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1. Introduction 
 

In structural mechanics, the finite element method 

(FEM) has been widely used in many engineering problems 

and applications. Usually, computational models are 

considered to be deterministic that one particular set of 

parameters is used. However, most physical systems, in 

reality, are subject to uncertainties about the input 

parameters such as material properties, loading, and 

geometry conditions. In this context, uncertainty modeling 

and propagation (uncertainty analysis) are necessary to 

consider response variability for decision-making.  

The stochastic finite element method (SFEM) is an 

extension of deterministic FEM to study response 

variability under uncertain parametric input conditions 

(Stefanou 2009). In the probabilistic framework, the 

uncertain parameters are treated as a combination of 

random variables and fields so that the governing equations 

become stochastic. To obtain solution characteristics, 

several methods have been proposed such as Monte Carlo 

simulation (MCS), perturbation, Neumann expansion 

method ,  and  spec t ra l  s tochast ic  method .  MCS 

(Papadrakakis and Papadopoulos 1996, Hurtado and Barbat 

1998) is a sampling-based technique and is considered the 

most robust method for uncertainty quantification. Although 

MCS is easily applied regardless of the dimensionality of 

parameters and non-linearity of models, a large number of 

samples should be drawn independently to obtain sufficient  
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accuracy with reasonable precision. As a result, the 

computational cost becomes prohibitive. The perturbation-

based method (Kleiber and Hien 1992) is a low-order 

Taylor expansion based technique that approximates the 

solution near the mean value of parameters, while the 

Neumann expansion method (Yamazaki, Shinozuka et al. 

1988) approximates the inverse matrix as a convergent 

series. Although these two methods are computationally 

efficient, the obtained solutions are inaccurate under large 

parameter variability.  
The spectral stochastic finite element method (SSFEM) 

(Ghanem and Spanos 2003) approximates the solution using 
polynomial chaos expansion (PCE), which is constructed 
depending on the probability distribution of the uncertain 
parameters (Xiu and Karniadakis 2002). Since SSFEM can 
be applied to various levels of uncertainty, it has gained 
considerable attention in uncertainty analysis. The 
coefficients of the PCE basis are unknown and can be 
obtained either via an intrusive approach (a non-sampling 
method such as Galerkin projection (Ghanem and Spanos 
2003, Galal, El-Tahan et al. 2008)) or a non-intrusive 
approach (a sampling method such as the spectral projection 
method or regression method (Berveiller, Sudret et al. 
2006)). One of the disadvantages is that the number of 
required PCE basis increases exponentially as the number 
of random variable increases. Due to this problem, 
conventional PCE methods are only applicable up to 
moderate dimensionality of the parameters. There are 
several methods to address the dimensionality problem for 
both intrusive (Nouy 2007) and non-intrusive methods (Xiu 
and Hesthaven 2005, Blatman and Sudret 2011). 

Despite the advantages of SSFEM, many studies have 
been mainly applied to linear static analysis. Recently, there 
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have been several attempts to incorporate SSFEM into a 
stochastic frequency response analysis (Adhikari 2011, 
Jacquelin, Adhikari et al. 2014, Sinou and Jacquelin 2015, 
Sepahvand 2016). Jacquelin, Adhikari et al. reported that, 
around the natural frequencies, the frequency responses 
become very inaccurate and show spurious oscillations 
(Jacquelin, Adhikari et al. 2014). The effect of damping was 
investigated in (Adhikari and Pascual 2016), and they 
reported that if the modal damping ratio is larger than 10%, 
spurious oscillations near natural frequencies might be 
suppressed due to the nature of damping. However, when 
the damping becomes small (about 1%) the situation 
changes dramatically and erroneous results will be obtained. 
To alleviate this problem, Aitken’s transformation and its 
generalization approach were applied to estimate the first 
two statistical moments of the frequency response 
(Jacquelin, Adhikari et al. 2015). Also, they showed that the 
convergence rate of two statistical moments can be 
improved by changing the PCE basis (Jacquelin, Adhikari et 
al. 2016). A multi-element PCE method was proposed for 
modeling frequency responses in a single degree of freedom 
(SDOF) system (Pagnacco, Sarrouy et al. 2017). Since the 
multi-element PCE method may increase the number of 
random variables, a Proper Generalized Decomposition 
(PGD) method was utilized to reduce computational costs 
(Chevreuil and Nouy 2012). A PCE-based Padé 
approximation (Jacquelin, Dessombz et al. 2017) was used 
to compute the response and it is shown that the 
denominator plays a key role in the stochastic frequency 
response.  

Although many types of studies have been carried out 

previously, it is difficult to apply the PCE framework to the 

stochastic frequency response analysis, and a simple 

algorithm is still needed. Since the shift of natural 

frequencies due to random parameter variation results in a 

highly non-smooth behavior, conventional PCE methods 

cannot capture actual responses near the natural 

frequencies. To overcome this phenomenon, we propose a 

sensitivity-based stabilization for SSFEM by combining 

conventional PCE and natural frequency sensitivity. The 

proposed method utilizes the sensitivity of the natural 

frequency that provides prior information about the solution 

characteristics. The combined solution form is a rational 

function, and it can be easily applied to existing spectral 

stochastic algorithms. 

The rest of this paper is organized as follows. In Section 

2, we present the background of the stochastic frequency 

response analysis. Section 3 describes the proposed method 

of combining the PCE and sensitivity. In Section 4, the 

proposed method is verified through various numerical 

studies. Finally, we provide concluding remarks in Section 

5. 
 
 

2. Formulation of spectral stochastic frequency 
response  
 

2.1 Modeling of spatial random field 
 
Prior to performing the stochastic finite element 

analysis, input uncertainties should be parameterized using 

the random variables that follow an appropriate probability 

distribution. If the uncertainty is modeled as a spatially 

distributed random field, it can be represented by spectral 

decomposition utilizing a truncated Karhunen-Loève (KL) 

expansion as (Ghanem and Spanos 2003, Hussein, El-Tawil 

et al. 2008) 

𝑎(𝐱, 𝛏) = 𝑎0(𝐱) + ∑ √γ𝑖𝜉𝑖𝑔𝑖(𝐱)
𝐾

𝑖=1
 (1) 

where 𝑎(𝐱, 𝛏) is the random field, 𝐱, 𝛏 are the position 

vector defined over the spatial domain and the random 

variables on a probability space; 𝑎0(𝐱), 𝐾 are mean of the 

random field and the total number of truncated random 

variables. γi and gi are ith eigenvalue and eigenvector that 

satisfy the following Fredholm integral equation of the 

second kind  

∫ 𝐶𝑎(𝐱1, 𝐱2)𝑔𝑖(𝐱2)𝑑𝐱2 = 𝛾𝑖𝑔𝑖(𝐱1) (2) 

where 𝐶𝑎(𝐱1, 𝐱2) is a covariance function of the given 

random field 𝑎(𝐱, 𝛏)  and 𝐱1, 𝐱2  are arbitrary position 

vector in the domain. If the random field follows a Gaussian 

distribution, the corresponding 𝛏 is uncorrelated standard 

normal random variables. For a non-Gaussian random field, 

it can be represented by applying the polynomial chaos 

expansion (Sakamoto and Ghanem 2002).  
In solving the integral equation in Eq. (2), an analytical 

solution does not always exist in the case of arbitrary 
geometry and covariance function. Therefore, the finite 
element method (FEM), one of the numerical approaches is 
adopted in this paper. Based on the discretized geometry, 
applying the Galerkin projection to Eq. (2) yields the 
following symmetric eigenvalue problem  

