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1. Introduction 
 

During last decades, functionally graded materials 

(FGM), which are advanced classes of composite materials 

whose composition designed to change continuously within 

the spatial dimensions of structures, have been used in 

many applications such as aerospace, nuclear science, 

optics, chemistry, biomedical, defense, automotive, energy 

conversion, micro/nano-electro-mechanical system 

(MEMS/NEMS) and atomic force microscopes (AFMs) 

Alshorbagy (2011) and Eltaher et al. (2013).  

Since FGMs are promising in numerous applications, 

more researchers have been investigated forced vibrations 

of FGM beam and plate structures in both macro-scale and 

nano-scale theories. He et al. (2001) developed a finite 

element formulation based on classical laminated plate 

theory for the vibration control of FGM plates with 

integrated piezoelectric sensors and actuators. Yang et al. 

(2008) presented an analytical solution of free and forced 

vibrations of inhomogeneous beams containing open edge 

cracks and subjected to an axial compressive force along 

the longitudinal direction. Xiang and Yang (2008) studied 

free and forced vibrations of sandwich FG beam of variable 

thickness under thermally induced initial stresses within the 

framework of Timoshenko beam theory. Şimşek and 

Kocatürk (2009) and Şimşek (2010) investigated free 

vibration characteristics and dynamic behaviors of FG  
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simply supported beams under a concentrated moving 

harmonic load. Doroushi et al. (2011) investigated free and 

forced vibration characteristics of an FG beam under 

thermo-electro-mechanical loads by using the higher-order 

shear deformation beam theory. Shooshtari and Rafiee 

(2011) presented multiple time scale solutions to study the 

nonlinear forced vibration of FG beam made including von 

Kármán geometric nonlinearity. Assie et al. (2011) 

developed an efficient numerical algorithm to investigate 

the dynamic transient response of orthotropic viscoelastic 

composite laminates under step-pulse and sin-pulse forces. 

Malekzadeh and Monajjemzadeh (2013, 2015) investigated 

linear and nonlinear dynamic responses FG plates in 

thermal environment under moving load includes the effects 

of initial thermal stresses and elastic foundations effects. 

Eltaher et al. (2014) studied free vibration of nonlinear 

material graduations of nonlocal Timoshenko nanobeams by 

using finite element method.  

Su et al. (2016) developed a unified solution for free and 

transient vibration response of FG piezoelectric curved 

beam within the framework of Timoshenko beam theory. 

Wang and Wu (2016) studied dynamic response of an 

axially FG beam under thermal environment and subjected 

to a moving harmonic load within frameworks of classical 

and Timoshenko beam theories. Akbaş (2016 & 2017) 

exploited modified couple stress theory to investigate the 

dynamic response of simple supported viscoelastic 

nanobeams rested on Winkler-Pasternak elastic foundation 

and excited by a transverse triangular impulse force. Akbaş 

(2018a&b) modified his previous model to include crack 

effect on the dynamic response of viscoelastic behaviors of 

nanobeams. Akbaş (2018c) investigated free and forced 

vibration of a bi-material composite beam. Albino et al. 

(2018) studied nonlinear dynamic behaviors of risers 
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manufactured with functionally graded materials and 

modeled by 3D beam element. Andrianov et al. (2018) 

defined and solved the problem of an optimized structural 

topology of the simply supported beam made from 

functionally graded material (FGM) enabling achievement 

of a maximum buckling load. Eltaher et al. (2018a) and 

Attia et al. (2018) analyzed thermoelastic crack pipe 

manufactured by FGM and conveyed natural gas by using 

finite element method. Chen et al. (2018) investigated 

thermo-elastic vibration behaviors of FGM beams with 

general boundary conditions by using a higher-order shear 

deformation beam theory. Eltaher et al. (2018b) 

demonstrated an analytical solution of resonance 

frequencies of size dependent regular square perforated 

nonlocal nanobeams. Huang et al. (2018) illustrated the 

effect of material graduation through the axial direction on 

whirling frequencies and critical speeds of a spinning 

Timoshenko beam. 

