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1. Introduction 
 

The torsional moment in the design of reinforced 

concrete members is no longer rare, because some recent 

buildings are designed with irregular shapes, and structural 

members also have various geometry (Ju et al. 2015, 2019, 

Tsampras et al. 2016, Zhang et al. 2018). With the 

development of concrete technology and material 

engineering, the structural members can also be designed as 

a thin and efficient shape to resist external loads, but in such 

members, there can be various types of loading that 

combine with each other. Thus, the accurate analysis model 

for reinforced concrete (RC) member subjected to torsional 

moment can make the structural design more safe and 

reliable. In particular, the accurate estimation of capacity 

and failure mode of RC members would be very helpful to 

design the members subjected to torsion with other types of 

loads such as flexure and shear, because it is an uncommon 

case for a member to be subjected to pure torsional 

moment. But as the first step to investigate the RC members 
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subjected to various loads with torsional moment, it is 

important to identify the torsional resistance mechanism of 

RC members under pure torsion (Greene and Belarbi 2009, 

Chalioris 2006).  

To this end, there have been various efforts to develop 

an analytical model for the torsional member. As a classical 

method, the skew-bending theory (Elfgren et al. 1974, Hsu 

1984, Lessig 1959) has been developed to define the 

capacity of reinforced concrete members subjected to not 

only torsional moment but also combined loads that include 

bending moment and shear force. However, the analytical 

models based on skew bending theory have considered only 

force equilibrium condition, with the assumption of the 

yielding of reinforcement. Therefore, it is difficult to apply 

those models to the over-reinforced concrete members 

which fail in compression. Those models also cannot take 

into account the tensile resistance and shear contribution of 

concrete, which have been found to be the most important 

resistance mechanisms of reinforced concrete members 

subjected to shear and torsion. In order to overcome these 

limitations, the variable angle truss model (Hsu and Mo 

1985, 2010, Hsu and Zhang 1997, Jeng and Hsu 2009, Ju et 

al. 2013, Lu and Wu 2001, Mitchell and Collins 1974, Pang 

and Hsu 1996, Rahal and Collins 1995, 1996, Vecchio and 

Collins 1986) has been developed and further advanced, in 

which the behavior of RC members can be analyzed 

considering the compatibility conditions, as well as the 

force equilibrium. In most truss models, the point where the 

principal compressive strain reaches the ultimate strain is 

assumed as the termination point of analysis. However, 

since member failure is not governed by such a single 

criterion, the truss models cannot reflect the actual shear  
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Fig. 1 Reinforced concrete members with rectangular 

section subjected to torsional moment 

 

 

and torsional resistance mechanisms of RC members 

subjected to combined loadings, where there are several 

failure modes according to the material properties, 

reinforcement details, and member dimensions.  

Therefore, this study presents new failure criteria, so-

called multi-potential capacity, in order to consider the 

complex failure mechanism affected by various stress states 

due to external loads. Unlike the existing torsional 

analytical models (Mitchell and Collins 1974, Hsu and Mo 

1985, Jeng and Hsu 2009), the multi-potential capacity was 

derived at the level of stress, so that it can estimate whether 

the stress state due to external forces reaches the failure 

point or not. The failure criteria were applied to the existing 

torsional behavior model to determine the strength of a 

member subjected to torsional moment. In addition, a 

simple torsional strength model was also presented by 

utilizing such failure criteria. 

 
 
2. Multi-Potential capacity 

 

Since steel material exhibits ductile behavior after 

yielding, it would be reasonable to define the capacity of 

reinforced concrete members as the failure of brittle 

concrete material. The torsional members with rectangular 

section can be assumed to be subjected to shear stress 

within the outermost perimeter due to shear flow (q) caused 

by torsional moment, as shown in Fig. 1 (Hsu 1984), and 

the three-dimensional element can also be averaged within 

the shear flow zone as two-dimensional panel element, 

which is similar to the web shear element of the RC 

member. When the RC member is subjected to shear stress, 

the web element of the member is under the biaxial stress 

state in principal compressive and tensile directions, as 

presented in Fig. 2(a) (Hwang et al. 2016). In this member, 

the failure can be assumed to occur when one of the 

principal stresses reaches the material strength, as in the 

Rankine’s failure criteria (Chen 1982) shown in Fig. 2(b).  

 In more detail, failure occurs when the crack width 

significantly develops due to large tensile strain, which is 

related to aggregate interlock (Sherwood et al. 2007, Taylor 

1970, Walrarven 1981, Watanabe and Lee 1998), or when 

the concrete crushing occurs due to large compressive stress 

(Collins and Mitchell 1991). There are also similar 

approaches which take into account aggregate interlock and 

concrete crushing in analysis of reinforced concrete 

member under shear and torsion (Bellett et al. 2001, 2017, 

Cerioni 2011). In addition, the torsional RC member with 

large cover thickness can fail by concrete spalling (Rahal 

1993), and thus it is necessary to define the failure criterion 

for such members. In this study, the multi-potential capacity 

criteria that consider the aggregate interlock, concrete 

crushing, and spalling of concrete cover were proposed to 

estimate the capacity of RC members subjected to torsional 

moment. 

 

2.1 Aggregate interlock 
 

The modified compressive field theory (MCFT) 

(Vecchio and Collins 1986, 1988) and the disturbed stress 

field model (Vecchio 2000) explain that the external shear 

forces acting on RC members are resisted by the cracked 

concrete web, and the critical shear crack theory (CSCT) 

(Muttoni and Fernández 2008, Vas Rodrigues et al. 2010) 

also suggests that the shear capacity of RC members should 

be estimated based on the shear contribution of concrete at 

crack surface. Therefore, the shear resistance of concrete at 

the crack surface is regarded as one of the failure criteria, 

for which the potential shear capacity at the crack surface 

(𝜏𝑐𝑎𝑝
𝑐𝑖 ), suggested by Vecchio and Collins (1986), was 

adopted. The potential capacity (𝜏𝑐𝑎𝑝
𝑐𝑖 ) was derived based on 

the test results reported by Walraven (1981), and can be 

expressed as follows:  
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where λ is taken to be 1.0 and 0.75 for normal weight 

concrete and lightweight aggregate concrete, respectively, 

ws is the shear crack width (mm), and ag,max is the maximum 

size of aggregate (mm), taken as zero for lightweight 

aggregate concrete (Sherwood et al. 2007, Bentz et al. 