      𝐂𝑎𝐠𝑖 = 𝛾 𝑖𝐁𝐠𝑖 

𝐂𝑎 = ∫ ∫ 𝐍T(𝐱1)𝐶𝑎(𝐱1, 𝐱2)𝐍(𝐱2)𝑑𝐱2𝑑𝐱1 

      𝐁  = ∫ 𝐍T(𝐱1)𝐍(𝐱1)𝑑𝐱1 

(3) 

where N, gi are the shape function matrix and the ith 

discretized eigenvector, respectively. Referring to Eq. (3), 

one problem in constructing the discretized covariance 

matrix Ca is that it contains a double integral, which may 

require a high computational cost. To address this issue, the 

covariance matrix is approximated with the spatial shape 

functions as follows (Kundu, Adhikari et al. 2014):  

𝐂𝑎(𝐱1, 𝐱2) ≈ 𝐍(𝐱1)𝐂̃𝑎𝐍
T(𝐱2) (4) 

where 𝐂̃𝑎 is the discrete covariance matrix, and each 

component is the covariance function value between two 

nodes. By substituting Eq. (4) into Eq. (3), the covariance 

matrix Ca is expressed as  

𝐂𝑎 ≈ ∫ 𝐍T(𝐱1)𝐍(𝐱1) 𝑑𝐱1 𝐂̃𝑎 ∫ 𝐍T(𝐱2)𝐍(𝐱2) 𝑑𝐱2 

      = 𝐁 𝐂̃𝑎𝐁 
(5) 

Since Eq. (5) only involves matrix multiplication, the 

numerical efficiency of constructing the system matrix can 

be effectively improved. 
 

2.2 Stochastic structural dynamic problem in the 
frequency domain 

 

In this study, a linear stochastic partial differential 
equation for an elastodynamic system is considered. The 
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governing equation on a domain Ω is given by  

div(𝜎(𝑢)) + 𝑏 = 𝜌𝑢̈     on     𝛺

                             𝑢 = 𝑢0     on     𝛤D

                 𝜎(𝑢) ⋅ 𝑛 = 𝑠      on     𝛤N

 (6) 

where 𝜎(𝑢) , u0, s, b, and 𝜌  are the stress tensor, 

prescribed displacement, surface traction, body force, and 

density, respectively; ΓD and ΓN are Dirichlet and Neumann 

boundaries that satisfy ΓD ∩ ΓN = ∅ and ΓD∪ΓN = ∂Ω. 

Based on the parametric uncertainties 𝛏, the discretization 

of Eq. (6) using FEM is well established in the linear static 

analysis (Ghanem and Spanos 2003) and can be easily 

extended to a dynamic case. In the presence of the damping, 

the stochastic linear dynamic system equation is expressed 

as 

𝐌(𝛏)𝐮̈(𝑡, 𝛏) + 𝐂(𝛏)𝐮̇(𝑡, 𝛏) + 𝐊(𝛏)𝐮(𝑡, 𝛏) = 𝐟(𝑡, 𝛏) (7) 

where 𝐌(𝛏), 𝐂(𝛏), and 𝐊(𝛏) denotes the mass, damping, 

and stiffness matrices; 𝐮̈(𝑡, 𝛏), 𝐮̇(𝑡, 𝛏), 𝐮(𝑡, 𝛏), and 𝐟(𝑡, 𝛏) 

are acceleration, velocity, displacement, and the force 

vector, respectively. To obtain the frequency response of Eq. 

(7), the displacement and force vectors are assumed to be 

harmonic as 𝐮(𝑡, 𝛏) = 𝐔(𝜔, 𝛏)𝑒𝑖𝜔𝑡 , 𝐟(𝑡, 𝛏) = 𝐅(𝛏)𝑒𝑖𝜔𝑡 , 
where ω is the excitation frequency. Substituting these 

relations into Eq. (7), following stochastic frequency 

response equation is obtained  

[−𝜔2𝐌(𝛏) + 𝑖𝜔 𝐂(𝛏) + 𝐊(𝛏)]𝐔(𝜔, 𝛏) = 𝐅(𝛏) (8) 

The left side of Eq. (8) can be rewritten to be 

composed of deterministic 𝐀0 and stochastic parts 𝐀𝑖  as 

[∑ 𝐀𝑖(𝜔, 𝛏)
𝑀

𝑖=0
] 𝐔(𝜔, 𝛏) = 𝐅(𝛏) (9) 

where M represents the total number of random variables in 

the dynamic system and each matrix can be expressed as 

𝐀0(𝜔) = (−𝜔2𝐌0 + 𝑖𝜔 𝐂0 + 𝐊0) 

𝐀𝑖(𝜔, 𝛏) = −𝜔2𝐌𝑖(𝛏) for 𝑖 = 1,2, … ,𝑚1 

𝐀𝑖(𝜔, 𝛏) = 𝑖𝜔 𝐂𝑖(𝛏)   for 𝑖 = 𝑚1 + 1,… ,𝑚1 + 𝑚2 

𝐀𝑖(𝜔, 𝛏) = 𝐊𝑖(𝛏)     for 𝑖 = 𝑚1 + 𝑚2 + 1,… 

                                                          𝑚1 + 𝑚2 + 𝑚3 = 𝑀 

(10) 

where m1, m2, and m3 denotes the number of random 

variables in the stiffness, damping, and mass matrix, 

respectively.  

 

2.3 Overview of spectral stochastic methods 
 

In the spectral stochastic methods, the solution of Eq. 

(9) with the number of random variables M is 

approximated in terms of a truncated polynomial chaos 

(PC) basis as  

𝐔(𝜔, 𝛏) = ∑ 𝐔̅𝑗(𝜔)Ψ𝑗(𝛏)
𝑃

𝑗=1
 (11) 

where Ψ𝑗(𝛏), 𝐔̅𝑗 and P are the PC basis and coefficient 

vector, the number of PC basis, respectively. The PC basis 

is a function of random variables with a dimension M and, 

depending on the given probability distribution, it can be 

constructed by applying the Wiener-Askey scheme (Xiu and 

Karniadakis 2002). If the ith random variable is assumed to 

follow the Gaussian distribution, the one-dimensional 

Hermite polynomials 𝐻𝑒𝑛𝑖
(𝜉𝑖) are given by  

𝐻𝑒𝑛𝑖
(𝜉𝑖) = (−1)𝑛𝑖exp(𝜉𝑖

2 2⁄ ) [
𝑑𝑛𝑖

𝑑𝜉𝑖

𝑛𝑖
exp(−𝜉𝑖

2/2)] (12) 

where 𝑛𝑖 is the polynomial order of ith random variable. 

