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1. Introduction 
 

Today, high-rise buildings are at the forefront of modern 

engineering, due to their functional and structural 

characteristics. The issue of structural analysis with regards 

to such buildings is the subject of many current studies, 

with the aim to better describe their structural behaviour 

and improve their design techniques (Lee et al. 2014, Wu et 

al. 2017, Qiao et al. 2017, Alavi and Rahgozar 2018).  

A significant number of studies focus on the analysis 

and design of systems aimed at contrasting horizontal loads 

on high-rise building. In Seon Park et al. (2016) a structural 

outrigger system is analysed and optimised through genetic 

optimisation in an attempt to identify the best position for 

the outriggers on a prototype model. Asai and Watanabe 

(2017) propose an improved outrigger system, TIMET 

(tuned inertial mass electromagnetic transducer), capable of 

increasing dissipated energy and recovering it in terms of 

electricity. The structural response of these buildings is 

essentially assessed numerically, through a finite element 

method (Brunesi et al. 2016, Avini et al. 2019, Tien and 

Calautit 2019) or experimentally with regards to certain 

issues. For instance, Soudian and Berardi (2017) 

experiment on the thermal energy storage capabilities in a 

building in Toronto while Sofi et al. (2018) are developing 

an experimental method based on the use of an 

interferometric radar system in order to determine the 

dynamic characteristics of a high-rise building. 

This study focuses on modelling a multi-storey high-rise 
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building. Specifically, it proposes a formulation based on 

differential equations that are capable of reproducing, with 

significant accuracy, the results of the finite elements model 

a building. In this first study, only a planar model will be 

analysed. 

Structural modelling is the civil engineering activity that 

deals with providing mathematical representations of 

structures so that it is possible to obtain information 

(displacements and internal actions) for dimensioning and 

verifying the structural behaviour of a building. A structural 

model is therefore a “representation” and, as such, is an 

approximate reproduction of reality (Bateson 1979, Sgambi 

et al. 2013, Sgambi, 2016). In the context of structural 

engineering, the main modelling methods derive from two 

distinct approaches: a differential approach (or strong form) 

(Timoshenko 1970, Malerba and Sgambi 2014, Aydin and 

Bozdogan 2016, Wang et al. 2016) and a variational 

approach (or weak form) (Wallerstein 2001, Bayat and 

Pakar 2015, Bayat and Pakar 2017, Niiranen and Niemi, 

2017). 

In the differential approach, the continuum is conceived 

as divided into infinitesimal elements of matter and, under 

specific kinematic and material hypotheses, theories 

capable of describing the behaviour of many structural 

elements are developed. These theories require the 

formulation and solution of one or more differential 

equations with their respective boundary conditions. 

Renowned and frequently used are the Euler-Bernoulli 

(Barretta et al. 2015) or the Timoshenko (Civalek and 

Kiracioglu 2010) beam formulations, the Kirchhoff–Love 

theory of plates, etc. (Falsone 2018, Manju and Mukherjee 

2019). These formulations are very efficient in the study of 

the behaviour of individual elements (a beam or a plate) but 
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they lose their effectiveness when the structure to be 

analysed is composed of several elements (such as the case 

of a bridge or a building containing beams and pillars). 

Indeed, formulation via differential equations and their 

solution are only used for studying relatively simple 

structures (for example, the displacements of a beam under 

a distributed load or the horizontal displacement of a simple 

frame). More complex structures require the composition 

and solution of a significant number of boundary 

conditions; thus, the differential approach tends to not be 

used in studying the structural behaviour of a building.  

The numerical formulation derived from the differential 

approach is the finite differences method (Cyrus and Fulton 

1966) where the differential problem is transformed into an 

algebraic problem. Even this formulation today lacks use 

due to the wide-spread presence of the finite element 

method. It remains a valid method for the numerical 

solution to problems thet also involve the temporal 

dimension (Carrino et al. 2019) and other specific 

modelling issues (Feras 2015). 

