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1. Introduction 
 

In recent years, the long-span floor system with high-

strength and light-weight material has been increasingly 

used in buildings, sport facilities and airport terminals, as it 

is the structurally desirable (Chen et al. 2016; Rana et al. 

2015). For such floor system, the damping and natural 

frequency are generally low, resulting in a potential 

vibration perceptibility problem induced by human 

activities (Chen et al. 2013, Liu et al. 2019, 2020, Lu et al. 

2012, Zivanovic et al. 2005, Zhou et al. 2016a), such as 

walking (Cao et al. 2018b, Shahabpoor et al. 2017), running 

(An et al. 2016) and jumping (Brownjohn et al. 2016). 

Among the various human activities, walking and running 

are regard as most common. If the dominant frequency of 

walking or running is close to the fundamental natural 

frequency of floor system, an excessive vibration will occur 

and may cause annoyance and discomfort to occupants. 

Taking Nya Ullevi Stadium as an example, the enthusiastic 

audience jumped in accordance with the songs, but 

unfortunately caused severe vibrations on the ground and 

structure in 1985 (Bodare and Erlingsson 1993). To avoid 

such undesirable situations, a further study on the subject is 

warranted. 

Evaluating the vibration serviceability of a floor due to 

human activities is essential to the structural design. Several 

relevant vibration acceptability criteria have been proposed  
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including the AISC Design Guide #11 (Murray et al. 1997, 

2016), GB 50010-2010 (2010), JGJ 3-2010 (2010) and PCI 

Handbook (Wilden et al. 2010), which have assisted 

structural designers to complete their designs. In reviewing 

these criteria, acceleration threshold appears to be the main 

parameter. An easy and convenient calculation method for 

acceleration amplitude would be practically significant. For 

example, the acceleration amplitude ap due to walking, 

jumping and rhythm excitations may be estimated by Eqs. 

(1), (2) and (3), respectively (Murray et al. 1997, 2016, Liu 

et al. 2018) 
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where g is the gravity acceleration, P0 is a constant force set 

as 0.29 kN and 0.41 kN respectively for floors and 

footbridges, fn is the floor’s natural frequency, β and βm are 

the damping ratios, W is the floor’s effective weight, βJ is a 

constant coefficient set as 4341.04 and 17548.53 

respectively for girder and slab, αi is the dynamic 

coefficient (Table 1) and wp and wt are respectively the 

effective weights per unit area of the participants distributed 

over floor and the floor. 

In Eqs. (1)-(3), ap is essentially a function of the natural 
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Table 1 Values of dynamic coefficient αi 

Human activity ith harmonic αi 

Dancing 1st 0.5 

Lively concert or sports event 
1st 0.25 

2nd 0.05 

Jumping exercise 

1st 1.5 

2nd 0.6 

3rd 0.1 

 

 

frequency (or stiffness) of floor system without considering 

different boundary conditions and vibration resonance. 

They are not suitable to calculate the vibration response 

induced by running excitation. So, this study proposes a 

simplified formula to calculate the peak acceleration 

induced by walking or running, which considers the 

boundary condition and natural frequency (resonant or not) 

of the floor system. The organization of this paper is as 

follows: first, the acceleration response of the floor system 

is obtained by the mode decomposition method; second, the 

coefficient αwmn depending on the geometry and support 

condition of floor system and the coefficient αRmn 

depending on the contact duration and natural frequency of 

floor system are obtained to derive the simplified formula; 

finally, specific coefficients Cwαwi/Cs,
2 2 2

w /  i i i mna   −  

(i=1, 2, 3, 4), 2 2

R1/ π ( )  mnt −  are presented to calculate 

the peak acceleration ap induced by walking or running 

excitation. 
 

