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1. Introduction 
 

The functionally graded material, as a multifunctional 

inhomogeneous composites formed by two or more 

materials, has been widely applied to manufacture 

actuators, sensors, transducers, structural member, etc. 

(Arioui et al. 2018, Arefi 2015, Park et al. 2016, Galeban et 

al. 2016) and has gradually attracted many research 

attentions during the last three decades (Nabil et al. 2017, 

Nguyen and Tran 2018, Fallahnejad et al. 2018, Jrad et al. 

2018, Messaoudi et al. 2018). The main characteristics of 

functionally graded materials is that the material properties, 

such as elastic modulus, Poisson’s ratio, fracture energy 

release rate, etc., and volume fractions smoothly and 

continuously vary in one or more desired directions (Gu and 

Asaro 1997, Cheng et al. 2018, 2019). The main advantages 

of functionally graded materials includes alleviating stress 

concentrations, reducing thermal stress and residual stress, 

improving fracture toughness enhancing bonded strength  
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and optimizing the mechanical responses under different 

loading conditions (Arioui et al. 2018, Arefi et al. 2015, 

Messaoudi et al. 2018, Cheng et al. 2019). In fact, at the 

designing stage of producing processes, some defects and 

cracks inevitably occur in the functionally graded materials. 

During the serving process of functionally graded materials, 

components of functionally graded materials are often 

subjected to mechanically dynamic or shock loads, which 

will induce stress concentrations and will result in the 

initiation, propagation and coalescence of cracks, and 

ultimate failure of functionally graded materials. Therefore, 

it is important to investigate the dynamic fracture behaviors 

of functionally graded materials under mechanically shock 

loading conditions in the optimizing design and safe 

utilization of functionally graded components. 

In the past decades, numerous researches have been 

conducted to investigate the dynamic fracture behaviors of 

functionally graded materials using experimental methods, 

analytical approaches and numerical methods.  

For the experimental approaches, the quasi-static mixed-

mode crack initiation and growth in FGM were 

experimentally studied through fracture experiments by 

Abanto-Bueno and Lambros (2002). Similarly, the quasi-

static mixed-mode crack propagation in a FGM beam under 

offset loading were experimentally investigated by Jin et al. 

(2009). They presented a detailed experimental study to 

understand the dynamic fracture behavior of FGMs. The 

dynamic fracture characteristics of FGMs specimen 
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Abstract.  In this article, a developed bond-based peridynamic model for functionally graded materials (FGMs) is proposed to 

simulate the dynamic fracture behaviors in FGMs. In the developed bond-based peridynamic model for FGMs, bonds are 

categorized into three different types, including transverse directionally peridynamic bond, gradient directionally peridynamic bond 

and arbitrary directionally peridynamic bond, according to the geometrical relationship between directions of peridynamic bonds 

and gradient bonds in FGMs. The peridynamic micromodulus in the gradient directionally and arbitrary directionally peridynamic 

bonds can be determined using the weighted projection method. Firstly, the standard bond-based peridynamic simulations of crack 

propagation and branching in the homogeneous PMMA plate are performed for validations, and the results are in good agreement 

with the previous experimental observations and the previous phase-field numerical results. Then, the numerical study of crack 

initiation, propagation and branching in FGMs are conducted using the developed bond-based peridynamic model, and the influence 

of gradient direction on the dynamic fracture behaviors, such as crack patterns and crack tip propagation speed, in FGMs is 

systematically studied. Finally, numerical results reveal that crack branching in FGMs under dynamic loading conditions is easier to 

occur as the gradient angle decreases, which is measured by the gradient direction and direction of the initial crack. 
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consisting of compositionally graded glass-filled epoxy 

plates with initial edge-cracks along the material gradient 

were researched using the mixed-mode dynamic fracture 

experiments by Kirugulige and Tippur (2006). Rousseau 

and Tippur (2001) performed an experimental study of the 

crack-tip deformation and fracture parameter histories in 

compositionally graded glass-filled epoxy under low 

velocity impact loading.  

For the analytical approaches, Cheng et al. (2012) 

studied the interface crack of two dissimilar bonded 

functionally graded strips with arbitrary distributed 

properties under plane deformations using analytical 

method. Pan et al. (2015) used the analytical method to 

investigate the effects of the nonhomogeneity constants and 

geometric parameters on the stress intensity factors (SIFs) 

for collinear cracks in functionally graded materials with 

general mechanical properties. Aizikovich et al. (2015) 

developed the semi-analytical solution for mode I penny-

shaped crack in soft inhomogeneous layer. Gupta et al. 

(2018) applied the analytical approaches to study the effect 

of crack location on vibration analysis of partially cracked 

isotropic and FGM micro-plate with non-uniform thickness. 

Boujadjra et al. (2018) investigated the bending response of 

FGM plate using a new quasi 3D shear deformation theory 

to reveal the effect of microstructures in FGMs.  

As the computer technique rapidly develops, numerical 

method gradually becomes an efficient tool to study fracture 

characteristics in solids under different loading conditions. 

Compared with the experimental tests, numerical 

simulations are rarely expensive and can provide physical 

insights of various fracturing phenomena, which may be 

difficult to observe and obtain from the laboratory 

experiments since the monitoring techniques are limited. 

Finite element methods (FEM) with efficient remeshing 

techniques (Areias et al. 2013), extended finite element 

method (XFEM) (Moës et al. 1999,2002), phase field 

(Francfort and Marigo 1998, Bourdin et al. 2000, Miehe et 

al. 2010, Carlsson and Isaksson 2019), model based on the 

screened Poisson equation (Areias et al. 2016, 2018) and 

specific meshfree method (Rabczuk and Zi 2007) and 

cracking particle method (CPM) (Rabczuk and Belytschko 

2004, 2007) were developed to study different fracture 

problems in homogeneous and inhomogeneous solids. 

Although the aforementioned numerical methods have 

successfully simulated the crack initiation, crack 

propagation and crack coalescence in homogeneous and 

composite solids, there still exist some disadvantages in the 

previous numerical methods (Kou 2019a, b, c). 

Peridynamic theory is based on the nonlocal continuous 

mechanics, which was proposed by Silling (Kou et al. 

2019a, b, c) to solve the discontinuous problems in solids. 

In the peridynamic theory, each material point is interacted 

with the other material points within a certain region around 

it via peridynamic bonds. The interactions between material 

points in the peridynamic theory occur not only at the local 

regions, but also happen at the nonlocal regions (Silling 

2005). The main characteristic of peridynamic theory is that 

the differential governing equation of motions in the 

classical continuum is replaced by the integral-differential 

equation without any spatial derivatives, which leads to the 

continuous behaviors at crack surfaces and results in 

overcoming the singularities at crack tips. The other 

important feature of peridynamics is the introduction of a 

length parameters, named as horizon, which specifies the 

size of the region where nonlocal interactions take place. 