Akbaş (2019a) studied nonlinear behavior of a FG 

cantilever beam under non-uniform hygrothermal effect and 

exploited finite element method and Newton-Raphson 

method with incremental displacement to solve proposed 

model. Akbaş (2019b) analyzed forced vibration of 

sandwich deep beams made of sandwich FGM including 

porosity effects. Abdalrahmaan et al. (2019) and Almitani et 

al. (2019) developed a unified mathematical model to 

investigate free and forced vibration responses of perforated 

thin and thick beams. Eltaher et al. (2019a) illustrated 

influences of sine and cosine periodic and nonperiodic 

imperfections modes on buckling, postbuckling and 

dynamics of beam rested on nonlinear elastic foundations. 

Eltaher et al. (2019b) studied bending and vibrational 

behaviors of piezoelectric nonlocal nanobeam including 

surface elasticity by using finite element method. Esen 

(2019) developed a modified finite element model to 

analyze the transverse vibrations of Timoshenko FG beams 

rested on two-parameter foundations and subjected to a 

variable-velocity moving mass. Hamed et al. (2019) studied 

bending behaviors of FG porous nanobeams with four types 

of porosity (i.e.; the classical power porosity function, 

thesymmetric with mid-plane cosine function, bottom 

surface distribution and top surface distribution). Based on 

the high-order coupling (HOC) modeling theory, Li et al. 

(2019) investigated vibration control of a rotating rigid-

flexible coupled smart FG beam structure with a lumped 

mass and two piezoelectric films in temperature field. 

Rajasekaran and Khaniki (2019) studied size-dependent 

forced vibration of non-uniform bi-directional FG beams 

embedded in elastic environment and carrying a moving 

harmonic mass. Wang et al. (2019) investigated vibration 

response of FG graphene nanoplatelet reinforced composite 

beam under two successive moving masses. Mohamed et al. 

(2019) and Emam et al. (2019) studied analytically 

postbuckling of imperfect nanobeam by using classical 

Euler beam theory. Hamed et al. (2020) and Eltaher and 

Mohamed (2020) studied the buckling of sandwich 

composite beam under variable axial load with and without 

elastic foundation.      
According to literature reviews, previous studies and 

authors’ knowledge the transient dynamic response of two-
dimensional beams with functionally graded layers under 

different nonharmonic dynamic loads has not been 
investigated. So, this article tends to fill this gap and 
illustrates transient responses of sandwich FG deep beam 
under generalized force functions. The following paper is 
organized as follows: - Section 2 focused on problem 
formulation, which include kinematics assumptions of 
displacement fields, constitutive equations of 2D plane 
stress sandwich FG deep beams, force functions distribution 
in spatial and time domain, and derived equation of motion. 
The numerical procedures and discretization of the FG deep 
beam structure using finite element method and numerical 
Newmark implicit time integration is adopted in this 
section.  Section 3 is devoted to validation and parametric 
studies to present effects of force type, graduation 
parameter, geometrical and dynamical parameters on the 
time response of deep multilayer FG beams. Main remarks 
and conclusion points are highlighted and summarized in 
Section 4.   

 
 

2. Problem formulation 
 

2.1 Mathematical formulation 
 

A geometrical description of thick beam with five 

functionally graded layers under a dynamic point load 𝑃(𝑡) 

at midpoint is shown in Fig. 1.  The beam has a length of L 

through the axial direction x-axis, and thickness h through 

the transverse z-axis. The functionally graded layers are 

located as symmetry according to mid-plane axis. The 

layers are perfectly bonded. The height of each layer is 

equal. Each layer has a gradation material property (i.e.; 

Young modulus E, Poisson’s ratio 𝜈 , and density 𝜌 ) 

through transverse direction, those can be described by a 

power-law distribution as 

𝐸(𝑧) = (𝐸𝑇 − 𝐸𝐵) [
𝑧

ℎ
+
1

2
]
𝑛

+ 𝐸𝐵 (1a) 

𝜈(𝑧) = (𝜈𝑇 − 𝜈𝐵) [
𝑧

ℎ
+
1

2
]
𝑛

+ 𝜈𝐵 (1b) 

𝜌(𝑧) = (𝜌𝑇 − 𝜌𝐵) [
𝑧

ℎ
+
1

2
]
𝑛

+ 𝜌𝐵 (1c) 

in which n is the positive power exponent parameter and 

subscript T and B being the top and bottom properties of the 

layers. 