The second approach requires the formulation of the 

elasticity problem in its variational form. This formulation, 

equivalent to the differential formulation, requires the use 

of energy-related concepts applied to finite volumes of a 

continuum. The variational formulation of the elasticity 

problem has gained a greater level of success since it is at 

the foundation of the finite element method, currently the 

most used method for studying the structural behaviour in 

civil engineering (Bathe 1995, Garavaglia et al. 2013, 

Petrini et al. 2020, Lazzari 2019, Bathe 2019). High-rise 

and other buildings are in fact analised by modelling the 

beams, pillars and other structural elements using finite 

elements that give a numerical response to the structural 

behaviour at certain points (nodes and gauss points) of the 

model. The global response of structures is reproduced 

through an interpolation of local responses. 

The following sections will demonstrate how it is 

possible to formulate the bending problem of a high-rise 

building in a differential form, limiting the number of 

equations and boundary conditions. The formulation will be 

carried out considering a planar modelling of the problem 

and in relation to a real example, the Torre Pontina, a 37-

storey building with a reinforced concrete structure. 

Assuming that it is possible to distribute the stiffness of the 

slabs on the vertical structures it will be possible to achieve 

a model made up of various Euler-Bernoulli beams 

interconnected by an infinite number of springs. This 

particular structural system will be called multi-beams 

(MB) system.  

It is worth noting that over in recent years several 

researchers have begun to study these systems of 

interconnected beams, both in numerical and analytical 

form, although most studies refer to systems consisting of 

only two coupled beams. For instance, Oniszczuk (2000) 

investigates the free vibrations of two Euler-Bernoulli 

beams joined by an infinite series of springs (dual-beams 

system). Vu et al. (2000), again for a dual-beams system, 

present an exact method for assessing the vibration 

characteristics when the system undergoes harmonic 

excitation. Abu-Hilal (2006) investigates the dynamic 

behaviour of a couple of Euler-Bernoulli beams joined 

together by an infinite series of springs and dampers 

subjected to a dynamic load. Pavlović et al. (2012) 

investigate the dynamic instability, of a dual-beams system, 

in the presence of random forces. In Han et al. (2018) and 

in Liu and Yang (2019) solutions in a closed form are 

researched for vibration analysis of elastically connected 

double-beam systems.  

A high-rise building is a complex structure. The study 

and design of these structures require different analytical 

and numerical modelling according to the problems that 

have to be investigated. In fact, many particular 

mechanical-structural aspects intervene in the definition of 

the global and local response of this type of structure. These 

include, for example: the deformability of the foundation, 

which often has to be investigated considering the shear 

deformability of the plates (Civalek and Acar 2007), the 

interaction between the foundation and the ground (Akgoz 

and Civalek 2011), the identification of the stiffness of the 

connections (Lou and Wang 2015), the correct definition of 

the bending and shear deformability of the vertical resistant 

mechanisms (frames and shear walls) and the shear 

deformability of deep beams and floors (shear lag). 

In this context, the use of simplified proxy models is 

crucial, especially for Monte Carlo (Sgambi et al. 2014) or 

optimisation analyses (Franchin et al. 2018) in the modern 

context of performance-based design under different 

hazards (Barbato et al. 2020). 

Cuni et al. (2013) develop two simplified models (the 

first based on Timoshnko's theory and the second based on 

Eulero Bernoulli's theory) in which each floor of the 

structure is schematised by a node. To identify the flexural 

stiffness and shear of the models, the authors propose a 

calibration criterion to identify the value of some 

parameters (Young's modulus, shear modulus, density 

mass). The resulting values of these parameters, on which 

the flexural behaviour of the structure depends, lose all 

physical meaning (Cuni et al. 2013). 

A further simplified model capable of considering 

flexural and shear deformability of the structure is 

developed by Fujita et al. (2015). Like the previous model, 

also the Fujita’s model is an ideal model and requires an 

identification process to make the ideal model equivalent to 

the real behaviour of the structure. This identification 

process must be performed for each load scenario 

considered (Fujita et al. 2015). 

The MB approach proposed in this paper is less 

effective (it requires more computational time to obtain a 

solution) than the approaches proposed by Cuni and Fujita. 

However, the MB approach provides an analytical 

description of the behaviour of the whole structure without 

any calibration procedure. 
 
 

2. The case study 
 

The approach proposed in the present paper is used to 

model the behaviour under horizontal load of a real 

structure. As a case study, Torre Pontina, a residential and 

office building located in the Municipality of Latina (Italy), 

was chosen. The aim of this paper is to present a model able 
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to describe the static bending behaviour of the building 

based on differential equations. It must be noted that the 

purposes of this study do not include the precise evaluation 

of the structural response of the tower, therefore a number 

of simplifications will be made with regards to the structure 

in order to best focus the attention on the proposed 

 

 

 

Fig. 1 The Torre Pontina during construction (photo 

credit: Shapiro1983, Public Domain image) 

 

formulation and its comparison with some benchmarks of 

reference.  