 

2. Walking and running forcing function 
 

For theoretically analyzing the acceleration response of 

the floor system subjected to walking excitation, several 

walking forcing functions have been considered, such as the 

stochastic model (Racic and Brownjohn 2011), biodynamic 

walking model (Da Silva and Pimentel 2011), agent-based 

model (Shahabpoor et al. 2018) and Fourier load function 

(Wang and Chen 2017). For practical convenience, the 

Fourier load function (Fig. 1) is used in this study, which is 

described by (Smith et al. 2009) 

4

w w w w
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( ) sin(2π )i i
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F t G if t 
=

= −
 

(4) 

where G is the walker’s weight; αwi is the dynamic 

amplification factor of the ith harmonic (Table 2); fw is the 

walking frequency; and θwi is the phase lag (Table 2). 
 

 

Table 2 The values of main dynamic coefficients for the 

Fourier load function 

Harmonic i αwi θwi 

1 0.436(fw-0.95) 0 

2 0.006(2fw+12.3) π/2 

3 0.007(3fw+5.2) -π 

4 0.007(4fw+2.0) -π/2 
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Fig. 1 Fourier load function (G=744.8 N) 
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(b) Relationship between KR and tR/TR 

Fig. 2 Running force function 

 

In analyzing the acceleration response of the floor 

system subjected to running excitations, several running 

forcing functions have also been considered, including the 

Fourier load function (Chen et al. 2012, Occhiuzzi et al. 

2008, Schauvliege et al. 2014) and half-sine-squared load 

model (Bachmann and Ammann 1987). For practical 

reasons, the half-sine-squared load model (Fig. 2) is 

adopted in this study, which is expressed by 

RR R

R

R R

sin(π / )
( )   

0

t tK G t t
F t

t t T


= 

   

(5) 

where KR (=Fp·max/G) is the dynamic impact factor; 

Fp·max is the peak dynamic load; tR is the contact duration; 

and TR is the walking duration. 
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The impact factor KR results from the condition of 

constant potential energy, meaning that the integral of the 

load-time function over one TR must equalize with the load 

at rest (static weight). Fig. 2(b) shows how KR varies with 

the ratio of tR/TR. 
 
 

3. Acceleration response 
 

Considering the building floor as an anisotropic 

rectangular plate with length a and width b (Zhang et al. 

2017), its vertical response corresponding to a walking or 

running load (as shown in Fig. 3) can be determined by 

4 4 4
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where cd is the viscous damping coefficient; D1 and D2 are 

the plate’s flexural rigidities in x and y directions, 

respectively; D3 is the combined rigidity; q is the floor’s 

weight per unit area; W = W(x, y, t) being the plate’s 

deflection; and F(x, y, t) is the walking or running force 

function defined by 
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(7) 

where δ is the Dirac Delta function; xi and yi are the 

coordinates of the ith step in the x and y directions, 

respectively; and td is the duration of the contact between 

foot and floor. 

Without the loss of generality, the following sinusoidal 

function f(t) is adopted to replace walking load function 

Fw(t) to simplify the calculation: 

0( ) sin( )f t f t=
 (8) 

The excitation positions vary during the running time. In 

analyzing the acceleration response at an arbitrary point (xR, 

yR), the acceleration amplitude is the maximum value when 

the excitation point is at or near the analysis point. Without 

the loss of generality, the peak acceleration during the time 

range 0≤t≤tR is determined. In this study, the initial 

condition of the plate is set as 

0
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(9) 

To obtain an approximate solution of Eq. (6), the 

expression of plate’s deflection W(x, y, t) can be written as 

(Mao 2015) 

1 1
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(10) 

where Wmn(x, y) is the vibration mode function. 

Considering the plate’s initial condition [i.e. Eq. (9)], the 

function Tmn(t) (m=1, 2, 3, …, n=1, 2, 3, …) must fulfil the 

following condition: 

0
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Submitting Eq. (10) into Eq. (6) results in 
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(12) 

Eq. (12) must be satisfied for all values of x and y. 