Based on the continuum mechanics, the thick beam is 

described by plane stress problem. Therefore, the kinematic 

strain-displacement relations are described by  

{

𝜀𝑥𝑥
𝜀𝑧𝑧
𝛾𝑥𝑧
} =

[
 
 
 
 
 
𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑧
𝜕

𝜕𝑧

𝜕

𝜕𝑥]
 
 
 
 
 

{
𝑢
𝑤
} (2) 

in which 𝑢, 𝑤 are the displacements in x and z directions, 

respectively. 𝜀𝑥𝑥 and 𝜀𝑧𝑧 are the normal in-plane strains, 

and 𝛾𝑥𝑧 is the shear in-plane strain. The constitutive stress-

strain equation, in a case of FG layer, can be represented as 
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Fig. 1 Thick beam with five functionally graded layers 

under a dynamic point load 
 

 

{

𝜎𝑥𝑥
𝜎𝑧𝑧
𝜎𝑥𝑧

} = [

𝐶11(𝑧) 𝐶12(𝑧) 0

𝐶12(𝑧) 𝐶22(𝑧) 0

0 0 𝐶33(𝑧)
] {

𝜀𝑥𝑥
𝜀𝑧𝑧
𝛾𝑥𝑧
} (3) 

where 𝜎𝑥𝑥, 𝜎𝑧𝑧 are normal stresses, 𝜎𝑥𝑧 is shear stress and 

coefficients of the stiffness can be described as functions of 

elasticity and Poisson’s ratio as following: 

𝐶11(𝑧) = 𝐶22(𝑧) =
𝐸(𝑧)

1−[𝑣(𝑧)]2
  , 𝐶33(𝑧) =

𝐸(𝑧)

2 [1+𝑣(𝑧)]
  

𝐶12(𝑧) =
𝑣(𝑧)𝐸(𝑧)

1 − [𝑣(𝑧)]2
 

(4) 

Based on the virtual work, the dynamic equilibrium 

equation can be depicted as 

∫𝛿𝜀𝑇𝜎 𝑑Ω

Ω

− ∫𝛿𝑈𝑇 [𝒃 − 𝜌𝑈̈]
𝑇
 𝑑Ω

Ω

− ∫𝛿𝑈𝑇𝑃(𝑡) 𝑑Γ

Γ

= 0 

(5) 

in which Ω is the occupied domain of the body,  Γ is the 

boundary domain, 𝒃 is the body force per unit volume, and 

𝛿𝑈 is the generalized virtual displacement. This equation 

can be represented in terms of displacement field and 

stiffness coefficients as following, 

∫ [𝐶11(𝑧)
𝜕𝑢

𝜕𝑥

𝜕𝛿𝑢

𝜕𝑥
+ 𝐶22(𝑧)

𝜕𝑤

𝜕𝑧

𝜕𝛿𝑤

𝜕𝑧
𝐴

+ 𝐶12(𝑧) [
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
] [
𝜕𝛿𝑢

𝜕𝑧
+
𝜕𝛿𝑤

𝜕𝑥
]

+ 𝜌(𝑧)𝑢̈𝜕𝛿𝑢 + 𝜌(𝑧)𝑤̈𝜕𝛿𝑤] 𝑑𝐴

− ∫ 𝑡 [𝑏𝑥𝛿𝑢 + 𝑏𝑧𝛿𝑤]𝑑𝐴

𝐴

−∫𝑃(𝑡)𝛿𝑤 𝑑Γ

Γ

=  0 

(6) 

where bx and bz are the body force components, ü and 

𝑤̈ are the accelerations. 

 
2.2 Finite element formulation 
 
The considered problem is solved by using finite 

element method using the Twelve-node 2D-plane element 

model as illustrated in Fig. 2. 

 

Fig. 2 Twelve –node 2D plane element 

 
 

where Lx and Ly are element lengths in X and Z directions 

respectively. The displacement vector ({𝑑}) for Twelve-

node plane element is expressed as: 

{𝑑} = [Ø]{𝑑𝑛} & [Ø] = [Ø1 Ø2… .Ø12] (7) 

where {𝑑𝑛} indicates the node displacement vector. 