The horizon, which can be regarded as the radius of a circle 

in two-dimensional cases and of a sphere in three-

dimensional cases, can be associated to the characteristic 

length-scale of materials or the considered phenomenon 

(Bobaru and Hu 2012, Chen et al. 2019, Chen and Bobaru 

2015, Chen et al. 2016, Silling 2014, Shojaei et al. 2016, 

2018, Ni et al. 2019). Due to the characteristics of 

peridynamic theory, this numerical methodology is well 

suited for simulating the initiation, propagation, branching 

and coalescences of cracks in solid mechanics, especially in 

situations where the crack paths is not known in advance 

(Cheng et al. 2015). In addition, Wang et al (2019a) pointed 

out that the effective constitutive equations of 

inhomogeneous materials are nonlocal and can be described 

by the peridynamic formulation which has some special 

elastodynamic characteristics (Wang et al. 2019b, Wang and 

Wang 2019). 

In spite of limitation of the fixed Poisson’s ratio in the 

version of bond-based peridynamics (Silling et al. 2007), 

the simplest mathematics formulations of bond-based 

peridynamics allow it to wide applications in different 

fields. Some scholars applied the bond-based peridynamic 

model to simulate the transient heat conduction (Bobaru and 

Duangpanya 2010, 2012, Wang et al. 2018a, Bazazzadeh et 

al. 2018, 2020) and thermomechanical fracture problems 

(Wang et al. 2018b, c, d, 2019c, Wang and Zhou 2019). 

Bobaru and his coworker also studied the dynamic fracture 

and branching characteristics in homogenous materials (Ha 

and Bobaru 2010, 2011), and pitting corrosion (Chen and 

Bobaru 2015). Madenci and his coworker developed the 

bond-based peridynamic model to study the static and 

dynamic fracture behaviors (Hu and Madenci 2016, 2017, 

Hu et al. 2017). The nucleation and propagation of cracks in 

crystal solids were also numerically investigated (Luo et al. 

2018, Luo and Sundararaghavan 2018). Hong and his 

coworker developed the bond-based peridynamic model to 

simulate crack initiation, propagation and coalescence in 

rock-like materials under compression (Ha et al. 2015, 

Wang et al. 2016, Wang et al. 2017, Lee et al. 2017).  

Some scholars have tried to improve the computational 

ability of bond-based peridynamics from different aspects. 

Huang et al. (2015 a, b) implemented the kernel functions 

into the bond-based peridynamic model to solve the quasi-

static and dynamic fracture problems. Ren et al. (2016, 

2017) proposed the dual-horizon bond-based peridynamics 

to overcome the occurrence of ghost forces. The adaptive 

coupled bond-based peridynamic model with the finite 

element method (and finite point method) to study dynamic 

fracture problems in homogeneous brittle solids (Shojaei et 

al. 2016, 2018, 2019a). Wang et al. (2017, 2018) developed 

the two-dimensional and three-dimensional conjugated 

bond-pair-based peridynamic model to study fracture 

problems in brittle solids, which overcome the limitation of 

fixed Poisson’s ratio. Moreover, Wang et al. (2019d) has 

applied the conjugated bond-pair-based peridynamic model 
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to investigate the crack propagation and coalescence 

process in rock-like materials under compressive-shear 

loading. A bond-based micropolar peridynamic model with 

shear deformability was proposed by Diana and Casolo 

(2019) to study elastic deformation, failure properties and 

initial yield conditions. Ni et al. (2018) developed the bond-

based peridyanmic model with irregular distributions for 

quasi-static fracture problems.  

To authors’ best knowledge, bond-based peridynamic 

model for FGMs has been applied to the study quasi-static 

fracture problems (Cheng et al. 2015) and dynamic fracture 

problems (Cheng et al. 2018, 2019) using the simple 

average numerical method to determine the bond-based 

peridynamic constants. However, the researches on FGMs 

using bond-based peridynamic model are still infrequent. In 

this paper, the main academic contributions of bond-based 

peridynamic methodology for functionally graded materials 

under dynamic loading conditions can be classified into two 

parts. The first contribution is to propose a developed bond-

based peridynamic model for functionally graded materials. 

In the developed bond-based peridynamic model, the bond 

within one horizon can be classified into transverse 

directionally peridynamic bond, gradient directionally 

peridynamic bond and arbitrary directionally peridynamic 

bond based on the geometrical relationship between bonds’ 

direction and gradient direction in FGMs. The developed 

bond-based peridynamic model is applied to simulate 

dynamic fracture behaviors in homogeneous materials. 

Compared with the previous experimental observations and 

phase-field results, the present numerical results show good 

agreements. The second contribution of this study is 

investigations on the influences of gradient directions on the 

dynamic fracture behaviors in FGMs. Meanwhile, the 

dynamic fracture characteristics in FGMs are discussed 

compared with ones in the homogeneous materials.  

This paper is organized as follows: the bond-based 

peridynamic methodology for functionally graded materials 

is stated in Section 2. Numerical validation of the bond-

based peridynamic model for homogeneous PMMA plates 

subjected to dynamic loads are performed in Section 3. The 

directional influence of material properties on dynamic 

fracturing behaviors of FGMs plates under dynamic loading 

conditions is investigated in Section 4. Conclusions are 

drawn in Section 5. 

 

 

2. Peridynamics for FGMs 
 

2.1. Governing equations of motion 
 

The peridynamic theory is a nonlocal continuum theory 

which describes the kinematics of an elastic body 

occupying a region 𝔅0 ⊂ ℝ3  in its undeformed 

configuration and 𝔅𝑡 ⊂ ℝ3 in the deformed configuration. 

The schematic of an elastic body is depicted in Fig. 1. The 

material point 𝐱 interacts with its neighboring point 𝐱′ 

within a region with a finite distance 𝛿, named as horizon, 

i.e.,  

ℋ(𝐱) ∶= {(𝐱′ − 𝐱) ∈ ℝ3||𝐱′ − 𝐱| ≤ 𝛿} (1) 

The relative position vector between two interaction 

material points 𝐱  and 𝐱′  is named as bond vector 𝝃 . 

Furthermore, the deformed bond between two interaction 

material points 𝐲  and 𝐲′  is described by the relative 

displacement vector 𝜼 in the deformed configuration. The 

relative position vector, i.e., bond vector, and the relative 

displacement vector are respectively defined in the 

following forms. 