For the multi-dimensional case, the bases are constructed 

utilizing the tensor product of the one-dimensional 

polynomial bases. For example, the M-dimensional Hermite 

polynomials with order 𝒏 = ∑ 𝑛𝑖
𝑀
𝑖=1  are obtained as 

𝐻𝑒𝒏(𝛏) = ∏ 𝐻𝑒𝑛𝑖
(𝜉𝑖)

𝑀

𝑖=1
 (13) 

One important characteristic of the PC basis is that it 

satisfies the following orthogonality for a given probability 

density function (PDF) 

E[Ψ𝑗(𝛏)Ψ𝑘(𝛏)] = ∫ Ψ𝑗(𝛏)Ψ𝑘(𝛏)𝑓𝜉(𝛏) 𝑑𝛏

          = 𝛿𝑗𝑘E[Ψ𝑗
2(𝛏)]

 (14) 

where E[⋅], 𝛿𝑗𝑘, and 𝑓𝜉(𝛏) are the expectation operator, 

the Kronecker delta, and the joint probability density 

function, respectively. The number of basis P is determined 

by the number of random variables M and polynomial order 

p as follows: 

𝑃 = (
𝑀 + 𝑝

𝑝
) =

(𝑀 + 𝑝)!

𝑀! 𝑝!
 (15) 

where (∙)! denotes the factorial operator. 

There are several ways to solve Eq. (9), through PC 

basis either intrusive or non-intrusive approach. The 

intrusive method requires modification of the existing 

deterministic solver (e.g., conventional FEM codes) that 

solves the enlarged equation at once (Ghanem and Spanos 

2003), while the non-intrusive method utilizes an existing 

deterministic solver over random parameter space without 

any code modification (Smith 2013). This paper briefly 

overviews the Galerkin projection and spectral projection 

method, which are most widely used in SSFEM.  

Galerkin projection is an intrusive method that projects 

the weighted residual on to the truncated PC space. 

Substituting Eq. (11) into (9) yields  

∑ 𝐀𝑖(𝜔, 𝛏)
𝑀

𝑖=0
∑ 𝐔̅𝑗Ψ𝑗(𝛏)

𝑃

𝑗=1
= 𝐅(𝛏)  (16) 

Multiplying the PC basis Ψ𝑘(𝛏)  for k=1,…P, and 

taking the expectation operator, the following equations are 

obtained 

∑ ∑ E[Ψ𝑘(𝛏)𝐀𝑖(𝜔, 𝛏)Ψ𝑗(𝛏)]𝐔̅𝑗

𝑃

𝑗=1

𝑀

𝑖=0
= E[Ψ𝑘𝐅(𝛏)] (17) 

These equations can be assembled into linear system 

equations of size 𝑁𝑃, where 𝑁 is total degrees of freedom 

(DOF), as follows:    
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[

𝐀11 𝐀12 … 𝐀1𝑃

𝐀21 𝐀22 … 𝐀2𝑃

⋮ ⋮ 𝐀𝑘𝑗 ⋮

𝐀𝑃1 𝐀𝑃2 … 𝐀𝑃𝑃

]

[
 
 
 
𝐔̅1

⋮
𝐔̅2

𝐔̅𝑃]
 
 
 
= [

𝐅1

⋮
𝐅𝑗

𝐅𝑃

] (18) 

The submatrix 𝐀𝑘𝑗(𝜔) is the product of the PC basis 

and system matrix and expressed as  

𝐀𝑘𝑗(𝜔) = ∑ E[𝐀𝑖(𝜔, 𝛏)Ψ𝑘(𝛏)Ψ𝑗(𝛏)]
𝑀

𝑖=0
 (19) 

Once the linear system equation of Eq. (18) is solved, 

the coefficients of the PCE basis are directly obtained.  

The spectral projection method is one of the non-

intrusive approaches, where the coefficients are obtained by 

utilizing orthogonality of the PC basis. Multiplying Eq. 

(11) by Ψ𝑗(𝛏)  and taking the expectation, the jth 

coefficients of the PC basis are computed as  

𝐔̅𝑗(𝜔) =
1

E[Ψ𝑗
2(𝛏)]

E[𝐔(𝜔, 𝛏)Ψ𝑗(𝛏)]

=
1

E[Ψ𝑗
2(𝛏)]

∫ 𝐔(𝜔, 𝛏)Ψ𝑗(𝛏)𝑓𝜉(𝛏) 𝑑𝛏

 (20) 

To carry out the integration of Eq. (20) the numerical 

quadrature is applied. The coefficients of the PC basis are 

obtained as 

𝐔̅𝑗(𝜔) ≃
1

E[Ψ𝑗
2(𝛏)]

∑ (𝜔, 𝛏𝑘)Ψ𝑗(𝛏
𝑘)𝑤𝑘

𝑁int

𝑘=1
 (21) 

where 𝑤𝑘 , 𝛏
𝑘 , and Nint are the weighting factor, integration 

point, and the number of integration points. At each 

integration point, one particular set of random parameters is 

determined. Based on these input values, the deterministic 

finite element solver is simulated to obtain the response. 

 

 

3. Sensitivity based stabilization for spectral 
stochastic frequency response 

 
3.1 Rational function approximation using natural 

frequency sensitivity 
 
Since the stochastic frequency response is highly 

sensitive to changes in random parameters near the natural 

frequencies, the conventional PCE (Eq. (11)) cannot 

predict the actual response (Jacquelin, Adhikari et al. 2014). 

Considering that the frequency response of a dynamic 

system is a rational function of modal characteristics, 

following Padé approximant is more appropriate to 

represent the solution (Jacquelin, Dessombz et al. 2017) 

U𝑘(𝜔, 𝛏) =
∑ 𝑛𝑖(𝜔)Ψ𝑖(𝛏)

𝑃1
𝑖=1

∑ 𝑑𝑖(𝜔)Ψ𝑖(𝛏)
𝑃2
𝑖=1

 (22) 

where Uk, ni, and di, are the scalar value of the response and 

the PC coefficients of the numerator and denominator; P1 

and P2 are the numbers of PC basis for the numerator and 

denominator. Although Eq. (22) can approximate the non-

regular characteristics near the natural frequencies, it is not 

easy to obtain the polynomial coefficients under multiple 

random parameter cases (Chantrasmi, Doostan et al. 2009). 

Moreover, since Padé approximants compute the response 

component-wisely, obtaining the stochastic response for 

vector-valued response may be cumbersome.  