However, the solution for each value of x and y is again 

impossible to obtain. Thus, it is suggested that Wmn(x, y, t) 

be multiplied and integrate the equation over the plate in x 

and y directions. Thus, we obtain 

2
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(17) 

Cs is a coefficient depending on the boundary condition 

(See Table 4 for details). 

Based on the theory of structural dynamics, the solution 

of (13) is 

1) when ωmn = ω, for walking 

w w 0
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D
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(19) 

2

D 1mn mn mn  = −
 

(20) 

For the low damping structure system, the amplitude of 

sinusoidal item in Eq. (19) can be ignored and ωDmn = ω, so 

Eq. (19) can be simplified as 
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So the acceleration amplitude Amn·max is 
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where αwmn represents the contribution from the local shape 

function corresponding to the acceleration amplitude; (xw, 

yw) is the coordinate of arbitrary excitation point; and 

Wmn(xw, yw) is the local shape function corresponding to 

circular frequency ω. If the coefficient αwmn equals to 
10.35

s2
f

C e
−

, the Eq. (23) is the computational formula 

proposed by AISC (Murray et al. 2016). 
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The amplitude of the first term on the righthand side of 

Eq. (25) depends on initial conditions and the inherent 

characteristics of the system, which indicates a rapid 

attenuation of vibration with damping. The second term is 

caused by steady-state forced vibration. Therefore, Eq. (25) 

can be simplified as 
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So, the acceleration amplitude Amn·max becomes as 
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For the walking excitation, the f0 and ω can be replaced 

with αwiG and 2πifw, respectively. 

3) for running 

Adopting Duhamel integral results in 
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Fig. 3 Anisotropic rectangular floor plate with walking/running points 
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The vibration induced by the first item on the righthand 

side of Eq. (30) will decrease quickly with damping; and 

the vibration induced by the second item is the steady-state 

forced vibration response. So, Eq. (30) can be simplified as 
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For concrete floors, the damping ratio ξmn  2% and 

[2(ξmn)2-1]  -1. Hence, Eq. (34) can be further simplified as 

Table 3 Vibration mode functions for various boundary conditions 
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Fig. 4 Outline of prestressed concrete floor #1 (all dimensions in mm) 
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So, the amplitude d2Tmn/dt2 becomes as 
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And the acceleration amplitude ap becomes as 

2

R RR

p 2

2

2 2

R

2

2 2

R

1 1

2

R RR

2
1 1s

( ,  )π 1

( )

π

,  π

π

mn

m n mn mn

mn

m n mn

W x ygGK
a

q

W x ygGK

C qa tb

t 



 

= =

 

= =

=
 −

=
−




 

(37) 

 
Fig. 5 Outline of prestressed concrete floor #2 (all dimensions in mm) 

 

 
Fig. 6 Outline of prestressed concrete floor #3 (all dimensions in mm) 
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Fig. 7 Outline of prestressed concrete floor #4 (all dimensions in mm) 

 

 
Fig. 8 Outline of prestressed concrete floor #5 (all dimensions in mm) 
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(38) 

the Eq. (38) can rewritten as 

R

p

2

R πgGK
a

qab


=

 

(39) 

 

 

4. Coefficient determination 
 

For the various boundary conditions of floor system, the 

function Wmn(x, y) (m=1, 2, 3, …, n=1, 2, 3, …) can be 

written as 

( ,  ) ( ) ( )mn m nW x y W x W y=
 (40) 

where Wm(x) and Wn(y) are respectively the floor’s vibration 

mode shapes in x and y directions, as listed in Table 3. 

 

 

Table 4 The coefficients of Cs of various boundary 

conditions 

Boundary condition Cs 

SSSS 1/4 

SCSC 1/2 

SSSC 1/4 

SFSF 1/2 

CCCC 1.0 

CSCC 1/2 

CFCF 1.0 

SSCC 1/4 

SFCF 1/2 

Notes: “S” = simply supported condition; “C” = clamped 

condition; “F” = free condition. 