2006), and taken as ,max 0.16g ca f '−  (mm) for normal 

weight aggregate concrete when the compressive strength 

of concrete exceeds 40 MPa. The aggregate interlock 

capacity of Equation (1) is a function of crack width (ws), 

and the capacity decreases as the crack width increases. 

Here, the shear crack width can be calculated by 

multiplying the shear crack spacing ( ms  ) by the average 

tensile strain in the crack direction (ε1), as follows: 

1      (mm)s mw s =
 

(2) 

In fact, the tensile strain at ultimate state is relatively 

large compared to the cracking strain of concrete, and thus 

the concrete contribution by tensile stress to the member 

strength is very small. However, if the member is 

appropriately reinforced, such large tensile strain and crack 

width can be controlled by the reinforcement. Collins and 
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(a) Reinforced concrete members subjected to shear stresses 

 
(b) Rankine’s failure criteria (Chen 1982) 

Fig. 2 Concept of failure criteria 

 

 

Mitchell (1991) have suggested an equation for the shear 

crack spacing by reflecting the role of the reinforcement 

that controls the crack width, as follows: 
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where mxs  and mvs  are the average crack spacing in the 

longitudinal and transverse direction, respectively, and they 

are calculated considering the reinforcement details (Collins 

and Mitchell 1991). In addition, α2 is the angle of the initial 

crack with respect to the longitudinal axis. 

The required shear stress at the crack surface is defined 

as the shear stress of concrete at the initial crack surface 

(𝜏21
𝑐 ) in the fixed angle model (Pang and Hsu 1996, Hsu and 

Zhang 1997, Hsu 1998), as presented in the shear element 

of Fig. 1. If the 𝜏21
𝑐  is larger than the shear resistance 

capacity (𝜏𝑐𝑎𝑝
𝑐𝑖 ) of Equation (1), the member is regarded to 

reach the maximum strength by the aggregate interlock 

mechanism. 

 

2.2 Concrete crushing 
 
When the principal compressive stress exceeds the 

compressive strength of concrete (𝑓𝑐
′), concrete crushing 

occurs, and it is considered as one of the failure 

mechanisms. The compressive stress behavior of cracked 

concrete subjected to biaxial stress is affected by the 

softening phenomenon (Belarbi and Hsu 1991, 1995, Hsu 

and Zhang 1996, Stevens et al 1991, Vecchio and Collins 

1982, 1993), in which the maximum compressive strength 

of concrete ( ,maxcf ) decreases because of the influence of 

tensile strain. Therefore, the effective compressive strength 

of concrete can be expressed as cf ' , considering the 

softening coefficient (ζ) (Vecchio and Collins 1986). The 

required average compressive stress within the effective 

thickness of the shear flow zone of the torsional member 

can be calculated as follows: 

( )            MPad c ck f  =
 

(4) 

where kc is the ratio of the average compressive stress to the 

peak compressive stress in the concrete strut (Hsu 1984), 

which can be obtained by integrating the compressive 

stress-strain curve with respect to the compressive strain 

through the effective depth (td), and then normalizing by the 

maximum compressive stress and the maximum principal 

compressive strain (εds). In addition, the capacity should 

also be expressed as an average value, however, the Vecchio 

and Collins’ softening coefficient shows a tendency to 

sharply decrease with increasing principal tensile strain (εr). 

Thus, the capacity for concrete crushing was proposed 

simply with the average coefficient of unit, as follows: 
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(5) 

The concrete crushing failure mode should be 

considered to prevent the web concrete crushing or to 

control the crack width caused by an excessive amount of 

reinforcement, as specified in major codes, such as ACI 318 

(2014) and CSA (2004). Therefore, it would be a basis for 

limiting the maximum amount of reinforcement 

(Chakraborty 1977, Chiu et al. 2007, Hsu 1968). 

Meanwhile, according to the experimental results of the 

torsional members subjected to axial force reported by 

Bishara and Peir (1968), when the ratio of the compressive 

stress to the compressive strength of concrete (𝜎𝑐𝑛/𝑓𝑐
′ ) 

exceeds 0.65, so-called transformation point, the torsional 

strength sharply decreases. This is probably because of 

concrete crushing caused by softening effect before the 

compressive strength. Thus, the failure criterion for 

concrete crushing would also be important to estimate the 

torsional strength of RC members subjected to axial forces.  

 
2.3 Spalling 
 
The torsional RC members can fail by spalling within 

the concrete cover outside the closed stirrups. Rahal and 

Collins (1995) explained the spalling failure mechanism in 

the RC members subjected to torsion with the consideration 

of the compressive stress within the cover thickness, the 

tensile resistance of concrete, and the effective resistance 

area of concrete. In this study, this spalling potential was 

adopted to check the failure caused by spalling due to the 

excessive cover thickness as follows: 
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(6) 

where wsh is the effective width resisting horizontal or 

vertical shear stress. When the spalling potential exceeds 

the limit value of 0.056, it is assumed that the member has a 

spalled section. In Equation (6), the principal compressive 

stress (σd) should be integrated along the clear cover only.  
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(a) Flexural member (b) Torsional member 

Fig. 3 Analogous concept of torsion to bending 

 

 

For the horizontal walls of the rectangular section, the 

integration is performed in the vertical direction and wsh 

equals the effective depth (dv) that resists vertical shear. 

Otherwise, the integration is performed in the horizontal 

direction and wsh equals the effective width (bv) that resists 

horizontal shear stress. For simplicity and conservative 

purpose, dv and bv are replaced by h and b, respectively. 

Equation (6) is a dimensionless index, and consists of the 

applied compressive stress within the clear cover, the tensile 

resistance of concrete (√𝑓𝑐
′ ), and the ratio of the area 

occupied by the reinforcing bars to the total area along the 

perimeter of the stirrups (K1), which can be approximately 

expressed as follows:  

1

bl bt h
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d s d p
K

p s
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(7) 

where dbl is the diameter of longitudinal steel bar, and the 

summation (∑𝑑𝑏𝑙) is taken over all the bars in contact with 

the stirrups. In addition, dbt is the diameter of the stirrups, ph 

is the perimeter of the centerline of the closed stirrups, and s 

is the spacing of transverse reinforcement.  

The original spalling criterion considers the partially 

spalling section according to the loading ratio of the 

torsional moment to the shear force. However, the criterion 

has been modified to obtain the member strength on the safe 

side, by which the member reaches its maximum strength 

when spalling occurs. 
 