{𝑑𝑛} =

{
 
 
 
 

 
 
 
 
𝑢1
𝑢2
.
.
𝑢12
𝑤1
𝑤2
.
.
𝑤12}

 
 
 
 

 
 
 
 

 (8) 

where {𝑑𝑛}  is the node displacement vector and its 

components are ui and vi are the displacement components 

for i node. The displacement of any generic element can be 

represented by its nodal values and corresponding functions 

as, 

𝑢 = (𝑢1∅1 + 𝑢2∅2 + 𝑢3∅3 + 𝑢4∅4 + 𝑢5∅5
+ 𝑢6∅6 + 𝑢7∅7 + 𝑢8∅8 + 𝑢9∅9
+ 𝑢10∅10 + 𝑢11∅11 + 𝑢12∅12) 

(9a) 

𝑤 = (𝑤1∅1 +𝑤2∅2 +𝑤3∅3 +𝑤4∅4 +𝑤5∅5
+𝑤6∅6 +𝑤7∅7 + 𝑤8∅8 +𝑤9∅9
+𝑤10∅10 +𝑤11∅11 +𝑤12∅12) 

(9b) 

where ∅𝑖  is the nonlinear interpolation shape functions, 

which can be represented as follows; 

∅1 =
1

32
(1 −

2𝑋

𝐿𝑥
) (1 −

2𝑍

𝐿𝑧
) (−10 + 9 (

4𝑋2

𝐿𝑥
2 +

4𝑍2

𝐿𝑧
2)), 

 ∅2 =
9

32
(1 −

2𝑋

𝐿𝑥
) (1 −

4𝑍2

𝐿𝑧
2) (1 −

6𝑍

𝐿𝑧
) 

∅3 =
9

32
(1 −

2𝑋

𝐿𝑥
) (1 −

4𝑍2

𝐿𝑧
2) (1 +

6𝑍

𝐿𝑧
) , 

(10) 
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∅4 =
1

32
(1 −

2𝑋

𝐿𝑥
) (1 +

2𝑍

𝐿𝑧
) (−10 + 9 (

4𝑋2

𝐿𝑥
2 +

4𝑍2

𝐿𝑧
2))  

∅5 =
9

32
(1 −

2𝑍

𝐿𝑧
) (1 −

4𝑋2

𝐿𝑥
2) (1 −

6𝑋

𝐿𝑥
) , 

∅6 =
9

32
(1 +

2𝑍

𝐿𝑧
)(1 −

4𝑋2

𝐿𝑥
2 ) (1 −

6𝑋

𝐿𝑥
) 

∅7 =
9

32
(1 −

2𝑍

𝐿𝑧
) (1 −

4𝑋2

𝐿𝑥
2) (1 +

6𝑋

𝐿𝑥
) , 

∅8 =
9

32
(1 +

2𝑍

𝐿𝑧
)(1 −

4𝑋2

𝐿𝑥
2 ) (1 +

6𝑋

𝐿𝑥
) 

 ∅9 =
1

32
(1 +

2𝑋

𝐿𝑥
) (1 −

2𝑍

𝐿𝑧
) (−10 + 9 (

4𝑋2

𝐿𝑥
2 +

4𝑍2

𝐿𝑧
2)) ,  

∅10 =
9

32
(1 +

2𝑋

𝐿𝑥
) (1 −

4𝑍2

𝐿𝑧
2) (1 −

6𝑍

𝐿𝑧
) 

∅11 =
9

32
(1 +

2𝑋

𝐿𝑥
) (1 −

4𝑍2

𝐿𝑧
2) (1 +

6𝑍

𝐿𝑧
) , 

∅12 =
1

32
(1 +

2𝑋

𝐿𝑥
) (1 +

2𝑍

𝐿𝑧
)(−10

+ 9(
4𝑋2

𝐿𝑥
2 +

4𝑍2

𝐿𝑧
2)) 

Substituting equations (2), (7)-(10) into equation (6), the 

dynamic equilibrium equation is rewritten as follows: - 

𝑐∫{𝛿𝑑𝑛}
𝑇([𝐵]𝑇[𝐶][𝐵]{𝑑𝑛} + 𝜌(𝑍)[Ø]

