.51×104 1.14×105 2.66×105 

L1 m 1.25 0.0497 1 1.5 

L2 m 9 0.5193 6 11 

R m 0.4575 0.0182 0.366 0.549 

 

 

method and the direct Monte Carlo method. The vehicle 

acceleration response with deterministic parameters is also 

shown in Fig. 4. As shown in Fig. 4, the time history curves 

of the vehicle acceleration responses to the left and right 

bounds obtained by the proposed method are basically 

consistent with those calculated by the directly Monte Carlo 

method. 

Table 4 gives the bounds of the vehicle acceleration 

responses and relative errors calculated by the proposed 

method and the direct Monte Carlo method. The relative 

errors are calculated by |
�̈�𝑣|PM−�̈�𝑣|MCM

�̈�𝑣|MCM
| × 100%  , where 

�̈�𝑣|PM is the vehicle acceleration response calculated by 

the proposed method; and �̈�𝑣|MCM  is the vehicle 

acceleration response calculated by the direct Monte Carlo 

method. In Table 4, �̈�𝑐𝐿  and �̈�𝑐𝑅  represent the left and 

right bounds of the vehicle acceleration responses; and the 

unit of vehicle acceleration response is m/s2. The unit also 

apply to the tables given below. 

From Table 4, it can be seen that the maximum relative 

error is 5.258% in these three cases of s value, which shows 

the accuracy of the proposed method. At the same time, 

with the increase of the number s of the responses applied 

in the Lagrange interpolation function, the maximum values  

...

...

1 180

98.1m

l l

x(t)

 
Fig. 2 Division of rail unit 

Table 2 Parameters of the vehicle 

Parameter Unit Value Parameter Unit Value Parameter Unit Value 

Mc kg 18600 Je kg·m2 3120 Ks2 N/m 1.7×106 

Me kg 3200 L1 m 1.25 Cs1 N/(m/s) 5×105 

Mw kg 1400 L2 m 9 Cs2 N/(m/s) 1.9×105 

Je kg·m2 2.3×106 Ks1 N/m 1.8×106 R m 0.4575 
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Fig. 4 The upper and lower bounds of vehicle acceleration 

responses calculated by the proposed method and the 

direct Monte Carlo method (s=5) 

 

 
Fig. 5 Relative errors between the two methods in 

calculating the bounds of system responses 

 

Table 4 Comparison of response bounds and relative errors 

with different s 

 
s=5 s=7 s=9 

xcL  
xcR  

xcL  
xcR  

xcL  
xcR  

PD* -0.2308 0.2622 -0.2253 0.2519 -0.2191 0.2475 

DMCM* -0.2213 0.2491 -0.2213 0.2491 -0.2213 0.2491 

Relative 

error 
4.292% 5.258% 1.807% 1.124% 0.994% 0.642% 

*PD: Proposed method; DMCM: Direct Monte Carlo 

method 

 

of relative errors calculated by both two methods discussed 

above are gradually reduced. 

Table 5 gives the calculation times for the above two 

methods with different values of s. As shown in Table 5, 

when s=5, 7, 9, it takes 109.45 s, 256.12 s and 472.91 s, 

respectively, to calculate the bounds of the system’s 

dynamic responses for the proposed method. In the 

meantime, it takes 18723.19 s for the direct Monte Carlo 

method, which is 39.59 times long of the proposed method. 