 

3. Simple strength model 
 

The multi-potential capacity, as described above, is 

applied to the fixed angle softened truss model (Hsu 1998, 

Hsu and Zhang 1996, 1997), in order to determine the 

termination of analysis and the maximum strength of RC 

members subjected to torsional moment. This study focused 

on the strength and failure mode of the RC members under 

pure torsion, for which a simplified truss model is suggested 

using the multi-potential capacity. 

 

3.1 Effective thickness 
 

The torsional moment is considered to be resisted by the 

shear flow in a thin-walled tube with the effective thickness 

(td) (Hsu 1984, Bredt 1896) and can be calculated by 

multiplying the effective thickness by the area enclosed by 

the centerline of the shear flow zone (A0), as shown in Fig. 

1. Moreover, A0 is a function of td, and thus the effective  

 
(a) Normalized effective thickness and the simple equation 

 
(b) Comparison of Rahal and Collins’s equation (1996) and 

the proposed equations 

Fig. 4 Simple equations for torsional variables 

 

 

thickness, td, is a very important variable in the torsional 

analysis and strength estimation of RC members. 

Meanwhile, as shown in Fig. 3, the td, A0, and T in the 

torsion are analogous to the depth of neutral axis (cy), 

moment arm (jd), and bending moment (M) in the flexure, 

respectively (Hsu 1990, Hsu and Mo 2010, Jeng 2015, 

Mitchell and Collins 1974, Rahal 2001). Therefore, if it is 

possible to directly calculate the effective thickness (td) as 

in the calculation of flexural strength, where the depth of 

neutral axis (cy) is firstly calculated through the force 

equilibrium, it would be very easy to simplify the 

calculation of the torsional strength. 

According to the simple model by Rahal and Collins 

(1996), the effective thickness (td) is calculated by a 

function of Ac/pc , and they have proposed it as 0.46 Ac/pc, 

where Ac is the area enclosed by the outer perimeter of the 

cross-section, and pc is the perimeter of the outer concrete 

cross section. The smeared membrane model for torsion 

(SMMT) proposed by Jeng and Hsu (2009) was used to 

obtain the effective thickness of the test specimens under 

pure torsion presented in Table 1, because it has been 

known as a relatively accurate analytical model to evaluate 

the behavior of RC members under pure torsion. Fig. 4(a) 

presents an analysis example of the relation between the 

effective thickness and torsional moment, in which after 

torsional cracking up to the ultimate state, the almost  
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Table 1 Database of RC specimens subjected to pure torsion 

Researcher 
Specimen 

Name 

b  
(mm) 

h  
(mm) 

cf '
 

(MPa) 

ylf
 

(MPa) 

ytf
 

(MPa) 

LA
 

(mm2) 

TA
 

(mm2) 

0x
 

(mm) 

0y
 

(mm) 

s  
(mm) 

c  
(mm) 

xs
 

(mm) 

xc
 

(mm) 

vc
 

(mm) 

uT
 

(kN∙m) 

McMullen and 

Rangan (1978) 

A1 254 254 39.6 360 285 285.2 32 222 222 79.4 13 218 104 108 13.1 

A1R 254 254 36.9 360 285 285.2 32 222 222 79.4 13 215 104 108 12.5 

A2 254 254 38.2 380 285 506.8 32 222 222 41.2 13 212 101 108 22.6 

A3 254 254 39.4 352 360 794.4 32 219 219 79.4 15 206 96.5 106.5 27.8 

A4 254 254 39.2 351 360 1146 32 219 219 57.15 15 215 93.5 106.5 34.5 

B1 178 356 39.9 360 285 285.2 32 146 324 82.55 13 142 155 70 12.8 

B1R 178 356 36.3 360 285 285.2 32 146 324 82.55 13 139 155 70 12.3 

B2 178 356 39.6 380 285 506.8 32 146 324 44.45 13 136 152 70 20.8 

B3 178 356 38.6 352 360 794.4 32 143 321 82.55 15 130 147.5 68.5 25.3 

B4 178 356 38.5 351 360 1146 32 143 321 60.32 15 130 144.5 68.5 31.8 

Hsu (1968) 