𝑇[Ø]{𝛿𝑑̈})𝑑𝐴 

𝐴

−∫{𝛿𝑑𝑛}
𝑇[Ø]𝑇𝑃(𝑡)𝑑Γ

Γ

− 𝑐∫{𝛿𝑑𝑛}
𝑇[Ø]𝑇 {

𝑏𝑋
𝑏𝑧
}

𝐴

𝑑𝐴 = 0  

(11) 

where 

[𝐵] =

[
 
 
 
 
𝜕

𝜕𝑋
0

0
𝜕

𝜕𝑌
𝜕

𝜕𝑌

𝜕

𝜕𝑋]
 
 
 
 

[Ø],  [𝐶] = [

𝐶11(𝑧) 𝐶12(𝑧) 0

𝐶12(𝑧) 𝐶22(𝑧) 0

0 0 𝐶33(𝑧)
] (12) 

After regulation of equation (11), the dynamic 

equilibrium equation writeen as follows: 

[𝐾]{𝑑𝑛} + [𝑀]{𝑑̈𝑛} = {𝐹} (13) 

where [𝐾], [𝑀], {𝐹} and {𝑑𝑛} are the stiffness matrix, 

mass matrix, load vector and displacement vector, 

respectively. The expansions of finite element matrices are 

represented as 

[𝐾] = 𝑐 ∫ [𝐵]𝑇[𝐶][𝐵]𝑑𝐴
𝐴

  (14.a) 

[𝑀] = 𝑐 ∫ 𝜌(𝑧)[Ø]𝑇[Ø]𝑑𝐴
𝐴

  (14.b) 

{𝐹} = ∫ {𝛿𝑑𝑛}
𝑇[Ø]𝑇𝑃(𝑡)𝑑Γ +

Γ
(14.c) 

𝑐 ∫ {𝛿𝑑𝑛}
𝑇[Ø]𝑇 {

𝑏𝑋
𝑏𝑧
}

𝐴
𝑑𝐴  

where, c is the width of the beam. The dynamic point load 

𝑃(𝑡) is assumed to be sinusoidal harmonic, sinusoidal pulse 

or triangle in time domain as following 

𝑃(𝑡) = 𝑃0𝑠𝑖𝑛( 𝑡)   0 ≤ 𝑡 ≪ ∞  Harmonic (15.a) 

𝑃(𝑡) = 𝑃0𝑠𝑖𝑛( 𝑡)    0 ≤ 𝑡 ≪ 𝑡0  Sin Pulse (15.b) 

𝑃(𝑡) = 𝑃𝑡         0 ≤ 𝑡 ≪ 𝑡0    Triangle (15.c) 

where, 𝑃0 is the amplitude of the dynamic load and  is 

the frequency of the dynamic load. In the solution of eq. 

(13), implicit Newmark average acceleration (∝=

0.5 &𝛽 = 0.25) method is used in the time domain. In this 

procedure, the dynamic problem is transferred to system of 

static problem in each step as following 

[𝐾(𝑡, 𝑋)]{𝑑𝑛}𝑗+1 = {𝐹̅(𝑡)}     (16) 

in which 

[𝐾(𝑡, 𝑋)] = [𝐾] + 𝑎0[𝑀]      (17.a) 

{𝐹̅(𝑡)} = {𝐹̅(𝑡)}𝑗+1 + [𝑀] (𝑎0{𝑑𝑛}𝑗 + 𝑎1{𝑑̇𝑛}𝑗 +

𝑎2{𝑑̈𝑛}𝑗)  
(17.b) 

and constant coefficients can be evaluated by  

𝑎0 =
1

𝛽∆𝑡2
 ,    𝑎1 =

1

𝛽∆𝑡
 ,   𝑎2 =

1−2𝛽

𝛽
      (18) 

After evaluating {𝑑𝑛}𝑗+1  at a time 𝑡𝑗+1 = 𝑡𝑗 + ∆𝑡  , the 

acceleration and velocity vectors can be evaluated by  

{𝑑̈𝑛}𝑗+1 = 𝑎0({𝑑𝑛}𝑗+1 − {𝑑𝑛}𝑗) − 𝑎1{𝑑̇𝑛}𝑗 −

𝑎2{𝑑̈𝑛}𝑗   
(19.a) 