𝝃 = 𝐱′ − 𝐱 (2) 

𝜼 = 𝐮′(𝐱′, 𝑡) − 𝐮(𝐱, 𝑡) (3) 

where 𝐮 and 𝐮′ are the displacements at two interacting 

material points 𝐱 and 𝐱′ 

The bond-based peridynamic equations of motion in the 

computational domain can be written as (Silling 2000, 

Silling and Askari 2005) 

𝜌(𝐱)
𝜕2𝐮(𝐱, 𝑡)

𝜕𝑡2
= ∫ 𝒇(𝜼, 𝝃, 𝑡)𝑑𝑉𝐱′

ℋ(𝐱)

+ 𝒃(𝐱, 𝑡) (4) 

in which 𝜌 is the mass density, 𝒇 denotes the long-range 

pairwise force density and 𝒃  represents the externally 

applied body force density. 

As stated by Silling and Askari (2005) and Cheng et al. 

(2018, 2019), the long-range pairwise force density 

𝒇(𝜼, 𝝃, 𝑡)  can be derived by microscopic potential 

𝜔(𝜼, 𝝃, 𝑡) at time 𝑡. The microscopic potential 𝜔(𝜼, 𝝃, 𝑡) 

in the materials is dependent on the linearly relative 

elongation magnitude, i.e., bond stretch, and the 

microscopic potential 𝜔(𝜼, 𝝃, 𝑡) in the materials can read 

𝜔(𝜼, 𝝃, 𝑡) =
1

2
𝑐(‖𝝃‖, 𝛿)𝑠2‖𝝃‖ (5) 

where 𝑐(‖𝝃‖, 𝛿) is the micromodulus function, 𝑠 is the 

scalar representing the bond stretch, and ‖𝝃‖ is the length 

of a bond.  

The stretch of a bond can be expressed as 

s =
‖𝝃 + 𝜼‖ − ‖𝝃‖

‖𝝃‖
 (6) 

where ‖𝝃‖ is the length of a bond in the undeformed 

configuration and ‖𝝃 + 𝜼‖  stands for the length of a 

deformed bond in the deformed configuration. 

Then, the pairwise force density can be derived from a 

microscopic elastic potential 𝜔(𝜼, 𝝃, 𝑡)  in the following 

form. 

𝒇(𝜼, 𝝃, 𝑡) =
𝜕𝜔(𝜼, 𝝃, 𝑡)

𝜕𝜼
= 𝑐(‖𝝃‖, 𝛿)𝑠

𝝃 + 𝜼

‖𝝃 + 𝜼‖
 (7) 

where the term 𝝃 + 𝜼 ‖𝝃 + 𝜼‖⁄  denotes the unit vector of a 

deformed bond in the deformed configuration.  

In the original bond-based peridynamic model (Silling 

2000, Silling and Askari 2005), the micromodulus function 

𝑐(‖𝝃‖, 𝛿) is reduced to the form 𝑐(𝛿), which ignores the 

effect of distance between two interacting material points 

on the microscopic elastic stiffness of the bond (Huang et 

al. 2015a, b, Gu et al. 2016). In the present study, the 

improved micromodulus 𝑐(‖𝝃‖, 𝛿) proposed by Huang et 

al. (2015a, b) and Gu et al. (2016) is adopted to construct  
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Fig. 1 A schematic of bond-based peridynamic model in 

the undeformed and deformed configurations 

 

 

the developed bond-based peridynamics for FGMs. The 

improved micromodulus 𝑐(‖𝝃‖, 𝛿) can be written as 

𝑐(‖𝝃‖, 𝛿) = 𝑐(0, 𝛿)g(‖𝝃‖, 𝛿) (8) 

where g(‖𝝃‖, 𝛿) is the kernel function, which reflects the 

distribution of the intensity of long-range force density in 

materials. The kernel function can be expressed as 

g(‖𝝃‖, 𝛿) = {
(1 − (

‖𝝃‖

𝛿
)

2

)

2

      ‖𝝃‖ ≤ 𝛿

            0                      ‖𝝃‖ > 𝛿

 (9) 

where 𝛿 stands for the horizon size.  

By establishing the equivalent relationship between the 

macroscopic strain energy density based on the classical 

continuum mechanics and the microscopic strain energy 

density on the basis of peridynamic theory, the improved 

micromodulus in the bond-based peridynamic model can be 

written in the following form (Huang et al. 2015a, b, Gu et 

al. 2016) 

𝑐(‖𝝃‖, 𝛿) =
315𝐸

8𝜋𝛿3
(1 − (

‖𝝃‖

𝛿
)

2

)

2

 (10) 

where 𝐸 is the Young’s modulus of materials. 

To calculate the critical stretch of a bond for 

determining fracture surface in materials, the peridynamic 

critical energy density stored in a bond is obtained by 

summing the energy required to create unit fracture area in 

peridynamics and equating it to the energy release rate. 

According to Silling and Askari (Silling and Askari 2005), 

to open a fracture surface of; unit area, the energy released 

to break all the bonds connecting each point along 0 ≤ z ≤
𝛿  to its neighbor point in the cylindrical cap for two-

dimensional analysis (see Fig. 2) across the fracture surface 

is summed as 

𝒢0 = 2 ∫ ∫ ∫ [
𝑐(‖𝝃‖, 𝛿)𝑠2‖𝝃‖

2
] ‖𝝃‖𝑑

arccos(
𝑧

‖𝝃‖
)

0

𝛿

𝑧

𝜃𝑑‖𝝃‖𝑑𝑧
𝛿

0

 (11) 

The aforementioned integral, when evaluated and solved 

for the critical stretch of a bond, we can obtain 

 
Fig. 2 The schematic of evaluating strain energy release 

rate in bond-based peridynamic model. 

 

 

𝑠0 = √
1024𝜋𝒢0

7(120𝜋 − 133)𝐸𝛿
 (12) 

Accordingly, the historical function is adopted to 

describe the state of a bond, which is expressed as 

𝜒(𝝃, 𝑡) = {
0     𝑠 ≥ 𝑠0

1     𝑠 < 𝑠0
 (13) 

Then, in a peridynamic formulation of solid mechanics, 

material failure is modeled through a scalar field referred as 

damage defined as the fraction of broken bonds at a 

material point in its horizon 

𝜑(𝐱, 𝑡) = 1 −
∫ 𝜒(𝝃, 𝑡)𝑑𝑉𝐱′

ℋ(𝐱)

∫ 𝑑𝑉𝐱′
ℋ(𝐱)

 (14) 

The value of damage index 𝜑(𝐱, 𝑡) changes from zero 

to one. When 𝜑(𝐱, 𝑡) is equal to one, it represents all the 

bonds attached to a point broken. However, when 𝜑(𝐱, 𝑡) 

equates to zero, it represents the intact materials.  