B1 254 381 27.57 313.7 341.2 506.8 71.3 215.9 342.9 152.4 14.05 212.9 163.45 102.95 22.26 

B2 254 381 28.61 316.4 319.9 794.4 126.7 215.9 342.9 181.0 12.55 212.9 161.95 101.45 29.26 

B3 254 381 28.06 327.5 319.9 1146 126.7 215.9 342.9 127.0 12.55 209.9 158.95 101.45 37.51 

B4 254 381 30.54 319.9 323.3 1548 126.7 215.9 342.9 92.1 12.55 206.9 155.95 101.45 47.34 

B5 254 381 29.02 332.3 321.2 2040 126.7 215.9 342.9 69.9 12.55 203.9 152.95 101.45 56.15 

B6 254 381 28.82 331.6 322.6 2580 126.7 215.9 342.9 57.2 12.55 199.9 148.95 101.45 61.69 

B7 254 381 25.99 319.9 318.5 506.8 126.7 215.9 342.9 127.0 12.55 215.9 164.95 101.45 26.89 

B8 254 381 26.75 321.9 319.9 506.8 126.7 215.9 342.9 57.2 12.55 215.9 164.95 101.45 32.54 

B9 254 381 28.82 319.2 342.6 1146 71.3 215.9 342.9 152.4 14.05 206.9 157.45 102.95 29.83 

B10 254 381 26.47 334.3 341.9 2580 71.3 215.9 342.9 152.4 14.05 196.9 147.45 102.95 34.35 

M1 254 381 29.85 326.1 353 794.4 71.3 215.9 342.9 149.2 14.05 209.9 160.45 102.95 30.39 

M2 254 381 30.54 328.8 357.1 1146 71.3 215.9 342.9 104.7 14.05 206.9 157.45 102.95 40.56 

M3 254 381 26.75 321.9 326.1 1548 126.7 215.9 342.9 139.7 12.55 206.9 155.95 101.45 43.84 

M4 254 381 26.54 318.5 326.8 2040 126.7 215.9 342.9 104.8 12.55 203.9 152.95 101.45 49.6 

M5 254 381 27.99 335 330.9 2580 126.7 215.9 342.9 82.6 12.55 199.9 148.95 101.45 55.7 

M6 254 381 29.37 317.8 340.6 3060 126.7 215.9 342.9 69.9 12.55 203.9 152.95 101.45 60.1 

I2 254 381 45.22 325.4 348.8 794.4 71.3 215.9 342.9 98.4 14.05 209.9 160.45 102.95 36.04 

I3 254 381 44.74 343.3 333.7 1146 126.7 215.9 342.9 127.0 12.55 209.9 158.95 101.45 45.64 

I4 254 381 45.36 315 326.1 1548 126.7 215.9 342.9 92.1 12.55 206.9 155.95 101.45 58.07 

I5 254 381 45 310 325.4 2040 126.7 215.9 342.9 69.9 12.55 203.9 152.95 101.45 70.72 

I6 254 381 45.78 325.4 328.8 2580 126.7 215.9 342.9 57.2 12.55 199.9 148.95 101.45 76.71 

J1 254 381 14.34 327.5 346.1 506.8 71.3 215.9 342.9 152.4 14.05 212.9 163.45 102.95 21.47 

J2 254 381 14.54 319.9 340.6 794.4 71.3 215.9 342.9 98.4 14.05 209.9 160.45 102.95 29.15 

J3 254 381 16.89 338.5 337.1 1146 126.7 215.9 342.9 127.0 12.55 209.9 158.95 101.45 35.25 

J4 254 381 16.75 324 331.6 1548 126.7 215.9 342.9 92.1 12.55 206.9 155.95 101.45 40.67 

G1 254 508 29.78 321.9 339.2 506.8 71.3 215.9 469.9 187.3 14.05 212.9 226.95 102.95 26.78 

G2 254 508 30.88 322.6 333.7 794.4 71.3 215.9 469.9 120.7 14.05 209.9 223.95 102.95 40.33 

G3 254 508 26.82 338.5 327.5 1146 126.7 215.9 469.9 155.6 12.55 209.9 222.45 101.45 49.6 

G4 254 508 28.26 325.4 321.2 1548 126.7 215.9 469.9 114.3 12.55 206.9 219.45 101.45 64.85 

G5 254 508 26.88 330.9 327.5 2040 126.7 215.9 469.9 85.7 12.55 203.9 216.45 101.45 71.97 

G6 254 508 29.92 334.3 349.5 760.2 71.3 215.9 469.9 127.0 14.05 212.9 226.95 102.95 39.09 

G7 254 508 30.95 319.2 322.6 1191.6 126.7 215.9 469.9 146.1 14.05 209.9 223.95 102.95 52.65 

G8 254 508 28.33 321.9 328.8 1719 126.7 215.9 469.9 104.8 14.05 206.9 220.95 102.95 73.44 

N1 152 304 29.5 352.3 341.2 285.2 32 130.3 282.7 92.1 7.65 126.7 134.35 62.35 9.09 

N1a 152 304 28.68 346.1 344.7 285.2 32 130.3 282.7 92.1 7.65 126.7 134.35 62.35 8.99 

N2 152 304 30.4 330.9 337.8 506.8 32 130.3 282.7 50.8 7.65 123.7 131.35 62.35 14.46 

N2a 152 304 28.4 333 360.5 506.8 71.3 130.3 282.7 114.3 5.65 127.7 133.35 60.35 13.22 

N3 152 304 27.3 351.6 351.6 427.8 32 130.3 282.7 63.5 7.65 126.7 134.35 62.35 12.2 

N4 152 304 27.3 337.1 355.7 649.4 71.3 130.3 282.7 88.9 5.65 127.7 133.35 60.35 15.7 

K1 152 495 29.85 345.4 354.3 427.8 71.3 114.3 457.2 190.5 13.9 114.2 223.6 52.1 15.37 

K2 152 495 30.61 335.7 337.8 760.2 71.3 114.3 457.2 104.8 13.9 111.2 220.6 52.1 23.73 

K3 152 495 29.02 315.7 320.6 1191.6 126.7 114.3 457.2 123.8 12.4 111.2 219.1 50.6 28.47 

K4 152 495 28.61 344 339.9 1719 126.7 114.3 457.2 85.7 12.4 108.2 216.1 50.6 35.02 

C1 254 254 27.02 341.2 341.2 285.2 71.3 215.9 215.9 215.9 14.05 215.9 102.95 102.95 11.3 

C2 254 254 26.54 334.3 344.7 506.8 71.3 215.9 215.9 117.5 14.05 212.9 99.95 102.95 15.25 

C3 254 254 26.88 330.9 329.5 794.4 126.7 215.9 215.9 139.7 12.55 212.9 98.45 101.45 20 

C4 254 254 27.16 336.4 327.5 1146 126.7 215.9 215.9 98.4 12.55 209.9 95.45 101.45 25.31 

C5 254 254 27.23 328.1 328.8 1548 126.7 215.9 215.9 73.0 12.55 206.9 92.45 101.45 29.71 

C6 254 254 27.57 315.7 327.5 2040 126.7 215.9 215.9 54.0 12.55 203.9 89.45 101.45 34.23 

Koutchoukali 

and Belarbi 

(2001) 

B5UR1 203 305 39.6 386 373 506.8 71.3 165 267 108 14 162 125.5 77.5 19.4 

B7UR1 203 305 64.6 386 399 506.8 71.3 165 267 108 14 162 125.5 77.5 18.9 

B9UR1 203 305 75 386 373 506.8 71.3 165 267 108 14 162 125.5 77.5 21.1 

B12UR1 203 305 80.6 386 399 506.8 71.3 165 267 108 14 162 125.5 77.5 19.4 

B14UR1 203 305 93.9 386 386 506.8 71.3 165 267 108 14 162 125.5 77.5 21 

B12UR2 203 305 76.2 386 386 506.8 71.3 165 267 102 14 162 125.5 77.5 18.4 

B12UR3 203 305 72.9 373 386 649.4 71.3 165 267 95 14 162 125.5 77.5 22.5 

B12UR4 203 305 75.9 373 386 760.2 71.3 165 267 90 14 162 125.5 77.5 23.7 

B12UR5 203 305 76.7 380 386 794.4 71.3 165 267 70 14 159 122.5 77.5 24 
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constant effective thickness can be found. As shown in Fig. 

4(b), the effective thickness proposed by Rahal and Collins 

(1996) provided a considerably accurate result, but it shows 

an increasing tendency according to the ratio of 

reinforcement ratio to the compressive strength of concrete. 