Reaching 128 m in height (151 m considering its 

antenna), the Torre Pontina (Fig. 1) is the most imposing 

landmark in the Municipality of Latina and is one of the ten 

tallest buildings in Italy. The architectural design of the 

tower was conceived by architect Lodovico Risoli while the 

structural design was developed by engineers Massimo 

Guerrini and Luciano Gioacchini from SBG & Partners in 

Rome. 

The tower consists of 37 floors above ground with a 

3.10 m floor height, the layout of the floors is an octagon 

formed by a 34.60 m square shape from which an isosceles 

right triangle has been removed from each corner measuring 

4.05 m (Fig. 2). The tower rests on a 40 x 40 m foundation 

plane and is supported by 136 piles that reach the depths of 

-40 m into the ground.  

The vertical structure consists of 44 elements of various 

sizes (pillars and walls) in reinforced concrete, as reported 

in the plan in Fig. 2. The dimensions of these elements are 

shown in Table 1 and, for almost all elements, remain 

constant over the entire height of the building, forming a 

regular structure both in plan (double symmetry) and 

elevation.  

A slight variation on the structure is present in the three 

highest floors of the building, where pillars P2, P5, P40 and 

P43 reduce their size from 3.7 m to 1 m. These variations 

will not be considered in this paper because they are 

considered to have little influence on the bending behaviour 

of the structure. 

The horizontal structure consists of reinforced concrete 

slabs of 0.3 m of thickness, cast in situ and capable of 

connecting all the vertical structures. The load considered 

 

 

Fig. 2 Torre Pontina structural plan 
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Table 1 Dimensions of the Torre Pontina vertical structures 

Pillar X dimension [m] Y dimension [m] 

P1, P6, P39, P44 0.60 2.70 

P2, P5, P40, P43 2.25 0.60 

P3, P4, P41, P42 0.60 3.90 

P7, P8, P37, P38 2.70 0.60 

P9, P16, P29, P36 0.60 2.25 

P11, P16, P30, P35 0.60 (thickness) 1.20 (exterior) 

P12, P15, P31, P34 0.60 0.90 

P13, P14, P32, P33 0.60 2.30 

P17, P28 4.10 0.60 

P18, P27 8.60 0.60 

P19, P22, P23, P26 1.20 0.60 

P20, P21, P24, P25 1.20 0.60 

 

 

on the building is the wind load, evaluated in a static 

manner in accordance with Italian technical rules and 

regulations (NTC, 2008). For the sake of simplicity this 

study choses to consider a constant load along the height of 

the building equal to 63.6 kN/m (42.4 kN/m in pressure and 

21.2 kN/m in depression) even though regulations propose a 

variable trend in the pressure along the building’s height. 

The value of the constant load considered was determined 

on the basis of an average of the load values along the 

building’s height and has the sole purpose of simplifying 

the mathematical process, without prejudice to the 

generality of the proposed approach. Since the structure is 

doubly symmetric and the load considered is a wind load in 

direction X (Fig. 2), the structural model is simplified by 

using a planar modelisation of the structural behaviour.  

The following paragraph reports two solutions of 

reference that are adopted in order to compare the outcome 

achieved by the proposed approach with classical results 

based on consolidated theories and methods. Having 

comparative results, even if they are not guaranteed proof of 

the accuracy of the results obtained, is always useful in 

interpreting results and understanding the stronger and 

weaker points of a new approach. 

 

 

3. Reference solutions evaluated through classical 
methods 

 

In order to validate the proposed approach, two classical 

solutions have been developed: the first one is based on the 

solution of the Euler-Bernoulli elastic beam equation, while 

the second refers to the finite element method. 

 

3.1 Solutions achieved with the classical Euler-
Bernoulli equation 

 

The Euler-Bernoulli differential beam equation (Eq. 1), 

solved (for a cantilever beam representing the building) by 

taking into consideration the relative boundary conditions 

(2), provides very approximate results.  