{𝑑̇𝑛}𝑗+1 = {𝑑̇𝑛}𝑗 + 𝑎3{𝑑̈𝑛}𝑗 + 𝑎4{𝑑̈𝑛}𝑗+1 (19.b) 

where 𝑎3 = (1 − 𝛼)∆𝑡, and 𝑎4 = 𝛼∆𝑡 

 
 
3. Numerical results 

 

In this section, effects of force type, graduation 

parameter, geometrical and stacking sequence of layers on 

the time response of thick multilayer FG beams. The 

materials of functionally graded layers are considered as 

Aluminum (Al; E=70 GPa, ν=0.3, ρ=2702 kg/m3) and 

Zirconia (E=151GPa, ν=0.3, ρ=3000 kg/m3). The bottom 

surface of the FG layer is Zirconia, the top surface material 

of the FG layer is Aluminum. The dimensions of the FG 

thick beam are considered as follows: c = 0.1 m, h = 0.1 m 

and the length of beam varied according to aspect ratio 

L/h=3, 5, 10 in the numerical process. The height of each 

layer is equal. The five-point Gauss rule is used for 

calculation of the integration. 

In the numerical results, three different stacking 

sequences of layers are considered. The stacking sequences  

360



 

Transient response of 2D functionally graded beam structure 

 

 
Fig. 3 Comparison study: Time responses of the fully 

Aluminium beam for L/h=5, P0=1000 kN, =2 rad/s 

 

 

of layers used are stacking sequence 1: five FGM layers, 

stacking sequence 2: FGM-Homogeneous-Homogeneous-

FGM-FGM and stacking sequence 3: Homogeneous-

Homogeneous- FGM-Homogeneous-Homogeneous layers. 
 

3.1 Validation 
 

To validate the current model, authors adopted previous 

model solved by Ritz procedure and In order to validate 

using method, a comparison study is performed. In the 

comparison study, the maximum vertical displacements of a 

fully Aluminum beam are obtained and compared with 

SAP2000 program for load 1 for L/h=5, P0=1000 kN, =2 

rad/s in figure 3. It is seen from figure 3, that results of this 

study are approximately identical with results of SAP2000. 
 
3.2 Sinusoidal harmonic load 

 
Through this section, a time response of FG thick beam 

structure under sinusoidal harmonic load with frequency 

=2 rad/s with 3 stacking sequences and different 

distribution parameters (n=0, 0.5, 1, and 2). The time 

responses for fully graded five layer sequences with 

different slenderness ratio is presented in figure 4. As 

shown in figure, the responses of three slenderness ratios 

have the same profile of applied force, identical time period, 

and with different deflection amplitudes. The maximum 

amplitude is observed in case of L/h=10 (note that, the 

amplitude of force in this case is one tenth of the amplitude 

of other cases), however, the minimum amplitude is noticed 

in case of L/h=3. Increasing L/h means a reduction in 

overall stiffness, which induces the more deflection 

amplitudes. It is observed at a specified slenderness ratio, 

the amplitude of deflection decreased by increasing the 

power exponent value n, because increasing the constituent 

of FG by zirconia that has higher elasticity rather than 

Aluminum that has lower elasticity.  

All phenomena and notices observed in case of stacking 

sequence 1 are observed in the other two cases stacking 

sequences 2 and 3 as shown in figures 5 and 6, respectively. 

It is noticed in staking sequence 3, the effect of graduation 

exponent n becomes insignificant and the deflection time 

 

 

 

 
Fig. 4 Time responses of thick FG multilayer beam in 

stacking sequence 1 with different n parameters for a) 

L/h=3, a) L/h=5 and c) L/h=10 

 

 

response for any value of n is very identical with time 

response of isotropic thick beam. However, this stacking 

sequence structure may be effective in applications of 

thermal isolation. It is noted that, the stacking sequence has 

not any effect on the time period of oscillation, which 

means that the applied frequency is far from resonance 

frequency. This observation is consistent with the 

vibrational phenomenon of structures. 