This is because, although the torsional effective thickness 

should be determined by the force equilibrium between 

concrete and reinforcement (Hsu 1984, 1990), the Rahal 

and Collins’ equation consider only dimensional variables. 

Therefore, the equation proposed by Rahal and Collins 

(1996) was modified to fit the analyzed effective thickness  

 

 

 

reflecting the variable ( ) /L T cf ' + , as follows: 

( )

0.42

'
10.6    mmc L T

d
c c

A
t

p f

  +
=  

 
   

(8) 

where ρL and ρT are the longitudinal and transverse 

reinforcement ratios in gross section, which are calculated 

by Al/Ac and ( )/t h cA p A s , respectively. In addition, Al and At 

are the amount of longitudinal and transverse 

reinforcement, respectively. Fig. 4(b) shows the average and 

Table 1 Continued 

Researcher 
Specimen 

Name 

b  
(mm) 

h  
(mm) 

cf '
 

(MPa) 

ylf
 

(MPa) 

ytf
 

(MPa) 

LA
 

(mm2) 

TA
 

(mm2) 

0x
 

(mm) 

0y
 

(mm) 

s  
(mm) 

c  
(mm) 

xs
 

(mm) 

xc
 

(mm) 

vc
 

(mm) 

uT
 

(kN∙m) 

Fang and 

Shiau 

(2004) 

H-06-06 350 500 78.5 440 440 1191 71.3 300 450 100 20 294 214 145 92 

H-06-12 350 500 78.5 410 440 2027 71.3 300 450 100 20 92 217 145 115.1 

H-12-12 350 500 78.5 410 440 2027 71.3 300 450 50 20 92 217 145 155.3 

H-12-16 350 500 78.5 520 440 2865 71.3 300 450 50 20 145 211 145 196 

H-20-20 350 500 78.5 560 440 3438 126.7 300 450 55 19 147 212 143 239 

H-07-10 350 500 68.4 500 420 1719 71.3 300 450 90 20 291 211 145 126.7 

H-14-10 350 500 68.4 500 360 1719 71.3 300 450 80 20 291 211 145 135.2 

H-07-16 350 500 68.4 500 420 2865 71.3 300 450 90 20 145 211 145 144.5 

N-06-06 350 500 35.5 440 440 1191 71.3 300 450 100 20 294 214 145 79.7 

N-06-12 350 500 35.5 410 440 2027 71.3 300 450 100 20 92 217 145 95.2 

N-12-12 350 500 35.5 410 440 2027 71.3 300 450 50 20 92 217 145 116.8 

N-12-16 350 500 35.5 520 440 2865 71.3 300 450 50 20 145 211 145 138 

N-20-20 350 500 35.5 560 440 3438 126.7 300 450 55 19 147 212 143 158 

N-07-10 350 500 33.5 500 420 1719 71.3 300 450 90 20 291 211 145 111.7 

N-14-10 350 500 33.5 500 360 1719 126.7 300 450 80 19 294 212 143 125 

N-07-16 350 500 33.5 500 420 2865 71.3 300 450 90 20 145 211 145 117.3 

Chiu et al. 

(2007) 

NBS-43-44 350 500 35 400 385 760.2 71.3 300 450 13 10 140 20 297 217 

HBS-74-17 350 500 67 505 600 1288.6 32 300 450 19 6 140 22 287 209 

HBS-82-13 350 500 67 493 600 1431.2 32 300 450 19 6 190 22 287 209 

NBS-82-13 350 500 35 493 600 1431.2 32 300 450 19 6 190 22 287 209 

HBS-60-61 350 500 67 402 385 1047.8 71.3 300 450 16 10 100 20 294 214 

Lee and 

Kim (2010) 

T1-1 300 350 43.15 410 2.05 506.8 71.3 260 310 130 15 257 147 125 32.86 

T1-2 300 350 44.04 410 2.05 760.2 71.3 260 310 85 15 257 147 125 45.89 

T1-3 300 350 41.7 410 2.05 1013.6 71.3 260 310 65 15 128.5 147 125 54.05 

T1-4 300 350 42.55 510 2.05 1191.6 126.7 260 310 75 14 257 145.5 123.5 62.41 

T2-1 300 350 40.08 410 2.05 506.8 71.3 260 310 225 15 257 147 125 26.05 

T2-2 300 350 41.7 510 2.05 1191.6 71.3 260 310 130 15 254 144 125 38.11 

T2-3 300 350 42.71 510 2.05 1191.6 71.3 260 310 88 15 254 144 125 50.16 

T2-4 300 350 42.64 512.4 2.05 1400.2 71.3 260 310 75 15 257 147 125 56.39 

Note 

b: width of section, h : height of section, 𝑓𝑐
′: compressive strength of concrete, fyl: yield stress of longitudinal 

reinforcement,  fyt : yield stress of transverse reinforcement, Ale: sectional area of one longitudinal steel bar, AL: 

total sectional area of longitudinal reinforcement, AT : area of one leg of stirrups or amount of transverse 

reinforcement, x0: smaller center-to-center dimension of closed stirrup, y0: larger center-to-center dimension of 

closed stirrup, s: spacing of transverse reinforcement, c : thickness of concrete cover, sx,cx,cv: crack width 

parameters (Collins and Mitchell 1991), Tu: ultimate torsional moment 
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COV of the ratio of the effective thickness by the analysis 

to that by Equation (8), which were 1.006 and 0.103, 

respectively. It means a quite good accuracy compared to 

the Rahal and Collins’ equation. It is noted that the effective 

thickness (td) of Equation (8) is limited by 0.75 Ac/pc, which 

is the thickness at the torsional cracking, specified by ACI 

318 (2014), to prevent excessive td.  
 

3.2 Principal stress angle 
 

The inclination angle of compression strut (α) is another 

important factor that affects the shear resistance capacity of 

RC members. In particular, it directly affects the aggregate 

interlock failure criterion, the magnitude of principal 

compressive stress in the in-plane shear element, and the 

subsequent concrete crushing capacity. In addition, the α is 

also an important variable to determine the contribution of 

reinforcement in the space truss analogy (Hsu 1984, Lee 

and Kim 2010). Since it is very difficult to determine the 

inclination angle of the compression strut without any 

iterative calculation in the smeared truss models, it can be 

useful to provide a chart or simple equation to calculate the 

α, based on a vast amount of parametric analysis results 

(Bentz and Collins 2004, CSA 2004, Hsu and Mo 1985).  