 

2.2. Bond-based peridynamic model for FGMs  
 

In the developed bond-based peridynamic model for 

FGMs, bonds are categorized into three different types, 

including transverse directionally peridynamic bond, 

gradient directionally peridynamic bond and arbitrary 

directionally peridynamic bond, according to the 

geometrical relationship between directions of peridynamic 

bonds and gradient bonds in FGMs, as shown in Fig. 3. 

To accurate determine the peridynamic bond type, the 

directional angle between bond directional vector and 

functionally graded directional vector is taken into 

consideration. The directional angle 𝜗 can be obtained by 

using the following equation. 

𝜗 = cos−1
𝝃 ∙ 𝒏FGMs

‖𝝃‖ × ‖𝒏FGMs‖
 (15) 

in which 𝝃 is the bond vector between two interacting 

material point within one horizon, 𝒏FGMs  denotes the 

functionally graded directional vector, as shown in Fig. 3. 

Based on the calculated value of the directional angle, 

gradient directionally peridynamic bond, transverse 

directionally peridynamic bond and arbitrary directionally 

peridynamic bond are respectively determined as follows 

Undeformed configuration Deformed configuration

Fracture surface
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Fig. 3 Interactions of a family of material points for the 

functionally graded materials 

 

 

𝜗 = 0° 
Gradient 

directionally bond 
(16a) 

𝜗 = 90° 
Transverse 

directionally bond 
(16b) 

𝜗 ≠ 0° and 𝜗 ≠ 90° 
Arbitrary 

directionally bond 
(16c) 

 

2.2.1 Gradient directionally peridynamic bond 

For the gradient directionally peridynamic bond 

connecting two interacting points 𝐱 and 𝐱′ in FGMs, as 

shown in Fig. 3, the micromodulus of the gradient 

directionally peridynamic bond can be evaluated by the 

average values of material properties at two interacting 

points 𝐱 and 𝐱′, which is same as the previous research 

(Cheng et al. 2015). Similarly, the critical energy release 

rate also can be evaluated using the simple average 

techniques. Therefore, the Young’s modulus 𝐸𝐺(𝐱, 𝐱′) and 

critical fracture energy release rate 𝒢𝐺0(𝐱, 𝐱′)  in the 

gradient directionally peridynamic bond can be respectively 

determined as follows: 

𝐸𝐺(𝐱, 𝐱′) =
𝐸(𝐱) + 𝐸(𝐱′)

2
 (17a) 

𝒢𝐺0(𝐱, 𝐱′) =
𝒢0(𝐱) + 𝒢0(𝐱′)

2
 (17b) 

Based on Eq. (10), the micromodulus at the gradient 

directionally peridynamic bond 𝑐𝐺 can be expressed in the 

following form. 

𝑐𝐺 =
315𝐸𝐺(𝒙, 𝒙′)

8𝜋𝛿3
(1 − (

‖𝝃‖

𝛿
)

2

)

2

 (18) 

Similarly, according to Eq. (12), the critical stretch of a 

gradient directionally peridynamic bond 𝑠𝐺0 can be written 

as follows: 

𝑠𝐺0 = √
1024𝜋𝒢𝐺0(𝒙, 𝒙′)

7(120𝜋 − 133)𝐸𝐺(𝒙, 𝒙′)𝛿
 (19) 

 
2.2.2 Transverse directionally peridynamic bond 
For the transverse directionally peridynamic bond due to 

interactions between material points 𝐱 and 𝐱′ in FGMs, 

as shown in Fig. 3, material properties, such as Young’s 

modulus and critical energy release rate, are same with each 

other. Thus, the Young’s modulus 𝐸𝑇(𝐱, 𝐱′) and critical 

energy release rate 𝒢𝑇0(𝐱, 𝐱′)  in the transverse 

directionally peridynamic bond can be respectively written 

in the following forms. 

𝐸𝑇(𝐱, 𝐱′) = 𝐸(𝐱) = 𝐸(𝐱′) (20a) 

𝒢𝑇0(𝐱, 𝐱′) = 𝒢0(𝐱) = 𝒢0(𝐱′) (20b) 

Based on Eq. (10), the micromodulus at a transverse 

directionally peridynamic bond 𝑐𝑇 can be expressed in the 

following form. 

𝑐𝑇 =
315𝐸𝑇(𝐱, 𝐱′)

8𝜋𝛿3
(1 − (

‖𝝃‖

𝛿
)

2

)

2

 (21) 

Similarly, according to Eq. (12), the critical stretch of a 

transverse directionally peridynamic bond 𝑠𝑇0  can be 

written as follows: 

𝑠𝑇0 = √
1024𝜋𝒢𝑇0(𝐱, 𝐱′)

7(120𝜋 − 133)𝐸𝑇(𝐱, 𝐱′)𝛿
 (22) 

 
2.2.3 Arbitrary directionally peridynamic bond 
For the arbitrary directionally peridynamic bond 

connected to two interacting material points 𝐱 and 𝐱′, it is 

important to determine the corrected Young’s modulus and 

corrected critical energy release rate for simulating the 

mechanical behaviors of FGMs in the framework of 

peridynamics. The weighted projection method is firstly 

used to establish the projected length of arbitrary 

directionally peridynamic bond on the functionally gradient 

directions, as shown in Fig. 3. Then, the projected length of 

arbitrary directionally peridynamic bond on the functionally 

gradient directions in FGMs is applied to determine the 

corrected Young’s modulus 𝐸𝐴(𝐱, 𝐱′) and corrected critical 

energy release rate 𝒢𝐴0(𝐱, 𝐱′)  in the following forms, 

respectively.  

𝐸𝐴(𝐱, 𝐱′) =
𝐸(𝐱) ∙ ‖𝜉𝐱𝐱′‖ + 𝐸(𝐱′) ∙ ‖𝜉𝐱𝐱′‖

2‖𝜉𝐱𝐱′‖ cos 𝜗
 𝜗 ≠ 90° (23a) 

𝒢𝐴0(𝐱, 𝐱′)

=
𝒢0(𝐱) ∙ ‖𝜉𝐱𝐱′‖ + 𝒢0(𝐱′) ∙ ‖𝜉𝐱𝐱′‖

2‖𝜉𝐱𝐱′‖ cos 𝜗
 𝜗 ≠ 90° (23b) 

where 𝜗 is the directional angle determined by the unit 

directions of arbitrary bond vector and functionally gradient 

direction in FGMs.  