 

3.3 Sinusoidal pulse load 
 

Deflection time responses for proposed three stacking 

sequences under dynamic sinusoidal pulse load with 

frequency =2 rad/s, are presented in figures (7-9). It is  
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Fig. 5 Time responses of thick FG multilayer beam in 

stacking sequence 2 with different n parameters for a) 

L/h=3, a) L/h=5 and c) L/h=10 
 

 

noted that, the deflection response follows the response of 

the force during time application. After removing load, the 

deflection reach to static equilibrium for smaller 

slenderness ratios at L/h=3 and 5. However, at L/h=10, 

small oscillation is observed after removing the load, and it 

is continuing for infinite.  

For a specific stacking sequence and slenderness ratio, 

increasing the graduation parameter tends to decrease the 

overall amplitude of vibration, but it has not any effect on 

the time period of oscillations. It is noted that, the stacking 

sequence 1 is stiffer than stacking sequence 2, that is stiffer 

than stacking sequence 3. In case of hand, the graduation 

parameter is insignificant in stacking sequence 3. 

 

 

 

 
Fig. 6 Time responses of thick FG multilayer beam in 

stacking sequence 3 with different n parameters for a) 

L/h=3, a) L/h=5 and c) L/h=10 

 

 

3.4 Triangle pulse load 
 

The time responses of FG multilayer thick beam with 

varying stacking sequences under a triangle pulse load are 

presented in figures (10-12). As shown in figure 10 at 

L/h=3, the deflection time response of thick FG beam is 

increased linearly by increasing the load amplitude until 1 

sec. After removing a load, the beam structure become 

stationary and return to its static equilibrium. It is noted, by 

increasing the graduation of Zirconia the deflection 

amplitude is decreased. As L/h increased from 3 to 5, small 

oscillation is appeared in steady state response. However, 

increasing the slenderness ratio from 5 to 10, significant 

oscillation is noticed and dominated for a steady state  
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response after removing a load. All observations and 

phenomena noticed in stacking sequence 1 are dominated in 

other stacking sequences. In the other hand, changing the  

 

 

stacking sequence 1 to stacking sequence 2, as shown in 

figure 11, the maximum deflection is increased because of a 

reduction in stiffness. 

           

 
 

 

Fig. 7 Time responses of thick FG multilayer beam in stacking sequence 1 with different n parameters for a) L/h=3, a) 

L/h=5 and c) L/h=10 

             

 
 

 

Fig. 8 Time responses of thick FG multilayer beam in stacking sequence 2 with different n parameters for a) L/h=3, a) 

L/h=5 and c) L/h=10 
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Fig. 9 Time responses of thick FG multilayer beam in stacking sequence 3 with different n parameters for a) L/h=3, a) 

L/h=5 and c) L/h=10 

             
 

 
Fig. 10 Time responses of thick FG multilayer beam in stacking sequence 1 with different n parameters for a) L/h=3, a) 

L/h=5 and c) L/h=10 
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Fig. 11 Time responses of thick FG multilayer beam in stacking sequence 2 with different n parameters for a) L/h=3, a) 

L/h=5 and c) L/h=10..1 

 

           
 

 
Fig. 12 Time responses of thick FG multilayer beam in stacking sequence 3 with different n parameters for a) L/h=3, a) 

L/h=5 and c) L/h=10 
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4. Conclusions 
 

The time response analyses of FG multilayer 2D deep 

beam with different stacking sequences under applied 

dynamic load have been investigated based on 2D plane 

stress constitutive equation. Three types of dynamic loads 

are exploited, which are sinusoidal harmonic, sinusoidal 

pulse or triangle in time. Finite element with Twelve-node 

2D-plane element is exploited to discretize the beam 

domain and transferring the governing partial differential 

equation of motion to ordinary equation of motion. 

Newmark time integration is assumed to transform the 

dynamic problem to system of static problems at each time 

step. The comparison study shows the accuracy of proposed 

model. Several conclusions can be deduced from parametric 

studies as follows: -. 

•  The dynamic response of deep FG beam has the 

same profile as applied forces.  

•  Increasing slenderness ratio tends to increase the 

response amplitude and may generate steady state 

oscillation response at higher value at L/h=10. 

•  The graduation parameter has significant effect on 

the maximum deflection, especially for stacking sequences 

1 and 2.  However, in case of stacking sequence 3, the 

graduation parameter has not any effect on vibration 

amplitude. 
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