From the behavior analysis of the pure torsional 

members in Table 1, the principal stress angles at the 

torsional strength were extracted, and a simple equation for 

estimating the principal stress angle (α1) without iterative 

calculation was proposed considering key variables. The 

principal stress angle (α1) calculated using the SMMT 

showed no tendency according to the compressive strength 

of concrete (𝑓𝑐
′), while a clear tendency can be obtained 

according to the reinforcement ratio index (ρindex), as shown 

in Fig. 5, and thus the principal stress angle (α1) has been 

simplified as follows: 

2
1 36 12 2.5   

where 2.4

index index

T ty

index
L ly

f

f

  






= + −

= 

 

(9) 

where fly and fty are the yield strength of longitudinal and 

transverse reinforcement, respectively, and ρindex is limited 

to 2.4. The initial crack angle (α2) was taken as 45 degrees 

because in the case of the RC member subjected to pure 

torsion, the concrete web element experiences pure shear 

stress state (Hsu and Zhu 2002, Jeng and Hsu 2009). 

 

3.3 Strain effect 
 

The shear and torsional strength of RC members are 

affected by various factors, such as member dimension, 

material properties, and type of loadings. As the 

longitudinal strain (εx) of the member increases due to 

loading, the crack width increases, and the aggregate 

interlock capacity, which is regarded as the main shear 

resistance contribution in MCFT, decreases. This 

phenomenon is termed the “strain effect” (Bentz and 

Collins 2006). Therefore, the shear provision of the 

Canadian code (CSA 1994), which is based on MCFT, has 

taken the longitudinal strain (εx) as a key parameter,  

 

 

considering the stiffness of longitudinal reinforcement and 

applied loadings, to calculate the shear capacity of RC 

members (Rahal and Collins 1999). 

The longitudinal strain (εl) due to torsional moment is 

calculated by dividing the longitudinal force (FL) generated 

by torsion by the axial stiffness of the reinforcement. The 

longitudinal force (FL) of the RC member under pure 

torsion can be derived from the force equilibrium of the 

space truss model (Hsu 1984, Wight 2015) as follows: 

0
0 1

1 0

cot
tan 2

L l l

qp T
F A f p

A



= = =

 
(10) 

where fl is the stress of longitudinal reinforcement, and p0 is 

the perimeter of the shear flow resultant. The longitudinal 

strain (εl) can be obtained as follows:  

0 1

0

cot

2
l

l s

Tp

A A E


 =

 
(11) 

where Es is the elastic modulus of steel reinforcement. 

Before the yielding of reinforcement, the longitudinal strain 

calculated by Equation (11) is valid; but after yielding, the 

embedded steel bars show hardening behavior (Belarbi and 

Hus 1994). In this study, a simple hardening model (Lee et 

al. 2016) presented in Fig. 6 was used for the stress-strain 

relationship of reinforcement as follows:  

s s stf E =
 (12a) 

( )s y sp st yf f E  = + −
 

(12b) 

where εst is the strain of reinforcement, fy is the yield 

strength of reinforcement, εy is the yield strain of 

reinforcement, and Esp is the post-yielding elastic modulus 

of reinforcement, taken as 0.01Es. 

 
3.4 Simplified shear element 
 

With the aforementioned simple equations and strain 

effect, the shear element of the torsional RC member shown 

in Fig. 1 is analyzed to obtain the required stress and strain. 

The equilibrium conditions in the orthogonal directions can 

 

Fig. 5 Principal stress angles versus reinforcement indices 
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be expressed with principal stress components for 

simplicity, as follows (Ju et al. 2020): 

2 2

1 1cos sinl d r l lf     = + +
 (13) 

2 2

1 1sin cost d r t tf     = + +
 (14) 

( ) 1 1sin coslt r d    = −
 

(15) 

where ρl and ρt are the longitudinal and transverse 

reinforcement ratios in the shear element, and these can be 

calculated as Al/(tdp0) and Al/(tds), respectively. In addition, 

fl and ft are the stresses of longitudinal and transverse 

reinforcement, respectively, while τlt is the shear stress due 

to torsional moment, which is calculated by T/(2A0td) (Bredt 

1896). In addition, the strain compatibility conditions in the 

longitudinal, transverse, and principal directions can be 

expressed as follows (Hsu and Mo 2010): 

l t d r   + = +
 (16) 

Since the principal tensile stress (σr) and principal 

compressive strain (εd) are relatively small at the ultimate 

state, they can be assumed to be negligible. Therefore, by 

substituting σr =0 and εd =0 into Equations. (13)-(16), the 

equilibrium and compatibility equations are simplified as 

follows:  

2

1cosl d l lf   = +
 (17) 

2

1sint d t tf   = +
 (18) 

( ) 1 1sin coslt d   = −
 

(19) 

l t r  + =
 (20) 

Assuming no clamping stress (σt =0), the principal 

compressive stress (σd) and the stress of transverse 

reinforcement (ft) are expressed as follows: 

1 1sin cos

lt
d




 

−
=

 
(21) 

2

1sind
t

t

f
 



−
=

 

(22) 

The principal compressive stress (σd) of Equation (21) is 

the required stress, which is used to check the concrete 

crushing failure. In addition, the strain of transverse 

reinforcement (εt) can be obtained from the stress-strain 

relationship of the reinforcement, as shown in Fig. 6. Here, 

the principal stress angle (α1) can be calculated by Equation 

(9). 

The shear stress at the crack surface (𝜏21
𝑐 ), which is used 

to check the aggregate interlock criterion, is calculated by 

transforming the principal stresses by the deviation angle 

(β) with the assumption of zero tensile stress of concrete (σr 

=0) as follows: 

 

Fig. 6 Stress-strain relationship of steel reinforcement 

 

 

𝜏21
𝑐 = 𝜎𝑑sin𝛽cos𝛽 (23) 

Since the initial crack angle (α2) is assumed to be 45 

degrees, the deviation angle (β) can be easily calculated 

with Equation (9) for α1 as follows:  

𝛽 = 𝛼2 − 𝛼1 (24) 

 

3.5 Solution algorithm 
 

The analysis procedure is based on the force-controlled 

process, and it is divided into the preparation step for input, 

the panel element analysis step, and the failure criteria 

check step, as below. 