Table 5 shows that the maximum relative errors of the 

bounds are reduced to 0.994% and 0.642% under the  

Table 5 Comparison of the computation cost 

 
Proposed method DMCM* 

s=5 s=7 s=9  

Number 49 73 97 1000 

Computing 

cost 
109.45s 256.12s 472.91s 18723.19s 

*DMCM: Direct Monte Carlo method 

 

Table 6 Comparison of response bounds and relative errors 

with different ζ 

 
Proposed 

method 
DMCM* 

Relative 

error (%) 

ζ=1×10-12 
xcL  

-0.241 -0.237 1.891 

xcR  
0.254 0.251 1.211 

ζ=1×10-11 
xcL  

-0.225 -0.221 1.807 

xcR  
0.252 0.249 1.124 

ζ=1×10-10 
xcL  

-0.206 -0.203 1.326 

xcR  
0.225 0.223 0.967 

ζ=1×10-9 
xcL  

-0.194 -0.193 0.726 

xcR  
0.219 0.217 0.759 

ζ=1×10-8 
xcL  

-0.190 -0.189 0.421 

xcR  
0.194 0.193 0.391 

*DMCM: Direct Monte Carlo method 

 

 

condition of s=9, which shows the accuracy and efficiency 

of the proposed method in calculating the bounds of the 

system’s dynamic responses. 

 

3.1 The effect of the membership degree on the 
bounds of dynamic responses 

 

When the optimum spreading coefficients and 

membership function are determined, the bounds of fuzzy 

variables are determined by the membership degree. The 

influences of different membership degrees, e.g. ζ=1×10-12, 

1×10-11, 1×10-10, 1×10-9 and 1×10-8, on the prediction of the 

response bounds are discussed here. The number s of 

dynamic responses applied in the Lagrange interpolation 

function is taken as 7. Figure 5 shows the maximum relative 

errors of the left and right bounds of the acceleration 

responses obtained from the proposed method and the direct 

Monte Carlo method under different values of ζ. As shown 

in Fig. 5, the relative errors of the bounds calculated by 

these two methods decreases gradually with the increase of 

the membership degree ζ. 

Table 6 gives the bounds and relative errors calculated 

by above two methods with different ζ. As shown in Table 

6, with the increase of membership degree ζ, the values of 

the left bounds calculated by the two methods are larger, 

while the right bounds are smaller. This means that the 

bounds of the calculated vehicle acceleration responses 

become narrower, which are closer to the responses  
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calculated by the deterministic method based on the 

nominal values of the parameters. This is because as the 

membership degree ζ increases, the bounds of fuzzy 

variables become narrower and closer to the nominal value 

of the parameters. At the same time, with the increase of 

membership degree ζ, the relative errors of the left and right 

bounds tend to decrease. However, when ζ is reduced from 

1×10-11 to 1×10-12, the effect on the calculation accuracy is 

very small. This is because fuzzy variables are defined as 

symmetric normal fuzzy variables. When ζ is small enough, 

most of the values near the nominal values are included 

already. The reduction of ζ value will only increase the 

excessive fuzzy variables, which has little influence on the 

calculation results.  

From Tables 4 and 6, the proposed method can improve 

the accuracy by increasing the number of dynamic 

responses s applied in the Lagrange interpolation function 

or by increasing the value of membership degree ζ. 

However, the increase of s will lead to the increase of 

computing time, while the increase of the membership 

degree ζ will reduce the fuzziness. Therefore, it is necessary 

to select reasonable values of s and ζ to achieve the required 

accuracy and fuzziness based on the actual engineering 

situation. 

 

3.2 Influence of the spreading coefficient on the 
bounds of dynamic responses 

 

The vehicle parameters are assumed as fuzzy variables 

with known probability distributions in this paper. Firstly, 

the optimum spreading coefficient is obtained based on the 

Monte Carlo method. Then the influence of the number s of 

dynamic responses used in Lagrange interpolation function 

and the membership degree ζ on the bounds is studied. 

However, the probability distribution of many parameters in 

engineering practices cannot be known in advance, thus the 

optimal spreading coefficient cannot be estimated initially. 