Therefore, to obtain the denominator more efficiently, 

an algorithm utilizing the natural frequency sensitivity is 

proposed. Before explaining the algorithm, damping is 

assumed to be proportional or lightly non-proportional. In 

this case, the jth modal damping coefficient can be 

computed using jth deterministic mode shape vector 𝚽 𝑜𝑗  

as 𝑐𝑗(𝛏) = 𝚽 𝑜𝑗
Τ 𝐂(𝛏)𝚽 𝑜𝑗 . Based on the assumption, the 

following rational function is proposed to approximating 

the stochastic frequency response  

𝐔(𝜔, 𝛏) =
∑ 𝐔̅𝑗(𝜔)Ψ𝑗(𝛏)

𝑃
𝑗=1

∏ [𝜔j
2(𝛏) − 𝜔2 + 𝑖𝜔 𝑐j(𝛏)]

𝑁𝑒
𝑗=1

 (23) 

where Ne and 𝜔𝑗(𝛏) are the number of considered natural 

frequencies within the range of interest and the jth random 

natural frequency. Referring to Eq. (23), the rational 

function is a combination of the conventional PCE method 

and the denominator of the random mode superposition 

method given by Eq. (24) 

𝐔(𝜔, 𝛏) = ∑
𝚽𝑗(𝛏)𝚽𝑗

T(𝛏)𝐅

𝜔j
2(𝛏) − 𝜔2 + 𝑖𝜔 𝑐j(𝛏)

𝑁𝑒

j=1
 (24) 

where 𝚽𝑗(𝛏) is the jth random mode shape vector. Since 

the random natural frequencies are still unknown in Eq. 

(23), first-order sensitivity (Fox and Kapoor 1968) is used 

to approximate random natural frequencies as follows: 

𝜔𝑗
2(𝛏) ≃ 𝜔 0𝑗

2 + 𝛥𝜔 𝑗
2(𝛏) = 𝜔 0𝑗

2 +
𝜕𝜔 0𝑗

2

𝜕𝛏
𝛏

𝜕𝜔0𝑗
2

𝜕𝜉𝑘

=
1

𝚽 0𝑗
T 𝐌0𝚽 0𝑗

𝚽 0𝑗
T [

𝜕𝐊

𝜕𝜉𝑘

− 𝜔 0𝑗
2

𝜕𝐌

𝜕𝜉𝑘

] 𝚽 0𝑗

 (25) 

where 𝜔0𝑗, 𝛥𝜔𝑗(𝛏) are the deterministic and stochastic part 

of the jth natural frequency. Similarly, the jth modal 

damping ratio can be linearized as 𝑐𝑗(𝛏) ≃ 𝑐0𝑗 + 𝛥𝑐𝑗(𝛏), 

by using first-order Taylor expansion, where  𝑐0𝑗 ,

𝛥𝑐𝑗(𝛏) are the deterministic and linearized stochastic part 

of the jth modal damping coefficient. Once the 

deterministic and stochastic part of the natural frequencies 

and damping coefficients are computed, substituting these 

relations into Eq. (23) yields 

𝐔(𝜔, 𝛏)

=
∑ 𝐔̅𝑗(𝜔)Ψ𝑗(𝛏)

𝑃
𝑗=1

∏ [𝜔0𝑗
2 + 𝛥𝜔𝑗

2(𝛏) − 𝜔2 + 𝑖𝜔  (𝑐0 + 𝛥𝑐𝑗(𝛏))]
𝑁𝑒
𝑗=1

 (26) 

The reason for utilizing the rational function in Eq. (26) 

rather than directly applying the random mode 

superposition in Eq. (23) is the complexity of the 

stochastic eigenvalue problem. In computing the stochastic 

eigensolution by applying the Galerkin method, nonlinear 

equations with size (N+1)P should be solved for one 

eigensolution. (Ghanem and Ghosh 2007); where N is the 

total DOF and P is the number of PC basis. Therefore, if the 
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number of considered modes increases, the computational 

cost will become prohibitive.   

Although there is no unknown coefficients in the 

denominator of Eq. (26), one problem still remains is the 

polynomial order Ne for random variables. In order to 

reflect this behavior, the same PCE order Ne is required, and 

referring to Eq. (15), the number of the PC basis increases 

rapidly as the order increases. Therefore, to improve the 

computational efficiency, the unnecessary polynomials in 

the denominator must be removed. To tackle this issue, the 

Neumann series based selection strategy is proposed in this 

paper. At a given excitation frequency ω, the jth 

denominator term of Eq. (26) can be expanded by utilizing 

Neumann series as follows: 

1

𝜔0𝑗
2 − 𝜔2 + 𝑖𝜔𝑐0𝑗

(1 +
𝛥𝜔𝑗

2(𝛏) + 𝑖𝜔𝛥𝑐𝑗(𝛏)

𝜔0𝑗
2 − 𝜔2 + 𝑖𝜔𝑐0𝑗

)

−1

 

= 𝑒𝑗 (1 + 𝑅𝑗(𝛏))
−1

= 𝑒𝑗 ∑ (−𝑅𝑗(𝛏))
𝑘∞

𝑘=0
 

(27) 

The condition for this series to converge is |𝑅𝑗| < 1. The 

ratio Rj is stochastic and, to determine the convergence 

condition only depending on the excitation frequency, 

specific random parameters should be applied. In this paper, 

the maximum variation of random variables is considered to 

reflect the worst-case variability. For the unbounded case, 

the truncated random variables with a certain confidence 

interval can be applied. Applying this assumption to the 

convergence condition |𝑅𝑗| < 1, the following relation is 

obtained 

|max
𝛏

|𝛥𝜔𝑗
2(𝛏) + 𝑖𝜔𝛥𝑐𝑗(𝛏)| /𝜔0𝑗

2 − 𝜔2 + 𝑖𝜔𝑐0𝑗| < 1 (28) 

Based on the excitation frequency, the convergence 

condition of Eq. (28) can be checked. If the excitation 

frequency is far from the jth natural frequency, the 

denominator is much larger than the numerator such that 

Eq. (28) is easily satisfied. However, if the excitation 

frequency is close to the jth natural frequency, the 

denominator is close to zero and Eq. (28) is violated. Let 

𝒜 be a set of natural frequencies which do not satisfy the 

convergence condition in Eq. (28). Utilizing this notation 

and Neumann series of Eq. (27), Eq. (26) becomes  

𝐔(𝜔, 𝛏)

=
[∑ 𝐔̅𝑗(𝜔)Ψ𝑗(𝛏)

𝑃
𝑗=1 ]∏ [𝑒𝑗 ∑ (−𝑅𝑗(𝛏))

𝑘
∞
𝑘=0 ]𝑗∈𝒜𝑐

∏ [𝜔0𝑗
2 + 𝛥𝜔𝑗

2(𝛏) − 𝜔2 + 𝑖𝜔  (𝑐0 + 𝛥𝑐𝑗(𝛏))]𝑗∈𝒜

 
(29) 

Referring to Eq. (29), the polynomial order of 

denominator 𝑁𝑒 in Eq. (26) reduces to the cardinality of 

set |𝒜| = 𝑁𝑟 . To further simplify Eq. (29), the PCE 

∑ 𝐕̅𝑗(𝜔)Ψ𝑗(𝛏)
𝑃
𝑗=1  with the number of basis P is applied to 

approximate the numerator, and the following relation is 

obtained 

𝐔(𝜔, 𝛏)

≈
∑ 𝐕̅𝑗(𝜔)Ψ𝑗(𝛏)

𝑃
𝑗=1

∏ [𝜔0𝑗
2 + 𝛥𝜔𝑗

2(𝛏) − 𝜔2 + 𝑖𝜔  (𝑐0 + 𝛥𝑐𝑗(𝛏))]𝑗∈𝒜

= 𝐍(𝜔, 𝛏)/𝐷(𝜔, 𝛏) 

(30) 

where 𝐕̅𝑗 is a coefficient vector of a PC basis.  