( )
( )

4

4

dv x
E I q x

dx
  =

 

(1) 

( )
0

0
=
=

x
v x

 ; 

( )

0

0

=

=

x

dv x

dx
 ;  

( )2

2
0

=

=

x L

d v x

dx
 ;  

( )3

3
0

=

=

x L

d v x

dx
 

(2) 

In Eqs. (1)-(2), x is the beam abscissa that origins at the 

restrained end, v(x) is the unknown transverse displacement 

function, q(x) is the transverse load function, E is the 

Young's modulus, I is the value of the bending inertia of the 

section and L is the height of the building. In this context, 

the building is modelled as a vertical cantilever, fixed at its 

base and subjected to a constant horizontal load. The main 

source of the approximation lies in the impossibly of 

modelling the bending stiffness of the building properly. In 

fact, the building is modelled as a large vertical cantilever 

with only one section while the vertical structure is 

composed of many elements (pillars and walls) connected 

by deformable structural elements (slabs). The solutions of 

differential Eqs. (1)-(2) are given in Eqs. (3)-(4). 

( ) ( )
2

2 24 6
24


=  −   + 

 

q x
v x x L x L

E I  

(3) 

( ) ( )2 23 3
6




=  −   + 
 

q x
x x L x L

E I  

(4) 

Due to the uncertainty regarding the value of I, Eqs. (3)-

(4) will be used to evaluate two reference solutions. The 

first solution referred to as “EB – Min” (Euler-Bernoulli 

Minimum) uses only the inertia of the central core, 

neglecting the inertia of all the columns around the 

building. The value of this inertia, evaluated as if all 

elements of the central core were part of the section of a 

single element, was determined to be 558 m4. The solution 

obtained with these data will approximate in excess the 

displacements of the structure. The second solution uses the 

inertia of all the vertical elements, considering them as part 

of a single section that remains flat and perpendicular to the 

neutral axis during the deformation process. In this case, the 

inertia is much greater (4687 m4) and the solution in the 

displacements will be approximated by default. This second 

solution will be referred to as “EB – Max” (Euler-Bernoulli 

Maximum). 

 

3.2 Solution achieved with a finite element method 
 

In order to obtain a less approximated reference 

solution, a finite elements model was developed using the 

software ADINA (Bathe 1995). The building’s structure was 

modelled using a planar model (Figs. 3 and 4) composed by 

three equivalent pillars and horizontal slabs. Two equivalent 

pillars are placed at the centres of gravity of the group of  
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pillars at the sides of the building (from P1 to P6 and from 

P39 to P44, type 1 elements in Fig. 3) and the third at the 

centres of gravity of the central core. For the first two 

equivalent pillars, area and inertia was assessed on the basis 

of the areas and inertias of the lateral pillars (P1 – P6 and 

P39 – P44) with reference to the centres of gravity G2’ and 

G2’’ (Fig. 3). The values of area and inertia of the 

equivalent pillars evaluated with this assumption are equal 

to A = 10.62 m2, I = 2.75 m4. 

In the centre of gravity of the building (point G1 in Fig. 

3) is placed an equivalent pillar to the central core of the 

building (type 2 elements in Fig. 3). Even for these 

elements, it is assumed that the structural behaviour is that  

 

 

of a single structural element. In this second case, this 

assumption is justified by the fact that, although between 

the various vertical elements there are openings (on average 

of 1.2 m) all the elements are connected by deep beams of 

1.3 m of height. It is assumed that the presence of such 

beams is sufficient to restore a certain level of unity to the 

section. The area and inertia of the columns P7, P9, P17, 

P29, P 37 and P8, P16, P28, P36, P38 are added to the areas 

and inertias of the central element. The final value of the 

area and inertia of the central element are considered to 

equal 44.16 m2 and 558 m4 respectively. 

For every floor, the reinforced concrete slab is modelled 

with beam elements with a base equal to the width of the  

 
Fig. 3. Types of pillars considered in the numerical model 

 

 

Fig. 4. Image of the finite elements model 
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Fig. 5. Structural diagram and sign conventions assumed 

for the Multi-Beam approach 

 

 

slab (34.6 m) and a thickness equal to the slab thickness 

(0.3 m). Since the central core has an important physical 

dimension (13.2 m), part of the elements representing the 

slabs are modelled as rigid elements in order to better 

approximate the stiffness of the floors. (6.6 m on every side 

of the central core as reported in Fig. 3). Fig. 4 shows the 

finite element model developed with the ADINA software. 