It can be observed from Eq. (23a) and Eq. (23b), the 

formulations of arbitrary directionally peridynamic bond 

can be simplified into the ones of gradient direction 

peridynamic bond, which is same as the formulation 

proposed by Cheng et al. (2015). However, Eq. (23a) and 

Eq. (23b) cannot be simplified to describe the case of the 

transverse directionally peridynamic bond, i.e., 𝜗 = 90°, 

since the weighted projection method is adopted.  

Based on Eq. (10), the micromodulus at a transverse  
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directionally peridynamic bond 𝑐𝐴 can be expressed in the 

following form. 

𝑐𝐴 =
315𝐸𝐴(𝐱, 𝐱′)

8𝜋𝛿3
(1 − (

‖𝝃‖

𝛿
)

2

)

2

 (24) 

Similarly, according to Eq. (12), the critical stretch of a 

transverse directionally peridynamic bond 𝑠𝑇0  can be 

written as follows: 

𝑠𝐴0 = √
1024𝜋𝒢𝐴0(𝐱, 𝐱′)

7(120𝜋 − 133)𝐸𝐴(𝐱, 𝐱′)𝛿
 (25) 

 
2.3 Damage evolution  
 

In the numerical simulation, the equation of motion for a 

material particle 𝐱(𝑖), which is uniformly distributed in the 

FGMs can be expressed as  

𝜌(𝑖)𝐮̈(𝑖) = ∑ 𝜒𝐺(𝑖𝑗)𝜐(𝑖)(𝑗)𝒇𝐺(𝑖)(𝑗)∆𝑉(𝑗)

𝑁𝐺

𝑗=1

+ ∑ 𝜒𝑇(𝑖𝑗)𝜐(𝑖)(𝑗)𝒇𝑇(𝑖)(𝑗)∆𝑉(𝑗)

𝑁𝑇

𝑗=1

+ ∑ 𝜒𝐴(𝑖𝑗)𝜐(𝑖)(𝑗)𝒇𝐴(𝑖)(𝑗)∆𝑉(𝑗)

𝑁𝐴

𝑗=1

 

(26) 

where 𝑁𝐺 , 𝑁𝑇  and 𝑁𝐴  are the numbers of material 

particles, which are used to construct the gradient 

directionally bond, transverse directionally bond and 

arbitrary directionally bond with a given material particle 

𝐱(𝑖)  within its given horizon ℋ(𝐱(𝑖)), respectively; 

𝒇𝐺(𝑖)(𝑗) ,  𝒇𝑇(𝑖)(𝑗)  and 𝒇𝐴(𝑖)(𝑗)  are the pairwise force 

densities in the gradient directionally bond, transverse 

directionally bond and arbitrary directionally bond, 

respectively; 𝜒𝐺(𝑖𝑗) , 𝜒𝐺(𝑖𝑗)  and 𝜒𝐺(𝑖𝑗)  are the history  

 

 

functions used to describe the damage histories at gradient, 

transverse and arbitrary directionally bonds, respectively; 

and 𝜐(𝑖)(𝑗)  is the volume fraction, which is used to 

approximate the cut-off distance in two-dimensional 

implementation. The volume fraction 𝜐(𝑖)(𝑗)  is 

approximated by a linearly decreasing function near the 

neighborhood boundary (Le et al. 2014), as shown in Fig. 4. 

For the material particles satisfying ‖𝐱(𝑗) − 𝐱(𝑖)‖ ≤ 𝛿 −

Δ𝑥 2⁄ , the volume fraction function is 

𝜐(𝑖)(𝑗) = 1 (27a) 

For the material particle satisfying 𝛿 − Δ𝑥 2⁄ <

‖𝐱(𝑗) − 𝐱(𝑖)‖ < 𝛿 + Δ𝑥 2⁄ , the volume fraction function is 

𝜐(𝑖)(𝑗) =
1

2
+

𝛿 − ‖𝐱(𝑗) − 𝐱(𝑖)‖

Δ𝑥
 (27b) 

where Δ𝑥  is the material particle spacing and 𝛿  is the 

horizon size. 

For the material particle satisfying ‖𝐱(𝑗) − 𝐱(𝑖)‖ ≥ 𝛿 +

Δ𝑥 2⁄ , the volume fraction function is 

𝜐(𝑖)(𝑗) = 0 (27c) 

A history dependent failure function, 𝜒, is defined for 

each interaction to indicate the bond breakage as (Hu and 

Madenci 2016, 2017, Hu et al. 2017) 

𝜒𝐺(𝑖𝑗) = {
1
0

    
𝑠(𝑖)(𝑗) < 𝑠𝐺0

𝑠(𝑖)(𝑗) ≥ 𝑠𝐺0
 (28a) 

𝜒𝑇(𝑖𝑗) = {
1
0

    
𝑠(𝑖)(𝑗) < 𝑠𝑇0

𝑠(𝑖)(𝑗) ≥ 𝑠𝑇0
 (28b) 

𝜒𝐴(𝑖𝑗) = {
1
0

    
𝑠(𝑖)(𝑗) < 𝑠𝐴0

𝑠(𝑖)(𝑗) ≥ 𝑠𝐴0
 (28c) 

in which 𝜒𝐺(𝑖𝑗) , 𝜒𝑇(𝑖𝑗)  and 𝜒𝐴(𝑖𝑗)  are related to the 

gradient directionally bond, transverse directionally bond 

and arbitrary directionally bond, respectively. 

  
(a) (b) 

Fig. 4 The schematic of volumetric technique for surface corrections in peridynamics: (a) two-dimensional diagram for 

discrete material particles with boundaries and (b) volume fracture as a function of distance (modification based on Le et al. 

(2014)) 
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The damage index at a material point 𝐱(𝑖)  is 

represented by local damage parameter as (Silling and 

Askari 2005) 

𝜑(𝑖)

= 1 −
∑ 𝜒𝐺(𝑖𝑗)∆𝑉𝑗

𝑁𝐺
𝑗=1 + ∑ 𝜒𝐴(𝑖𝑗)𝑉𝑗

𝑁𝑇
𝑗=1 + ∑ 𝜒𝐴(𝑖𝑗)∆𝑉𝑗

𝑁𝐴
𝑗=1

∑ ∆𝑉𝑗
𝑁𝑡𝑜𝑡𝑎𝑙
𝑗=1

 (29) 

 

2.4 Time integration 
 

In the present study, time integration is performed by 

means of an explicit Velocity-Verlet scheme (Shojaei et al. 