It is worth noting that depending on the given excitation 
frequency 𝜔, the polynomial order of denominator in Eq. 
(30) is determined. If the excitation frequency is near the 
natural frequencies where Eq. (28) is violated, the rational 
function of Eq. (30) is maintained. However, when Eq. 
(28) is satisfied for all considered natural frequencies, in 
case that the excitation frequency is apart from natural 
frequencies, the 𝑁𝑟  becomes zero and Eq. (30) is the same 
form as the conventional PCE. In this paper, such an 
approximation of the rational function is referred to as 
stabilized polynomial chaos expansion (SPCE), and its 
implementation to the spectral methods will be discussed in 
the next sub-section.   

 

3.2 SPCE based spectral stochastic methods 
 

Since the unknowns of SPCE coefficients are the same 

as the conventional PCE, it can be easily implemented into 

the conventional spectral stochastic methods as already 

discussed in section 2.3. For the Galerkin projection 

method, substituting Eq. (30) into Eq. (9), and multiplying 

the denominator 𝐷(𝜔, 𝛏) yield the following relation 

∑ 𝐀𝑖(𝜔, 𝛏)
𝑀

𝑖=0
∑ 𝐕̅𝑗Ψ𝑗(𝛏)

𝑃

𝑗=1
= 𝐷(𝜔, 𝛏)𝐅(𝛏) (31) 

By forcing the residual of Eq. (31) to be orthogonal to 

each PC basis Ψ𝑘(𝛏) for k=1,…P, and take the expectation, 

the system of linear equations are obtained as follows: 

∑ ∑ E[Ψ𝑘(𝛏)𝐀𝑖(𝜔, 𝛏)Ψ𝑗(𝛏)]𝐕̅𝑗

𝑃

𝑗=1

𝑀

𝑖=0

= E[Ψ𝑘𝐷(𝜔, 𝛏)𝐅(𝛏)]

 (32) 

Comparing Eq. (17) and Eq. (32), the only difference 

between PCE and SPCE in the Galerkin projection method 

is the modification of the force vector on the right-hand 

side. 

For the spectral projection method, the jth PC 

coefficients are obtained by multiplying Eq. (29) by 

𝚿𝑗(𝛏)𝐷(𝜔, 𝛏)  and taking the expectation operator as 

follows: 

𝐕̅𝑗(𝜔) =
1

E[Ψ𝑗
2(𝛏)]

E[𝐔(𝜔, 𝛏)𝐷(𝜔, 𝛏)Ψ𝑗(𝛏)] (33) 

By applying the numerical quadrature to Eq. (33), the 

jth PC coefficients are computed as  

𝐕̅𝑗(𝜔) ≃
1

E[Ψ𝑗
2(𝛏)]

∑ 𝐔(𝜔, 𝛏𝑘)𝐷(𝜔, 𝛏𝑘)Ψ𝑗(𝛏
𝑘)𝑤𝑘

𝑁int

𝑘=1
 (34) 

In the spectral projection method, the difference 

between PCE in Eq. (21) and SPCE in Eq. (34) is the 

presence of the denominator polynomials in the integral 

domain. Once the coefficients in the numerator are 

computed through the abovementioned procedures, the final 

rational function is obtained by dividing the denominator 

polynomials.  

The proposed method has the following characteristics 

compared with the existing PC based methods for frequency 

response analysis: (1) it can effectively utilize the 
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information near the natural frequencies through the 

sensitivities; (2) it can be applied to both intrusive and non-

intrusive methods of the existing spectral stochastic 

framework with slight modification; (3) there is no need to 

increase the order of polynomial chaos or discretize finer 

random space to reflect the non-smooth characteristics near 

the natural frequencies; (4) The proposed method can 

compute the polynomial coefficients for the vector-valued 

response directly; and (5) In terms of computational cost, 

the proposed algorithm requires additional computations for 

deterministic natural frequencies and their sensitivities 

within the frequency range of interests.  

 

3.3 Calculation of response statistics 
 
Once the coefficients for the spectral basis are 

computed, the response statistics can be easily obtained. 

The mean and variance of the kth DOF are defined as  

mean(U𝑘(𝜔)) = U̅𝑘(𝜔) = E[U𝑘(𝜔, 𝛏)]

var(U𝑘(𝜔)) = E [(U𝑘(𝜔, 𝛏) − U̅𝑘(𝜔))
2
]
 (35) 

In calculating the response statistics, the difference 

between the conventional spectral and proposed method is 

that the orthogonal properties of the PCE cannot be utilized 

due to the form of the approximation function (Eq. (28)). 

Therefore, it is not possible to compute the response 

statistics directly, and an alternative approach should be 

employed. In this study, the Monte Carlo simulation (MCS) 

method is adopted to compute the response statistics. Since 

the original model problem is approximated by using the 

multivariate rational polynomials, the MCS under large 

samples are easily computed without computational burden. 

Given the sample sizes Ns, the response statistics in Eq. 

(35) are computed as  

U̅𝑘(𝜔) ≃
1

𝑁s

∑ U𝑘(𝜔, 𝛏𝑖)
𝑁s

𝑖=1

var(U𝑘(𝜔)) ≃
1

𝑁𝑠 − 1
∑ (U𝑘(𝜔, 𝛏𝑖) − U̅𝑘(𝜔))

𝑁s

𝑖=1

 (36) 

where U𝑘(𝜔, 𝛏𝑖) is the kth DOF response of the ith sample. 
 

 

4. Numerical examples 
 

Prior to validating the proposed method through 

numerical studies, some implementation issues and the 

development environments are briefly discussed. All the 

algorithms mentioned above are developed with in-house 

code, written in the MATLAB 2017Ra. In performing some 

numerical operations, the following MATLAB commands 

are used: eigs for solving the eigenvalue problems, and 

ksdensity for estimating the probability density function 

(PDF). Finally, all numerical simulations are carried out on 

a personal desktop operating Windows 10 with Intel Core 

i7-7700K@4.2 GHz and 32 GB RAM.  
 

4.1 Two degree-of-freedom (2-DOF) system 
 

The first example is a two DOF system with stiffness 

variation, as shown in Fig. 1. The model is taken from  

 

Fig. 1 2-DOF system with stochastic stiffness coefficient. 