1. With the given values, select the initial value for a 

torsional moment (T) near zero, and calculate the effective 

thickness of shear flow (td) using Equation (8). Then, 

calculate the shear stress (𝜏𝑙𝑡 ) by T/(2A0td), and average 

shear crack width (ws) using Equation (2), where the tensile 

strain in the crack direction (ε1) can be expressed by 

transforming the principal tensile strain by β with the 

assumption of εd =0, as follows: 

𝜀1 = 𝜀𝑟cos
2𝛽 (25) 

2. Calculate the principal compressive stress (σd) by 

using Equation (21), shear stress at the crack surface (𝜏21
𝑐 ) 

by using Equation (23), and transverse reinforcement (εt) by 

using Equation (20) with the longitudinal strain (ε1) of 

Equation (11). 

3. Calculate the capacities for aggregate interlock and 

concrete crushing by using Equations. (1) and (5), 

respectively, and then check whether the required stresses 

(Equations. (23) and (21)) exceed the corresponding 

capacities or not. 

The above process is repeated with increasing the 

torsional moment until the required stress reaches the 

corresponding capacity. Since spalling occurs just before 

maximum load in a few specimens whose cover thickness is 

excessively large (McMullen and El-Degwy 1985, Rahal 

2006), the spalling is not deemed a dominant failure mode 

in typical torsional RC members. Therefore, in the proposed 

simple strength model, only the aggregate interlock and 

s
sfsf

spE

sE

yf

sf

s

Eq. (12b)
Eq. (12a)

y
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concrete crushing are considered for the multi-potential 

capacity criteria. 

 
 

4. Verification of the proposed model 
 

To verify the multi-potential capacity, the criteria were 

applied to the SMMT so that the strengths of RC members 

were estimated. The original analysis takes the termination 

point of analysis when the maximum strain at the surface of 

the thin-walled tube (εds) reaches -0.005 (Jeng and Hsu 

2009), to obtain sufficient information on the overall 

behavior, including the descending region after maximum 

strength. The torsional strengths estimated by the multi-

potential capacity criteria were compared with the 

maximum torsional moment. In addition, the proposed 

simple strength model was used to calculate the torsional 

strengths of RC specimens under pure torsion that were 

collected from the literature, as shown in Table 1.  

Fig. 7 compares the experimental results with the 

calculated torsional strengths, while Table 2 summarizes the 

estimation results. The average of the ratio of the test results 

to the maximum torsional moment was 0.937, and the 

coefficient of variation (COV) was 0.129, while the 

estimation results with multi-potential capacity (MPC) were 

0.966 and 0.147 for the average and COV, respectively. The 

suggested criteria evaluated the torsional strengths of the 

specimens on the conservative side and showed almost the 

same accuracy as the original SMMT. In the case of the 

simple strength model (SSM), it was found that the average 

and COV of the ratio of the test results to the calculated 

torsional strengths were 1.189 and 0.209, respectively, 

which indicates that the accuracy is somewhat lower than 

the other estimation results. However, the comparable 

torsional strength can be simply obtained by using the 

proposed simple method, while providing failure mode 

related to the behavioral mechanism.  

Fig. 8 shows the analysis results of the failure modes by 

applying the multi-potential capacity to the SMMT. In the 

graph, CC, AI, and SP represent the failure modes that are 

dominated by concrete crushing, aggregate interlock, and 

spalling, respectively. Since it is unusual for the RC 

members to have much more transverse reinforcement than 

longitudinal reinforcement, the specimens with 

/ 2.0T yT L yLf f    are excluded in the Fig. 8. In the case 

that /T yT L yLf f   is close to 1.0, the concrete crushing 

criterion determined the failure points, while in the 

specimens with / 0.75T yT L yLf f   , the aggregate 

interlock criterion tended to dominate the failure. 

Meanwhile, four specimens were estimated as spalling 

failure, because these specimens have a relatively large 

cover thickness and are subjected to high compressive 

stress. 

Fig. 9 shows the example of the torsional behavior of 

RC members estimated as aggregate interlock failure and 

concrete crushing failure. The figures also present how the 

demand and potential capacity are changed according to the 

increase in torsional moment. In the analysis of torsional 

behavior, the failure mode and torsional strength are  

 

Fig. 7 Comparison of test and analysis results 

 

Fig. 8 Failure modes by multi-potential capacity 

 

 

determined when the required stress reaches one of the 

criteria. 

In the RC member equally reinforced in both directions, 

the principal stress angle is formed close to 45 degrees 

regardless of the load, and thus the deviation angle between 

the principal stress angle and the initial crack angle is about 

zero. Since the shear stress at the crack surface (𝜏21
𝑐 ) is 

developed depending on the deviation angle (β), in the case 

of β=0, there is almost no shear stress at the crack surface. 

Therefore, the failure due to concrete crushing occurs in 

that case rather than aggregate interlock failure. In addition, 

β =0 means that the initial crack angle is similar to the 

principal stress angle, which is also consistent with the 

mechanical explanation that shear stress cannot exist in the 

principal stress direction (Goodno and Gere 2017). 

The principal stress angle deviation from the initial 

crack angle according to the reinforcement ratio in both 

directions can be found from the panel tests conducted by 

Vecchio and Collins (1982). Fig. 10(a) presents the crack 

patterns of the RC panel specimens subjected to pure shear, 

in which the ratio of transverse reinforcement is equal to 

that of longitudinal reinforcement. In such specimens, the 

initial crack angle was formed at 45 degrees, and the angle 

of the critical crack causing failure was also formed near 45 

degrees. On the other hand, Fig. 10(b) presents the crack 

patterns of panel specimens where the amount of transverse 

reinforcement varied, while that of longitudinal 

reinforcement was kept constant. The ratios of longitudinal 
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and transverse reinforcement indices, /T Ty L Lyf f  , of the 

PV10, PV19, and PV20 specimens were 0.560, 0.261, and 

0.324, respectively. The specimens are reinforced more in 

the longitudinal direction than in the transverse direction. 

The initial crack angles of the specimens were formed at 45 

degrees, but the critical cracks that cause the ultimate 

failure were formed at an angle close to the longitudinal 

direction. Although the initial crack is formed at 45 degrees, 

the unequally reinforced member has the principal stress 

angle closer to the more reinforced direction according to 

increasing load. 

The multi-potential capacity model provides a rational 

way to estimate the strengths and failure modes of RC 

members by reflecting the reinforcing indices in both the 

transverse and the longitudinal directions as well as their  
 

 

 

sectional and material properties. The simple strength 

estimation model derived in this study utilizing the multi-

potential capacity criteria is also expected to be very useful 

for practical torsional design in the field. 
 