2019b, Mossaiby et al. 2020) which which is simple, robust 

and reliable. Displacement, velocity, and acceleration of 

each particle 𝐱(𝑖) at 𝑡(𝑛), i.e., (𝐮(𝑖)
(𝑛)

𝐮̇(𝑖)
(𝑛)

𝐮̈(𝑖)
(𝑛)

), can be 

obtained by the solver proceeding to time 𝑡(𝑛+1) = 𝑡(𝑛) +
Δ𝑡 as 

𝐮̇(𝑖)
(𝑛+1 2⁄ )

= 𝐮̇(𝑖)
(𝑛)

+
Δ𝑡

2
𝐮̈(𝑖)

(𝑛)
 (30a) 

𝐮(𝑖)
(𝑛+1)

= 𝐮(𝑖)
(𝑛)

+ Δ𝑡𝐮̇(𝑖)
(𝑛+1 2⁄ )

 (30b) 

𝐮̇(𝑖)
(𝑛+1)

= 𝐮̇(𝑖)
(𝑛+1 2⁄ )

+
Δ𝑡

2
𝐮̈(𝑖)

(𝑛+1)
 (30c) 

where Δ𝑡 is the constant time step, which has to be taken 

smaller than the critical time step, Δ𝑡𝑐 = 𝜉min 𝑐𝑘⁄ , and 

𝜉min  is the smallest bond length of the computational 

domain, e.g., 𝜉min = Δ𝑥 for a uniform discretization, and 

𝑐𝑘 is the sound velocity in materials.  

Based on Eq. (30), the time integration can advance to 

the next time step by following equation. 

𝐮(𝑖)
(𝑛+1)

= 𝐮(𝑖)
(𝑛)

+ Δ𝑡𝐮̇(𝑖)
(𝑛)

+
(Δ𝑡)2

2
𝐮̈(𝑖)

(𝑛+1)
 (31) 

Furthermore, the computational flowchart is presented 

in Fig. 5 to illustrate details of numerical simulations. Due 

to the classification of three different bonds in the 

numerical simulations, the computational efficiency of the 

developed bond-based peridynamic model for FGMs may 

be lower than that in the previous literature (Cheng et al. 

2015). 

3. Numerical validations 

 

 

The developed bond-based peridynamic analyses are 

performed on homogeneous PMMA strip specimen 

geometries with dimensions, as shown in Fig. 6(a), i.e., 

𝐿 × 𝐻 = 50 mm × 25 mm . The two-dimensional plane 

stress condition is assumed. The material properties of 

homogeneous PMMA are listed as follows: Young’s 

modulus 𝐸 = 3.25 GPa , Poisson’s ratio 𝜐 = 1 3⁄ , mass 

density 𝜌 = 1190 kg m3⁄ , the critical fracture energy 

release rate 𝐺𝑐 = 200 J m2⁄ , Rayleigh velocity 𝑐𝑅 =
962 m s⁄ . To illustrate the effect of initial crack length on 

the dynamic fracture behaviors of homogeneous PMMA 

strip specimens, two homogeneous PMMA strip specimens 

with different initial crack lengths: 𝑎0 = 0.75 mm  and 

𝑎0 = 2.0 mm . A sharp dynamic tensile load, 𝜎0 , is 

symmetrically applied on the boundary of homogeneous 

PMMA strip specimens, as shown in Fig. 6(a)-6(b). The 

magnitude of sharp dynamic tensile load 𝜎0 is equal to 1.0 

MPa.  

In the numerical simulations, the peridynamic material 

particles are uniformly distributed with particle spacing of 

Δ = 0.167mm, the nonlocal ratio 𝓂 = 4.0 and horizon 

size 𝛿 = 0.668 mm, which recommend by Cheng et al. 

(2015). The time incremental step is adopted as Δ𝑡 =
2 × 10−8 s, which is smaller than the critical time step 

based on CFL conditions (Cheng et al. 2015, Ha and 

Bobaru 2010, 2011). 

Fig. 7 shows the dynamic fracture processes of the 

homogeneous plates containing a pre-existing crack with 

different initial lengths, i.e., 𝑎0 = 0.75 mm  and 𝑎0 =
2.0 mm under the dynamic loading conditions. It can be 

found from Fig. 7 that when the initial crack length equates 

to 2.0 mm, the crack growth path is straight and no crack 

branching occurs. However, when the initial crack length 

equates to 0.75 mm, crack branching occurs in the 

homogeneous plate under the dynamic loading conditions, 

as shown in Fig. 7. Furthermore, the symmetrical 

geometrical and loading conditions leads to the symmetrical 

crack growth paths.  

 

 

 

 
Fig. 5 The computational flowchart of the new developed bond-based peridynamic model 
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(a) (b) 

Fig. 6 (a) Geometrical and boundary conditions of a homogeneous PMMA plate and (b) applied dynamic loads versus time 

  
(a) 𝑡 = 10 μs 

  
(b) 𝑡 = 75 μs 

  
(c) 𝑡 = 120 μs 

  
(d) 𝑡 = 160 μs 

Fig. 7 Dynamic fracturing process of a homogeneous PMMA plate 
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Table 1 Computational details of the four numerical 

homogenous plates 

No. 

Particle 

spacing 

∆ (mm) 

Horizon size 

𝛿 (mm) 

Nonlocal 

ratio 𝓂 

Numerical of 

particles 

Case-I 0.250 1.000 

4.0 

200 × 100 

Case-II 0.167 0.668 300 × 150 

Case-III 0.125 0.500 400 × 200 

Case-IV 0.100 0.400 500 × 250 

 

 

The ultimate dynamic crack growth paths in the PMMA 

plates with two different kinds of pre-set cracks predicted 

by the present peridynamic model are compared with the 

previous experimental (Carlsson and Isaksson 2019) and 

phase-field results (Carlsson and Isaksson 2019), as shown 

in Fig. 8. It can be found from Fig. 8 that the present 

peridynamic crack growth paths are in good agreement with 

the experimental observations and the numerically predicted 

crack growth paths by phase field. The good agreement 

illustrates the effectiveness and accuracy of the proposed 

numerical model, which can be reproduce the previous 

dynamic fracture experiments. 

To demonstrate the convergence and stability of the 

developed bond-based peridynamic model, δ-convergence 

study containing four different numerical samples is 

conducted. The computational details of four numerical 

samples are listed in Table 1. The ultimate dynamic crack  

 

 

growth paths in the four numerical homogenous plates are 

shown in Fig. 9. It can be observed from Fig. 9 that the 

dynamic crack growth paths are not affected by the decrease 

of horizon size, which indicates the convergence and 

stability of the developed bond-based peridynamics. 