 

Table 1 System properties or the 2-DOF system 

Properties Value 

ke (Nm-1) 15,000 

me (kg) 1 

ce (Nm-1s-1) 1 

f1 (N) 1 

f2 (N) 0 

 

Table 2 Deterministic modal characteristics of the 2-DOF 

system 

Natural frequencies (Hz) 12.05 31.54 

Damping ratio (%) 0.25 0.66 

 

 

(Jacquelin, Adhikari et al. 2014). The model parameters and 

modal characteristics results are listed in Table 1 and Table 

2. In this example, the stiffness ke is assumed to be random 

and modeled as  

𝑘𝑒 = 𝑘̅𝑒(1 + 0.05𝜉𝑘) (37) 

where 𝑘̅𝑒, 𝜉𝑘 are mean stiffness and a standard normal 

random variable. Utilizing the Eq. (37), the random 

stiffness matrix Ke is given by  

𝐊𝑒 = 𝑘𝑒 [
2 −1

−1 1
] (38) 

Before performing the stochastic analysis using PCE 

and SPCE, MCS with 10,000 samples are simulated to 

obtain the reference. The considered frequency range is 10-

35 Hz with the interval 𝛥𝑓 = 0.01  Hz, and the quantity of 

interest point is x1. Next, for polynomial degree p=2, 3, and 

4, the Galerkin and spectral projection methods using PCE 

are applied. In carrying out the numerical integration in the 

spectral projection method, Gaussian-Hermite quadrature 

with Nint =5, 6, and 7 points are applied for each polynomial 

degree. The obtained mean and standard deviation results 

are presented in Fig. 2, where the abbreviation SP denotes 

the spectral projection method. It can be seen from the 

results that both two methods show spurious oscillation 

patterns around the two natural frequencies (12.05 and 

31.54 Hz) for all considered polynomial degrees. However,  
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if the excitation frequency is far from the natural 

frequencies, PCE can approximate the two statistical 

moments well. To further investigate the instability near the 

natural frequencies, the PDF and responses to the random 

variable are computed. The considered frequency is 12.05 

Hz, which is the first undamped deterministic natural 

frequency, and the obtained results are given in Fig. 3. 

Since stochastic frequency response near the natural 

frequencies exhibits non-regular solution characteristics, 

approximating the response utilizing the polynomials gives 

erroneous results. Increasing the PCE order does not 

guarantee the accuracy and a wrong approximated model 

leads to inaccurate statistical properties, as shown in Fig. 2.  

 

 

The proposed SPCE for the Galerkin and spectral projection 

methods are applied, and the two statistical moment results 

are presented in Fig. 4. The same number of quadrature 

used in PCE is applied. The results indicate that both two 

methods can stabilize suspicious oscillations near the 

natural frequencies and work well for all considered 

polynomial orders. This implies that a simple denominator 

in Eq. (29) can reflect the key solution characteristics near 

the natural frequencies. If excitation frequency is far from 

the natural frequencies, the results are the same as the PCE 

since there is no need to stabilize the response. The 

estimated PDF and response to the random variable at 
 

  

(a) Mean (b) Standard deviation 

Fig. 2 Mean and standard deviation of the 2-DOF system. PCE with degree p=2, 3, and 4 are applied. 

  

(a) Estimated PDF (b) Response surface 

Fig. 3 Estimated PDF and response surface of the 2-DOF system at frequency 12.05 Hz. PCE with degree p=2, 3, and 4 are 

applied. 

  

(a) Mean (b) Standard deviation 

Fig. 4 Mean and standard deviation of the 2-DOF system. SPCE with degree p=2, 3, and 4 are applied. 
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frequency 12.05 Hz are computed, and the results are given 

in Fig. 5. From the obtained results, it is apparent that SPCE 

can approximate the response within the random variable 

interval and it leads to an accurate estimation of statistical 

moments. To evaluate the performance, the mean and 

standard deviation errors are computed. In evaluating the 

error, the following error norm is applied and will be used 

in all the next examples 

( ) ( )

( )

freq

freq

2
MCS
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2
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s ii
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 (39) 

where superscript s, subscript m, and nfreq are the statistical 

moment, spectral method, the number of excitation 

frequency, respectively. The error results for PCE and SPCE 

methods are listed in Table 3, where the words G and SP 

after PCE- and SPCE- denote the Galerkin and spectral 

projection methods. A comparison of the error between PCE  

 

 

 

and SPCE confirms that both errors in SPCE are reduced 

for all considered polynomial order. 

 

4.2 Rectangular panel 
 
The second example is a rectangular panel, as illustrated 

in Fig. 6. A total of 891 nodes and 832 elements are applied 

to discretize the geometry using the quadrilateral elements. 

The model parameters are as follows: deterministic Young’s 

modulus E0=7×107 N/m2, Poisson ratio ν=0.33, density 

ρ=2700 kg/m3, and thickness t=5 mm. In this example, 

Young’s modulus E is assumed to be a Gaussian random 

field and represented using the truncated KL expansion as 

𝐸 = 𝐸0 (1 + ∑ √γ𝑖𝑔𝑖(𝐱)𝜉𝑖

𝑀

𝑖=1
 ) (40) 

To obtain the eigensolution of the KL expansion 

problem in Eq. (3), following exponential covariance 

function is considered 

  

(a) Estimated PDF (b) Response surface 

Fig. 5 Estimated PDF and response surface of the 2-DOF system at frequency 12.05 Hz. SPCE with degree p=2, 3, and 4 

are applied. 
 

Table 3 Mean and standard deviation error of the 2-DOF system. PCE and SPCE with polynomial degree p=2, 3, and 4 are 

considered. 

PCE order 
PCE-G
mean  

PCE-SP
mean  

SPCE-G
mean  

SPCE-G
mean  

PCE-G
std  

PCE-SP
std  

SPCE-G
std  

SPCE-SP
std  

2 4.90E-1 3.38E-1 3.58E-2 2.03E-2 2.50E-1 2.72E-1 5.90E-2 3.48E-2 

3 4.07E-1 2.96E-1 3.24E-2 2.06E-2 1.85E-1 2.05E-1 6.15E-2 3.71E-2 

4 3.38E-1 2.51E-1 3.03E-2 2.14E-2 1.57E-1 1.66E-1 4.86E-2 3.81E-2 

 

  

Fig. 6 Configuration of the rectangular panel. A point load is 

applied at the corner. 

Fig. 7 The eigenvalue ratio results of the covariance function 

in the rectangular panel. 
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𝐶𝐸(𝐱1, 𝐱2) = 𝜎𝐸
2exp(−|𝑥1 − 𝑥2|/𝑙𝑥 − |𝑦1 − 𝑦2|/𝑙𝑦) (41) 

where 𝜎E, lx and ly are the standard deviation and the 
correlation length of x and y, respectively. Based on the 
discretized geometry and the parameters 𝜎E=0.1, lx=2, and 
ly=1.6, the eigenvalue problem of the random field in Eq. 
(3) is conducted. The ratio of eigenvalues and the first four 
eigensolutions results are presented in Fig. 7 and Fig. 8. 
When applying 90% cut-off criterion for the random field 
discretization, four eigensolutions are required to simulate 
the given random field.  