 
Fig. 9 Outline of prestressed concrete floor #6 (all dimensions in mm) 
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Fig. 10 The relationship between coefficient αR and 

fundamental natural frequency f1 of prestressed concrete 

floor 

 

 

Taking Eqs. (15) and (40) into account, coefficient Φmn 

for various boundary conditions will be equal to Csab, 

where Cs coefficients are listed in Table 4. 

It is known that the acceleration amplitude caused by 

resonant frequency is much higher than other frequencies. 

So, the peak acceleration amplitude ap induced by walking 

[Eqs. (41) and (42)] (Lou et al. 2012) or running [Eq. (43)] 

is 
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(41) 
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(42) 
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R πgGK
a
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=

 

(43) 

A certain number of field tests should be carried out to 

determine the coefficients αw (Nonresonant condition) and 

αR for obtaining the accurate acceleration amplitude 

induced by walking or running loads. 

In this paper, several prestressed RC floors were 

investigated experimentally with the outline shown in Fig. 

4, Fig. 5, Fig. 6, Fig. 7, Fig. 8 and Fig. 9. Detailed 

descriptions for prototype floors #1, #2, #3, #4, #5 and #6 

are available in the literature Zhou et al. (2017b), Cao et al. 

(2018b), Cao et al. (2018a), Cao et al. (2018c), Zhou et al. 

(2017) and Zhou et al. (2016a). 

According to the previous analysis process, the 

coefficients αR depend on the mode shape and natural 

frequencies of the prestressed concrete floor. Based on the 

experimental results of the prestressed concrete floor 1#, 2#, 

3#, 4# and 5#, the calculated coefficients αR are shown in 

Fig. 10. It indicates that coefficient αR vary significantly 

with fundamental natural frequency f1 of prestressed  
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Fig. 11 The relationship between coefficient αw and 

fundamental natural frequency f1 of prestressed concrete 

floor 

 

 

concrete floor. For safe and conservative vibration design of 

a prestressed concrete floor under running loads, the 

following formulas for αR coefficient are proposed: 

2 3

1R 1 1257.69 83.65 9.58 0.37f f f − + −=
 (44) 

According to the previous analysis process, the 

coefficients αw depend on the mode shape, natural 

frequencies of the prestressed concrete floor and the 

walking frequency fw. Based on the experimental results of 

the prestressed concrete floor 1#, 5# and 6#, the calculated 

coefficients αw are shown in Fig. 11. It indicates that 

coefficient αw vary significantly with fundamental natural 

frequency f1 of prestressed concrete floor. For safe and 

conservative vibration design of a prestressed concrete floor 

under walking loads, the following formulas for αw 

coefficient are proposed: 

2
1 1(0.206 0.096 0.058 )2

1 1W (0.976 0.912 0.263 )
f f

f f e − −
+ +=

 
(45) 

 

 

5. Conclusions 
 

The vibration due to walking or running on long-span 

floor system is studied analytically. For theoretical analysis 

on the acceleration response [Eqs. (41) and (42) for walking 

and Eq. (43) for running], the floor system is simplified as 

an anisotropic rectangular plate and the mode 

decomposition method is adopted. However, the theoretical 

formulae are difficult for practical use. For ease and 

convenience of vibration design, αw and αR coefficients 

equaling to 
124
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1 1 1 s

[ ( ) ]  mn i

i m n

i
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= = =
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R R

2
1 1

( ,  )
 

π
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m n mn

W

t

x y



 

= = −
  are introduced, which respectively 

depend on the geometry and support condition of floor 

system and the contact duration and natural frequency of 

prestressed concrete floor system. Based on experimental 

results of six prestressed concrete floor, the coefficients αw 

and αR are proposed 
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2
1 1(0.206 0.096 0.058 )2

1 1W (0.976 0.912 0.263 )
f f

f f e − −
+ +=

 

2 3

1R 1 1257.69 83.65 9.58 0.37f f f − + −=
 

and the acceleration amplitude ap of the floor system under 

walking or running loads can be more conveniently 

determined by 
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