 

 

4. Numerical results and discussions  
 
4.1 Numerical model setup 
 

The FGMs plate with a preexisting crack has the 25 mm 

height and 50 mm length, and the FGMs plate is subjected 

to the dynamic loads of 𝜎0 = 1.0 MPa  on the top and 

bottome boundaries. The length of the pre-existing crack is 

equal to 0.75 mm. 

In the FGMs, Young’s modulus 𝐸  varies from 

3.25 GPa  to 10.0 GPa  and the critical fracture energy 

release rate 𝐺𝑐  changes from 100 J m2⁄  to 200 J m2⁄ . 

The FGMs gradient form is adopted as an exponetial 

function, the following exponentially functional curve 

fitting are taken into consideration. 

𝐸FGMs = 𝐸min ∙ 𝑒𝛼𝑦 sin 𝜗 (32) 

𝒢FGMs = 𝒢min ∙ 𝑒𝛽𝑦 sin 𝜗 (33) 

where 𝛼  and 𝛽  are two different fitting coefficients, 

which are expressed as 

 
(a) 

 
(b) 

 
(c) 

Fig. 8 Comparison of the ultimate dynamic crack paths obtained from (a) the present peridynamic simulations, (b) the 

previous experimental observations (Carlsson and Isaksson 2019) and (c) the previous phase-field simulations (Carlsson and 

Isaksson 2019). 
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Fig. 10 Geometrical and boundary conditions of FGMs 

plates with different gradient directions 

 

 

𝛼 =
ln(𝐸min 𝐸max⁄ )

𝐻 sin 𝜗⁄
 (34) 

𝛽 =
ln(𝒢min 𝒢max⁄ )

𝐻 sin 𝜗⁄
 (35) 

where 𝐸min and 𝐸max are values of Young’s modulus in 

the complaint and stiff regions, respectively; 𝒢min  and 

𝒢max are values of the critical fracture energy release rates 

in the complaint and stiff regions, respectively; 𝐻 is the 

width of the FGMs plate, and 𝜑 is the inclination angle of 

gradient direction, as shown in Fig. 10. Furthermore, the 

five different numerical models with different gradient 

directions are shown in Fig. 11. 

The other computational parameters are same as the 

description in Section 3. In the numerical model, PD 

particles are uniformly distributed with the spacing of 0.25 

mm, and the nonlocal size of horizon is equal to 1.0 mm, 

which means that the nonlocal ratio equates to 4.0. 

 

 

4.2 Numerical results 
 

The dynamic fracturing process of FGMs plate 

containing a preexisting crack with the gradient direction of 

0o is performed in Fig. 12. It can be found from Fig. 12(a) 

that the main straight crack is initiated at the pre-existing 

crack tip and propagates towards the horizontal direction at 

𝑡 = 10 μs. As shown in Fig. 12(b), the main straight crack 

propagates along the oblique direction towards the 

compliant parts in the FGMs plate at 𝑡 = 30 μs . 

Furthermore, the main crack splits into two asymmetrical 

branches, and the two crack branches propagate to the right 

boundary at 𝑡 = 60 μs. It can be found from Fig. 12(c)-

12(d) that the crack branching angle with respect to the 

central horizontal axis in the compliant parts is larger than 

that in the stiff parts. 

The dynamic fracturing process of FGMs plate 

containing a preexisting crack with the gradient direction of 

30o is performed in Fig. 13. Trajectories of main crack 

initiated from the pre-existing crack tip are deviated from 

the central horizontal axis, as shown in Fig. 13(a)-Fig. 

13(b). As the dynamic tensile loads continue to apply, two 

main crack branches occur in the FGMs plates, and some 

micro-branches can be also observed, as shown in Fig. 

13(c)-Fig. 13(d). 

When the gradient directional angle is equal to 45o, the 

main crack growth path initiated from the pre-existing crack 

tip is almost straight (see Fig. 14(a)-Fig. 14(b)), and the 

main crack split into two branches in the center of FGMs 

plate at 𝑡 = 100 μs, as shown in Fig. 14(c). It can be 

observed from Fig. 14(c) that the upper crack branching 

angle is smaller than the lower crack branching angle in the 

FGMs plate under the dynamic loading conditions. 

Furthermore, the upper crack branch split into multiple 

crack branches, which also propagates to the right 

boundary, when the dynamic loads continue to apply, as 

shown in Fig. 14(d). 

𝑎0

𝐿 = 50 mm

𝐻
=

2
5

 m
m

1
2

.5
 m

m

𝜎0 𝑡

𝜎0 𝑡

Gradient direction

𝜗

(Stiff region)

(Compliant region)

  
(a) case-I (b) case-II 

  
(c) case-III (d) case-IV 

Fig. 9. Ultimately dynamic crack growth paths in the four different numerical PMMA plates 
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Elastic modulus Fracture energy release rate 

(a) Gradient directional angle 0o 

  
Elastic modulus Fracture energy release rate 

(b) Gradient directional angle 30o 

  
Elastic modulus Fracture energy release rate 

(c) Gradient directional angle 45o 

  
Elastic modulus Fracture energy release rate 

(d) Gradient directional angle 60o 

  
Elastic modulus Fracture energy release rate 

(e) Gradient directional angle 90o 

Fig. 11 Numerical models FGMs plates with different gradient directions 

349



 

Miaomiao Kou, Jing Bi, Binhang Yuan and Yunteng Wang 

 

 

When the gradient directional angle is equal to 60o, the 

main crack is first initiated from the pre-existing crack tip,  

  
(a) 𝑡 = 10 μs (b) 𝑡 = 30 μs 

  
(c) 𝑡 = 60 μs (d) 𝑡 = 80 μs 

Fig. 12 Dynamic fracturing process of FGMs plate with the gradient direction of 0o 

  
(a) 𝑡 = 10 μs (b) 𝑡 = 30 μs 

  
(c) 𝑡 = 60 μs (d) 𝑡 = 80 μs 

Fig. 13 Dynamic fracturing process of FGMs plates with the gradient direction of 30o 

  
(a) 𝑡 = 10 μs (b) 𝑡 = 60 μs 

  
(c) 𝑡 = 100 μs (d) 𝑡 = 120 μs 

Fig. 14 Dynamic fracturing process of FGMs plates with the gradient direction of 45o 
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and propagates along the horizontal direction at 𝑡 = 30 μs, 

as shown in Fig. 15(a). When the dynamic loads continue to 

apply on the upper and lower boundaries, the main crack 

propagates along the deflective direction, which is towards 

the compliant parts in FGMs plate at 𝑡 = 60 μs, as shown 

in Fig. 15(b). When 𝑡 = 100 μs, crack branching occurs at 

the tip of the main crack, and some cracks appear at the 

right boundary, which is the compliant part in FGMs plate, 

as shown in Fig. 15(c). When the dynamic loads continue to 

apply on the upper and lower boundaries, crack branches 

appearing from the main crack coalesce with the cracks 

initiated from the compliant boundary, which leads to the 

final failure of the FGMs plate, as shown in Fig. 15(d). 