After obtaining the eigensolutions of the random field, 
the element stiffness matrix is computed as  

𝐊𝑒 = 𝐊0
𝑒 + ∑𝐊𝑖

𝑒

4

𝑖=1

𝐊0
𝑒 = ∫ 𝐁̅T𝐃0𝐁̅𝑑𝑉𝑒 ,   𝐊𝑖

𝑒 = √𝛾𝑖∫ 𝐠𝑖𝐁̅
T𝐃0𝐁̅𝑑𝑉𝑒

 (42) 

 

 

 
 

where  𝐊0
𝑒 ,  𝐊0

𝑖 , 𝐃0 and 𝐁̅  are the deterministic and 

stochastic element stiffness matrix, constitutive, and strain- 

displacement matrix, respectively. In formulating the plate 

element, the assumed natural strain (ANS) method (Bathe 

and Dvorkin 1985) is applied to alleviate the transverse 

shear locking. Since the same meshes are used in random 

fields and structure problems, the stochastic stiffness matrix 

in Eq. (42) is directly computed by utilizing the nodal 

results of the eigenvector  𝐠𝑖 . In the end corner of the 

structure, a harmonic load 10 N is applied, and the end edge 

of the x-axis is subjected to a fixed boundary condition. The 

damping is modeled as proportional damping 𝐂 = 𝛼𝐌0 +
𝛽𝐊0  with the parameter 𝛼 = 10−1, 𝛽 = 2 ⋅ 10−5 . The 

frequency range under consideration is 0-70 Hz with the 

interval 𝛥𝑓 = 0.25 Hz. Within this frequency range, eight 

natural frequencies are included. Deterministic natural 

frequencies and modal damping ratio results are listed in 

Table 4. 

  

 

(a) 1st eigenvalue  

𝛾1= 8.45×10-3 

(b) 2nd eigenvalue  

𝛾2= 1.02×10-3 

  
(c) 3rd eigenvalue  

𝛾3= 1.02×10-3 

(d) 4th eigenvalue  
𝛾4= 3.02×10-4 

Fig. 8 First four eigensolutions of the covariance function in 

the rectangular panel 

 Fig. 9 Deterministic and MCS response of the rectangular 

panel. 15,000 samples are applied 

Table 4 Deterministic modal characteristics of the rectangular panel 

Natural frequencies (Hz) 2.73 7.86 16.93 27.44 30.93 48.32 54.25 58.82 

Damping ratio (%) 0.30 0.15 0.15 0.20 0.22 0.32 0.35 0.38 
 

  

(a) Mean (b) Standard deviation 

Fig. 10 Mean and standard deviation of the rectangular panel. PCE degree p=3, 4, and 5 are applied 
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In simulating the stochastic frequency response analysis, 

the MCS with 15,000 samples are applied to obtain the 

reference results. The quantity of interest is transverse 

displacement and the node position is indicated by the circle 

in Fig. 6. The deterministic and the MCS result with upper 

and lower bound are given in Fig. 9. When computing the 

deterministic results for 15,000 samples, about 800 seconds 

are required for each frequency. In this example, within the 

frequency range 25-35 Hz and 45-65 Hz, two and three 

deterministic natural frequencies are adjacent, respectively. 

Since the maximum peak response at the natural 

frequencies changes due to the random parameter variation, 

the min/max responses are widely distributed near the 

natural frequencies, and the mean results exhibit a smooth 

response compared to the deterministic response.  

Next, the PCE using the Galerkin and spectral projection  

methods with polynomial order p=3, 4, and 5 are applied. 

Gaussian-Hermite quadrature with p+1 for each random 

variable is considered in applying the spectral projection 

method. The mean and standard deviation results for PCE 

are presented in Fig. 10. Comparing the results of the MCS 

and PCE, it can be seen that except for the anti-resonant 

region, the obtained results are inaccurate within the given 

frequency ranges. Since deterministic natural frequencies 

are adjacent to each other, as shown in Fig. 9, the spurious 

oscillations corresponding to each natural frequency are 

superimposed. This implies that if the system has adjacent 

natural frequencies, the PCE results are deteriorated and can 

only be applied to a specific frequency range, which is 

sufficiently far from the natural frequencies.  

The SPCE for the Galerkin and spectral projection 

methods are applied, and the two statistical moment results 

are presented in Fig. 11. The results indicate the statistical 

moments are well estimated over the entire frequency 

 

 

range, even if natural frequencies are adjacent to each other. 

The slight error in the standard deviation is mainly due to 

the approximation of the stochastic natural frequencies via 

first-order sensitivities. However, although this slight error, 

both the Galerkin and spectral projection methods show 

performance improvement even with a low polynomial 

degree. This implies that denominator polynomials utilizing 

the sensitivity can play a crucial role in reflecting the 

uncertain dynamics near the natural frequencies. The mean 

and standard deviation error for the PCE and SPCE are 

listed in Table 5. By comparing the PCE and SPCE, the 

errors for SPCE are significantly reduced, and by 

comparing the Galerkin with the spectral projection 

methods, the Galerkin method shows better performance for 

all considered polynomial orders. Finally, at the 

frequencies, f =28 and 49 Hz, which are near the 4th and 6th 

natural frequencies, the estimated PDF using the PCE and 

SPCE are given in Fig. 12. The obtained results indicate 

that although the PCE cannot capture the characteristics of 

the MCS, the SPCE reflects the overall solution behavior. 
 

4.3 Simplified wing blade 
 

The third example is a wing blade, as shown in Fig. 13. 

A total of 4,194 nodes and 3,810 elements are applied to 

discretize the geometry using low order triangular and 

quadrilateral elements. The model parameters used in this 

example are as follows: deterministic Young’s modulus 

E0=7.3×107 N/m2, Poisson ratio ν=0.33, density ρ=2800 kg/ 

m3, and thickness t=2.54 mm. In this example, Young’s 

modulus E is assumed to be a Gaussian random field as  

𝐶𝐸(𝐱1, 𝐱2) = 𝜎𝐸
2exp(−|𝑥1 − 𝑥2|/𝑙𝑥 − |𝑦1 − 𝑦2|/𝑙𝑦

− |𝑧1 − 𝑧2|/𝑙𝑧) 
(43) 

  

(a) Mean (b) Standard deviation 

Fig. 11 Mean and standard deviation of the rectangular panel. SPCE with degree p=3, 4, and 5 are applied. 