 

 

4. Formulating of the multi-beam model 
 

The Multi-Beam modelling approach to the structural 

problem is based on the simplifying hypothesis that the 

axial and flexural stiffness of the slabs can be distributed 

along the heights of the floors in a uniform manner. Such a 

hypothesis, very strong for modestly high buildings, seems 

more acceptable for high-rise buildings (if regular in 

elevation) made up of a significant number of floors. In 

relation to the diagrams in Fig. 5, the structural frame in the 

top part of the figure becomes composed of only a series of 

vertical beam elements interconnected by an infinite 

number of elastic springs. 

In this manner it is possible to describe the flexural 

behaviour of the whole structure as a set of Euler-Bernoulli 

beams, one beam for every vertical element considered,  

 
Fig. 6. Conventions assumed for writing equilibrium 

equations  

 

 

coupled each other by the distributed stiffness of the floors. 

In (Sgambi and Sato 2019) the authors present the same 

approach of a high-rise buildings modelling but considering 

the axial stiffness of the slabs only.  

The solution will be assessed numerically (finite 

differences) using the Matlab environment and will be 

compared with the results of the reference models (Section 

3). 

 

4.1 The equilibrium equations 
 

By extracting an infinitesimal beam element from one of 

the three vertical elements in Fig. 5, the diagram in Fig. 6 

can be obtained. In this diagram, in addition to the internal 

actions, N(x) (axial), T(x) (shear), M(x) (bending moment), 

the external transversal load q(x) it is shown together with 

the distributed force f(x) and the distributed momentum 

m(x) which the slabs transmit to the vertical structures.  

Based on the conventions specified in Fig. 6, 

equilibrium can be carried out in a vertical direction and in 

rotation, leading to the Eq. (5): 

( )
( ) ( )

( )
( ) ( )

0

0

dT x
q x f x

dx

dM x
T x m x

dx


+ + =



 − − =
  

(5) 

Differentiating the second equation and substituting the 

first inside the second, we get: 

( )
( ) ( )

( )2

2
0

d M x dm x
q x f x

dxdx
+ + − =

 

(6) 
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By introducing the relationship that links the bending 

moment to the curvature (x) and by assuming constant 

stiffness characteristics of the beam (E, I) along the height, 

we get the Eq. 7: 

( ) ( )
( )2

2
0

dm xd
E I q x f x

dxdx


  + + − =

 

(7) 

Which becomes, with the sign conventions assumed for 

the mathematical curvature and the physical curvature (

( ) ( )2 2 = −x dv x dx ): 

( )
( )

( )
( )

4

4

dv x dm x
E I f x q x

dxdx
  − + =

 

(8) 

Eq. (8) is valid for every vertical structural element 

present in Fig. 5, then it is possible to write the following 

system of three equations: 
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  − + =


dv x dm x
E I f x q x

dxdx

dv x dm x
E I f x q x

dxdx

dv x dm x
E I f x q x

dxdx
 

(8) 

where subscript 1 indicates that the Eq. 1 is relative to 

the equivalent pillar at the left, subscript 2 indicates the 

equation relative to the central core and subscript 3 

indicates the equation relative to the equivalent right pillar. 

It is worth noting that the three equations are coupled with 

one another by the presence of the terms f(x) and m(x) 

which depend on the displacement functions v1(x), v2(x) and 

v3(x) and their derivatives. In the following section, these 

expressions will be made more explicit. 

 

4.1 The axial contribution f(x) 
 

Based on the transversal displacement functions v1(x), 

v2(x) and v3(x) and on the basis of the geometric and 

mechanical characteristics of the slab, when displacement 

occurs on the vertical elements, the slabs react with the 

following axial forces on the vertical elements: 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 1

2 2 1 3 2

3 3 2


 =  −  




 =  − + + −  


 = −  −  

E A
f x v x v x

L h

E A
f x v x v x v x v x

L h

E A
f x v x v x

L h
 

(9) 

where E is the Young’s modulus of the slab, A is its area 

and L the length of its deformable part (Fig. 5). h is the 

floor-to-floor height and its presence in the denominator of 

(9) allows to consider the axial forces originating from the 

floors as uniformly distributed on the vertical elements. By 

assigning the term ka to the fraction outside the brackets in 

Eq. 9, we can rewrite Eq. 9 in the following system:  