The influence of the spreading coefficient α on the bounds 

of dynamic responses is now investigated. As the number of 

fuzzy variables is not considered, only the influence of 

vehicle parameter Mc with different spreading coefficients 

on the bounds are analyzed. In this paper, spreading  

 

Table 7 Comparison of response bounds and relative errors 

with different α 

 
Proposed 

method 
DMCM* 

Relative 

error (%) 

α=3220 
xcL  

-0.176 -0.173 1.735 

xcR  
0.195 0.193 1.056 

α=3470 
xcL  

-0.189 -0.185 1.912 

xcR  
0.206 0.204 1.139 

α=3720 
xcL  

-0.194 -0.191 1.698 

xcR  
0.221 0.219 1.106 

α=3970 
xcL  

-0.232 -0.228 1.906 

xcR  
0.252 0.229 1.219 

α=4220 
xcL  

-0.253 -0.248 1.953 

xcR  
0.255 0.242 1.207 

*DMCM: Direct Monte Carlo method 

 

 

coefficient α considered are near the optimum spreading 

coefficients, i.e. α=3220, 3470, 3720, 3970 and 4220. The 

membership degree is taken as ζ=1×10-11. The number of 

dynamic response applied in the Lagrange interpolation 

function is taken as s=7.  

Figure 6 shows the membership functions of the fuzzy 

variable Mc with different spreading coefficients and the 

relative errors of the bounds calculated by the two methods. 

From results in Fig. 6, the bounds of fuzzy variable under 

the same membership degree increase as the increase of the 

expansion coefficient α. The relative errors of the bounds of 

the vehicle acceleration responses calculated by the two 

methods have no obvious regularity. 

Table 7 shows the bounds of the vehicle acceleration 

responses and relative errors calculated by the two methods 

under different spreading coefficients. From Table 7, when 

the spreading coefficients are taken as α=3220, 3470, 3720, 

3970 and 4220, respectively, the left bounds calculated by 

the proposed method are between -0.176 m/s2 and -0.253 

m/s2, while the right bounds ranges from 0.195 m/s2 to 

  
(a) Membership function (b) Relative errors 

Fig. 6 Membership functions and relative errors with different spreading coefficients 
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0.255 m/s2. The maximum relative errors of the left bounds 

are between 1.735% and 1.953%, and the maximum relative 

errors of the right bounds are within the range from 1.056% 

to 1.207%. It can be seen that with the increase of the 

spreading coefficient α, the bounds calculated by the two 

methods also increase. However, the relative error 

magnitude is less than 2%. The results show that the bounds 

of the system’s dynamic responses can be simulated 

accurately under different spreading coefficients, indicating 

that the proposed method is not affected by the shape 

coefficient. 
 
 

4. Conclusions 
 

In order to solve the problem of low efficiency of 

calculating the bounds of the dynamic responses of the 

vehicle-track coupling system with fuzzy variables, a 

method based on high dimensional model representation 

method is proposed in this paper. The dynamic responses of 

the vehicle-track coupling system with fuzzy variables are 

expressed by a component function. The Lagrange 

interpolation method is used to approximate the component 

function. The bounds of system responses are 

approximately predicted based on the responses of several 

sample points, avoiding the expensive Monte Carlo process 

for the whole system responses. 

A numerical study is adopted to demonstrate the 

accuracy and efficiency of the proposed method. The 

influence of the membership degree and spreading 

coefficient on the results of the predicted responses bounds 

is investigated in this study. From the numerical results, the 

following conclusions can be made. (1) The proposed 

method can predict the bounds of the system responses with 

high accuracy and high efficiency; (2) The accuracy can be 

improved by increasing the number of responses involved 

and the membership degree. The increase of the number of 

responses will lead to the increase of computing time, while 

the increase of the membership degree will reduce the 

fuzziness; (3) The bounds of the system’s dynamic 

responses from the proposed method and the direct Monte 

Carlo method increase with the increase of the spreading 

coefficient. The relative error magnitude is typically less 

than 2%. The results show that the bounds of the system’s 

dynamic responses can be predicted accurately under 

different spreading coefficients, which indicate that the 

proposed method is not affected by the shape coefficient. 
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