Table 5 Mean and standard deviation error of the rectangular panel. PCE and SPCE with polynomial degree p=3, 4, and 5 are 

considered 

PCE order 
PCE-G
mean  

PCE-SP
mean  

SPCE-G
mean  

SPCE-G
mean  

PCE-G
std  

PCE-SP
std  

SPCE-G
std  

SPCE-SP
std  

3 8.39E-1 6.37E+0 1.40E-2 4.44E-2 7.25E-1 6.05E+0 1.73E-2 4.22E-2 

4 1.91E+0 6.26E+0 2.60E-2 6.46E-2 4.20E-1 1.22E+1 3.02E-2 9.60E-2 

5 1.03E+0 6.08E+0 2.04E-2 7.70E-2 7.37E-1 1.71E+1 2.87E-2 5.63E-2 
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The first four eigensolutions and ratio of the eigenvalue 

results are presented in Fig. 14 and Fig. 16. In this example, 

four eigensolutions of the covariance function are 

considered to simulate the given random field when 

applying a 90% truncation criterion. The stochastic stiffness 

matrix of the shell element is computed by combining the 

membrane stiffness and plate stiffness in Eq. (40). 

Although the total DOF of the given structural system is 

21,960, which is not quite large for the deterministic 

problem, the computational cost can be a burden for 

stochastic frequency response analysis. To avoid this issue, 

the model is reduced by the deterministic eigenvector as  

 

 

proposed in (Pascual and Adhikari 2012). The 500 

deterministic modes are considered, and the first four 

natural frequencies and mode shape vectors are given in 

Fig. 15. In the end part of the structure, a harmonic line load 

10,000 N/m is applied, and the opposite end is subjected to 

a fixed boundary condition. The damping is modeled as 

proportional damping 𝐂 = 𝛼𝐌0 + 𝛽𝐊0, where 𝛼 = 10−1,
𝛽 = 10−5  are applied. The quantity of interest is 

displacement and the position is indicated by the circle in 

Fig. 13. The considered frequency range is 0-150 Hz, and 

an interval is 𝛥𝑓 = 0.5 Hz. Within the frequency range 

under consideration, the first three natural frequencies are  
 

  

(a) PCE based PDF at frequency f =28 Hz (b) SPCE based PDF at frequency f =28 Hz 

  

(c) PCE based PDF at frequency f =49 Hz (d) SPCE based PDF at frequency f =49 Hz 

Fig. 12 Estimated PDF near the natural frequencies in the rectangular panel. PCE and SPCE with degree p=3, 4, and 5 are 

applied 

 

 

Fig. 13 Model of the simplified wing blade. A line load is applied at the end 
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(a) 1st eigenvalue  

𝛾1= 5.29×10-3 

(b) 2nd eigenvalue  

𝛾2= 5.79×10-3 

(a) 1st natural frequency 

 𝑓1=22.53 Hz  

(b) 2nd natural frequency  

𝑓2= 104.30 Hz 

    

(c) 3rd eigenvalue  

𝛾3= 3.28×10-4 

(d) 4th eigenvalue  
𝛾4= 2.82×10-4 

(c) 3rd natural frequency  

𝑓3= 138.96 Hz 
(d) 4th natural frequency  

𝑓4= 243.18 Hz 

Fig. 14 First four eigensolutions of the covariance function in 

the wing blade 

 

 

Fig. 15 First four natural frequencies and mode shape results 

of the wing blade 

  

Fig. 16 The eigenvalue ratio results of the covariance 

function in the wing blade 

Fig. 17 Deterministic and MCS response of the wing blade. 

15,000 samples are applied 

  

(a) Mean (b) Standard deviation 

Fig. 18 Mean and standard deviation of the wing blade. PCE degree p=2, 3, and 4 are applied 
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included, and each corresponding modal damping ratio is 

0.10, 0.33, and 0.44 %, respectively.  

In simulating the stochastic frequency analysis, the 

MCS using 15,000 samples are applied to obtain the 

reference results. The stochastic and deterministic results 

are presented in Fig. 17. The results indicate that within the 

frequency range of 100-150 Hz, two natural frequencies are 

close to each other. Since natural frequencies due to the 

random parameter variation significantly affect the response 

variability, the min/max responses are distributed, as 

studied in the previous example. 

Next, the PCE and SPCE utilizing the Galerkin and the 

spectral methods are applied, and the two statistical moment  
 

 

 

results are represented in Fig. 18 and Fig. 19, respectively. 

It can be seen from the results that although the PCE 

methods can estimate the statistical response within the 

frequency range of 30-85 Hz, which are far from the first 

and second natural frequencies, the accuracy is degraded 

near the natural frequencies. However, SPCE can well 

estimate the stochastic frequency response over the entire 

frequency range for all considered polynomial degrees.  

Finally, near the two natural frequencies f =105, 135 Hz, 

the PDF applying the PCE and SPCE are estimated, and 

their results are given in Fig. 20. These excitation 

frequencies are close to the second and third natural 

frequencies of the deterministic system. The obtained  

  
(a) Mean (b) Standard deviation 

Fig. 19 Mean and standard deviation of the wing blade. SPCE degree p=2, 3, and 4 are applied 

 

  

(a) PCE based PDF at frequency f =105 Hz (b) SPCE based PDF at frequency f =105 Hz 

  

(c) PCE based PDF at frequency f =135 Hz (d) SPCE based PDF at frequency f =135 Hz 

Fig. 20 Estimated PDF near the natural frequencies in the wing blade. PCE and SPCE with degree p=2, 3, and 4 are applied 
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results indicate that none of the estimated PDF applying the 

PCE matches the MCS results. Especially for the spectral 

stochastic method, the estimated PDF results are 

widespread and give completely erroneous results. However 

the SPCE methods using the Galerkin and spectral 

stochastic techniques capture the overall response 

characteristics of the reference result. The mean and 

standard deviation error for PCE and SPCE are given in 

Table 6. All obtained results demonstrate that the proposed 

SPCE can improve the accuracy even with low order 

polynomials. 

 

 

5. Conclusions 
 

In this study, a natural frequency sensitivity-based 

stabilization framework for SSFEM is proposed to compute 

the stochastic frequency response. The approximated 

solution form is a rational function, where the numerator 

term is the conventional PCE method, and the denominator 

is the proposed sensitivity of natural frequencies. Since the 

proposed approximation can increase the PCE order, active 

denominators are remained by examining the given 

excitation frequency. The proposed algorithm is applied to 

two commonly used spectral stochastic methods with slight 

modification.  
To validate the performance, three examples of 

stochastic frequency response are considered. The first 

example is the 2-DOF spring-mass system. The second and 

third examples are the rectangular panel and simplified 

wing blade models. The obtained results are in good 

agreement with the direct MCS simulation in the entire 

considered frequency range, although the conventional PCE 

cannot predict the actual response near the natural 

frequencies. This is attributed to the denominator term, 

which can reflect the key solution characteristics near the 

natural frequencies. The proposed method is promising for 

both accuracy and numerical efficiency and is expected to 

be applied to other stochastic frequency response problems.   

In this paper, only material uncertainties are considered, 

and the damping model is assumed to be a proportional 

case. Therefore, further research on various types of 

uncertainties and non-proportional or non-viscous damping 

is needed to generalize the proposed framework. 
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