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 1

2 1 2 3

3 3 2

2

  =  − 


 =  −  +  


 = −  −  

a

a

a

f x k v x v x

f x k v x v x v x

f x k v x v x
 

(10) 

 

4.3 The flexural contribution m(x) 
 

The flexural contribution is assessed in the same way in 

which the axial contribution was analysed. Based on the 

sign conventions adopted (Fig. 5), three rotations are 

imposed on the vertical elements: v’1(x), v’2(x) e v’3(x). By 

using the beam’s elastic coefficients (the coefficients of the 

displacement method), the bending moments caused by 

slabs deformation on the vertical elements are evaluated. A 

slight algebraic complication is caused by the presence of 

the rigid link of length b (Fig. 5) needed to model the 

physical presence of the central core. Superposing all 

contributions, the Eq. 11 is obtained. 

Where I is the inertia of the horizontal structure, L is its 

deformable length and b is the length of rigid links (Fig. 5). 

Also, in this case, the presence of the height of the floors h 

in the denominator of Eq. (11) is needed to redistribute the 

bending stiffness of the slabs on the height of the floors. Eq. 

(11) can be rewritten in a more compact form: 
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Where the following relations are posed: 
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1

1 4
f

E I
k

h L

  
=  
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2 2

1 2 6
f

E I E I
k b
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=  +  

   

(14) 

2
3 2 3

1 8 24 24
f

E I E I E I
k b b

h L L L

      
=  +  +  

   

(15) 

 

4.4 The solving system 
 

By inserting Eqs. (10) and (12) into Eq. (8), it is 

possible to get a system of three ordinary differential 

equations which models the behaviour of the building used 

as a case study. 

( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )
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4 2
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3

1 3 2 32
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f f f
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f

f a
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E I k

dx dx

d v x
k k v x v x q x

dx

dv x d v x d v x d v x
E I k k k

dx dx dx dx

k v x v x v x q x

dv x d v x
E I k

dx dx

d v x
k k v x v x q x

dx


  − 



  −  −  − = 

  −  −  −  +


 −  −  + = 

  − 

 −  +  − = 














 

(16) 

Eq. (16) must be solved under the correct boundary 

conditions. For this case study, for every vertical element, 

the following conditions must be imposed: 

( )
0

0
x

v x
=
=

 ;  

( )

0

0

=

=

x

dv x

dx
 ;  

( ) 0
=

=
x L

M x
 ;  

( ) 0
=

=
x L

T x
 

(17) 

which represent the fixed end conditions at the base and 

free end at the top. It is worth noting that, if the bending 

moment condition (Eq. 18) is transformed into the classical 

condition that imposes a null value for the second derivative 

of the displacement, the shear condition, due to the presence 

of distributed momentum m(x), becomes: 

( )
( )

( )
3

3
0

=
=

=   − =
i

i ii x L
x L

d v x
T x E I m x

dx
 

(18) 

where the expressions of mi(x) are reported in Eq. (12) 

and depends on which vertical element is considered. 

 

4.5 Internal actions assessment 
 

The displacement functions derive directly from the 

solution of the system of ordinary differential equations as 

presented in Eq. (16) and (17). The internal actions in the 

vertical elements can be found on the basis of the 

considerations regarding equilibrium and kinematic 

relationships. For the bending moment, it can be found with 

the classical equation: 

( )
( )2

2
=  

i
i i

d v x
M x E I

dx  

(19) 

In order to assess the shear action, we need to consider 

not only the third derivative of the displacement, but also 

the distributed bending moment load, originating from the 

slabs: 

( )
( )

( )
3

3
=   −

i
i i i

d v x
T x E I m x

dx  

(20) 

The axial actions in the vertical elements can be 

assessed on the basis of equilibrium considerations. The 

vertical elements have to collect the shear actions from the 

slabs. Using elastic coefficients of the beam, we can arrive 

at the distributed axial action on the vertical elements: 

( ) ( )

( )

'
1 12

'
22 3

6 1

6 12

E I
n x v x
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E I E I b
v x

hL h L
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−  

 (23) 

and hence assess the axial action in the elements through 

an integration: 

( ) ( )
−

= 
H

i i
H x

N x n x dx
 

(24) 

The system of ordinary differential equations (Eq. 16) is 

solved within its boundary conditions (Eq. 17) numerically 

using the Matlab environment. The next paragraph will 

discuss the results obtained from the reference formulations 

and the proposed formulation. For the last formulation, the 

acronym MB (Multi-Beam formulation) will be used. 
 