Similar phenomenon can be observed in the FGMs plate 

with gradient direction of 90o, as shown in Fig. 16. 

Furthermore, to investigate the convergence and stability of 

the developed bond-based peridynamics for FGMs plate, 

four different numerical samples of the FGMs plate with  

 

 

gradient direction of 60o are simulated for the δ -

convergence study. The results of the δ-convergence study 

are presented in the Appendix. 
 

4.3 Influence of gradient direction on dynamic 
fracture behaviors 

 
The final crack growth paths in FGMs plates with 

different gradient directions are shown in Fig. 17. It can be 

found from Fig. 17(a)-Fig. 17(c) that when the gradient 

directional angle increases from 0o to 45o, crack growth 

paths of crack braches are easy to occur in the compliant 

parts in FGMs plates. Furthermore, it can be also observed 

from Fig. 17(a)-Fig. 17(c) that the multiple crack braches 

are more likely to appear as the inclination angle of gradient 

direction increases. When the gradient directional angle 

increases to 60o, multiple crack branches initiated from the 

main crack coalesce with the cracks initiated from the  

  
(a) 𝑡 = 10 μs (b) 𝑡 = 30 μs 

  
(c) 𝑡 = 60 μs (d) 𝑡 = 80 μs 

Fig. 15 Dynamic fracturing process of FGMs plates with the gradient direction of 60o 

 

  
(a) 𝑡 = 10 μs (b) 𝑡 = 60 μs 

  
(c) 𝑡 = 80 μs (d) 𝑡 = 100 μs 

Fig. 16 Dynamic fracturing process of FGMs plates with the gradient direction of 90o 
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Fig. 18 The directional influence on the maximum crack 

tip velocity in the FGMs plates under dynamic loading 

conditions 
 

 

compliant boundaries, as shown in Fig. 17(d). Similar 

phenomenon can be observed in the FGM plate with the 

gradient directional angle of 90o, as shown in Fig. 17(e). It 

can be found from Fig. 17(e) and Fig. 17(f) that the 

symmetrical characteristics of geometrics, material 

properties and loading conditions result in the symmetrical 

crack growth paths in FGMs plates under the dynamic 

loading conditions.  

Fig 18 shows the influence of gradient direction on the 

maximum crack tip velocity in the FGMs plates subjected 

to the dynamic loads. It can be found from Fig. 18 that the 

gradient direction in the FGMs plates under the dynamic  

 

 

loading conditions significantly affects the maximum crack 

tip velocity. When the inclination angle of gradient direction 

increases from 0o to 60o, the maximum crack tip velocity 

gradually decreases, as shown in Fig. 18. While, as shown 

in Fig. 18, when the inclination angle of gradient direction 

increases from 60o to 90o, the maximum crack tip velocity 

increases. Moreover, the crack tip velocities in different 

FGMs and homogenous plates under dynamic loading are 

less the Rayleigh wave velocity.  
 
 

5. Conclusions 
 

In this study, the weighted projected technique is 

implemented into the developed bond-based peridynamic 

model, where bonds can be classified into transverse 

directionally peridynamic bond, gradient directionally 

peridynamic bond and arbitrary directionally peridynamic 

bond based on the geometrical relationship between bonded 

direction and gradient direction, for functionally graded 

materials (FGMs). The bond-based peridynamic simulation 

of crack propagation and branching in homogeneous 

PMMA plates under dynamic loading conditions are first 

compared with the previous experimental observations and 

the previous phase-field results. The present numerical 

results are in good agreement with the previous 

experimental and phase-field results. The developed bond-

based peridynamics is then applied to investigate the 

dynamic fracture characteristics in FGMs. Moreover, effects 

of initial crack length and gradient direction of FGMs on 

dynamic fracture behaviors are numerically investigated. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 17 The final crack growth paths in FGMs plates with different gradient directions: (a) 0o; (b) 30o; (c) 45o; (d) 60o; (e) 

90o and (f) homogeneous materials. 
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Some dynamic fracture characteristics of FGMs subjected 

to dynamic loads are drawn as follows: 

•  The developed bond-based peridynamics can 

effectively reproduce the dynamic fracture phenomenon in 

the brittle FGMs. 

•  The dynamic crack growth paths in homogeneous 

PMMA plates under dynamic loading perform to be 

symmetrical. While, the dynamic crack growth paths in 

FGMs subjected to dynamic loads show to be 

nonsymmetrical.  

•  For the influence of gradient directions on dynamic 

crack growth paths in FGMs plates under dynamic loading, 

multiple crack braches and some boundary cracks are likely 

to appear in the compliant parts of FGMs, as the gradient 

directional angle increases.  

For the effect of gradient direction on crack propagation 

velocities in FGMs plates subjected to dynamic loads, the 

maximum crack tip velocity first decreases, then increases 

with the increase of the gradient directional angle. 
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Appendix 
 

For the FGMs plate with the gradient direction of 60o, four 

different numerical samples with different material particle 

distributions are simulated to conduct the δ-convergence. The 

computational details of the four different numerical samples are 

listed in Table A1. The ultimate crack growth paths of FGMs 

plates with the gradient direction of 60o are presented in Fig. A1. It 

can be observed from Fig. A1 that the dynamic crack growth paths 

in the FGMs plates are similar as the horizon size decreases. 

Furthermore, the surface effect gradually decreases with the 

decrease of the horizon size, as shown in Fig. A1.  

 

Table A1 Computational details of the four numerical FGMs plates 

 

 

 

No. Particle spacing ∆ (mm) Horizon size 𝛿 (mm) Nonlocal ratio 𝓂 Numerical of particles 

Case-I 0.500 2.000 

4.0 

100 × 50 

Case-II 0.250 1.000 200 × 100 

Case-III 0.167 0.668 300 × 150 

Case-IV 0.125 0.500 400 × 200 

  

(a) case-I (b) case-II 

  

(c) case-III (d) case-IV 

Fig. A1 The ultimately dynamic crack growth paths in the FGMs plates with the gradient direction of 60o. 
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