 

5. Conclusions 
 

In this study, the multi-potential capacity criteria for RC 

members subjected to torsional moment were presented to 

determine the strength and failure mode of the members in a 

rational manner. The multi-potential capacity criteria were 

applied to the existing torsional behavior model, and a 

simple strength estimation model with multi-potential 

capacity criteria was also proposed. In addition, the 

proposed multi-potential capacity concept and the simple 

  
(a) Aggregate interlock failure (H-06-12 specimen of Fang and Shiau (2004)) 

  

(b) Concrete crushing failure (H-12-12 specimen of Fang and Shiau (2004)) 

Fig. 9 Determination of failure model and torsional strength 

 
(a) Equally reinforced member in both directions 

 
(b) Unequally reinforced member in both directions 

Fig. 10 Crack patterns of panel specimens (Vecchio and Collins 1993) 
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strength model were verified by comparing with test results 

collected from the literature. The conclusions of this study 

are summarized as follows: 

•  The multi-potential capacity was derived based on 

the thin-walled tube theory and fixed angle truss model to 

consider the torsional member as the shear stress element 

and to reflect the aggregate interlock, concrete crushing, 

and spalling failure mechanisms. 

•  The simple strength model with multi-potential 

capacity was proposed to calculate the member capacity 

without any complex iterative calculation, in which the 

simple equations for estimating the effective thickness (td) 

and principal stress angle (α1) were suggested. In addition, 

the strain effect was considered to reflect the reduced 

capacity of the concrete section with larger longitudinal 

strain. 

•  The smeared membrane model for torsion was used 

in order to apply the multi-potential capacity, and the 

analysis results showed that the multi-potential capacity 

well provided the point where the member reaches its 

maximum strength with the high accuracy.  

•  The multi-potential capacity was also able to 

determine the failure mode considering the reinforcing 

indices in both transverse and longitudinal directions, as 

well as the sectional and material properties of RC 

members, by which it was confirmed that the behavior 

mechanism of RC members subjected to shear stress was 

rationally considered. 

•  Although the accuracy of the proposed simple 

strength model is somewhat lower than that of the other 

detailed analysis models, the torsional strength of RC 

members can be obtained simply by using the proposed 

model, and thus it is considered to be applicable to torsional 

design in practice. 

•  Since the multi-potential capacity was suggested in 

the stress level, it would be easily utilized to define the 

capacity of RC members subjected to various types of 

loading. 

•  There are still some issues that need future research, 

such as failure modes defined in the multi-potential 

capacity; influencing factors for spalling failure, aggregate 

interlock capacity according to the aggregate size, tensile 

behavior of concrete subjected to out-of-plane stress in 

torsional members. 
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CC 

 

 

Notations 

 

0A  = area enclosed by the centerline of the shear flow zone 

cA
 

= area enclosed by the outer perimeter of the cross section 

,maxga  = maximum size of aggregate 

lA
 

= amount of longitudinal reinforcement 

tA
 

= area of one leg of stirrups or amount of transverse   

reinforcement. 

b   = width of the section 

vb    = the effective depth resisting horizontal shear 

yc    = depth of neutral axis 

bld   = diameter of longitudinal steel bar 

btd   = diameter of stirrup steel bar 

vd    = the effective depth resisting vertical shear 

sE  = elastic modulus of steel  

spE  = post-yielding elastic modulus of steel 

cf  = stress-strain relationship of concrete 

cf   = compressive strength of concrete 

,maxcf = softened compressive strength of concrete  

lf  = stress of longitudinal reinforcement 

Lf  = stress of longitudinal reinforcement 

sf  = stress of tensile reinforcement 

tf  = stress of transverse reinforcement 

LF  = longitudinal force of the reinforced concrete member 

under torsion 

yf  = specified yield strength of reinforcement 

lyf  = yield stress of longitudinal reinforcement 

tyf   = yield stress of transverse reinforcement 

h   = height of the section 

jd   = flexural moment arm 

1K    = ratio of the area occupied by the reinforcing bars to the 

total area along the perimeter of stirrups 

ck   = ratio of average compressive stress to the peak 

compressive stress in concrete struts 

M   = bending moment 

0p  = perimeter of the shear flow resultant 

cp   = perimeter of the outer concrete cross section 

hp   = perimeter of the centerline of the closed stirrup 

q  = shear flow 

s  = spacing of transverse reinforcement 

ms   = average shear crack spacing 

mxs  = average crack spacing that would result if the 

member was subjected to longitudinal tension 

mvs  = average crack spacing that would result if the 

member was subjected to a transverse tension 

Sp  = spalling potential 

T  = torsional moment 

dt  = effective thickness of shear flow zone 

sw   = shear crack width 

shw  = effective width resisting horizontal or vertical shear 

  = angle of compression strut with respect to the longitudinal 
axis 

1  = angle of principal stress with respect to the longitudinal 

axis 

2  = angle of initial crack with respect to the longitudinal axis 

  = deviation angle between initial crack angle and principal 

stress angle 

1  = average tensile strain in the 1 - direction (initial crack 

direction) 

cu  = ultimate compressive strain of concrete 

c'  = maximum strain of concrete at the compressive strength 

d  = average principal compressive strain 

ds  = maximum principal compressive strain 

l  = average strain in the l - direction or longitudinal direction 

r  = average principal tensile strain 

t  = average strain in the t -direction 

st  = strain of reinforcement  
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x  = longitudinal strain of member in CSA code 

y  = yield strain of steel 

  = softening coefficient of concrete in compression 

  = modification factor for lightweight concrete 

l  = longitudinal reinforcement ratio, taken as ( ), 0/l dA t p  

L  = longitudinal reinforcement ratio in gross section, taken as 

/L cA A  

t  = transverse reinforcement ratio, taken as ( )/t dA t s  

T  = transverse reinforcement ratio in gross section, taken as 

( )/t h cA p A s  

cn   = stress caused by an axial force 

c

cap   = capacity for concrete crushing 

d   = average principal compressive stress in concrete 

l   = average normal stress in the longitudinal direction 

r   = average principal tensile stress in concrete 

t   = average normal stress in the transverse direction 

21

c  = average shear stress of concrete in the initial crack 

direction 

ci

cap  = shear resistance capacity due to aggregate interlock 

lt  = average shear stress in the l t−  coordinate 
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