 

5. Discussion of the results 
 

Fig. 7 illustrates the results in terms of displacement 

function v2(x), representing the flexion in a vertical plane of 

the central core. It is worth noting how, in general, the 

horizontal displacement is very small (the maximum 

displacement under wind load reaches only a few 

centimetres).  
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Fig. 7. Horizontal displacement curves of the central core 

assessed with the Euler-Bernoulli equation (EB Max with 

I assessed considering all vertical elements, EB Min with 

I assessed considering only the inertia of the central 

core), with a planar finite element model (FEM) and with 

the proposed Multi-Beam approach (MB) 

 

 

This result is due to the presence, in the building, of a 

very strong vertical structure (walls with 60 cm of thickness 

and a central core measuring approximately 13 m) which 

remains constant throughout the building’s height. In 

relation to the solutions evaluated with a finite elements 

model, the solution to the Euler-Bernoulli equation is 

significantly different, both in its EB - Max formulation and 

in its EB – Min formulation. The solution to the proposed 

system of equations (Eq. 16) leads to a maximum error of 

5% compared to the finite elements solution, which appears 

slightly more flexible. It must be noted that the finite 

elements model is able to consider the axial deformability 

of the vertical elements, while in the proposed formulation, 

these elements was assumed to be rigid in axial direction. 

Fig. 8 shows the diagram of the central core’s rotation 

v2’(x) in the vertical flexion plane. Once again, it is worth 

noting how the two curves assessed with the two solutions 

of reference EB – Max and EB – Min are significantly 

distant from the curve assessed by finite elements modelling 

and how the solution that can be obtained from the 

proposed formulation (MB) is very close to the finite 

elements model’s solution (FEM). The graphs also show 

that the shape of the EB curves is significantly different 

from the shape of the FEM and MB curves. In these last 

two curves the angle of rotation decreases in the value of in 

the upper part of the building.  

As regards internal actions, Fig. 9 reproduces the shear 

action on the central core. The EB curve is obtained using 

the Euler-Bernoulli theory and gives us a maximum shear 

action value at the base of 8000 kN which decreases 

linearly to zero, proceeding towards the top of the building. 

It is worth noting that the EB solution does not differentiate 

between the shear action on the central core and the shear 

action on the lateral pillars, the value 8000 kN is simply 

equal to the resultant of the horizontal load taken into 

consideration. The FEM solution, on the other hand, 

presents a “steps” solution with a constant value of shear 

action across the floors and jumps corresponding to the 

slabs’ locations, where the horizontal load is transmitted to  

 
Fig. 8. Rotation curves along the flexion plane of the 

central core assessed with the Euler-Bernoulli equation 

(EB Max with I assessed considering all vertical 

elements, EB Min with I assessed considering only the 

inertia of the central core), with a planar finite element 

model (FEM) and the proposed Multi-Beam approach 

(MB) 

 

 
Fig. 9 Curves representing the shear action on the central 

core assessed with the Euler-Bernoulli equation (EB), 

with a planar finite element model (FEM) and with the 

proposed Multi-Beam approach (MB) 

 

 

the central core. Also worthy of note is that the maximum 

shear action value is slightly lower than in the EB solution 

since in the FEM solution a small portion of shear action is 

on the lateral columns.  

The MB model result is based on the solution of Eqs. 

(16), (17) and (20).This solution is not able to describe the 

punctual jumps in shear action at the slab level; however it 

can provide an average description of the values. Worthy of 

note (Fig. 9) is how this solution is in perfect agreement 

with the FEM model solution. Again, in the MB solution 

the maximum shear action on the central core (7705 kN) is 

lower than the resultant of the horizontal load since also in 

this formulation a small portion of load is taken from the 

lateral pillars. 

The bending moment diagrams on the central core (Fig. 

10) show a classic parabolic shape for the EB solution. The 

FEM model produces a significantly lower bending moment 

maximum value (298 MNm compared to 503 MNm for the 

EB solution). Such a difference is due to the presence of the 

lateral columns which are capable of balancing a portion of 
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the overturning momentum caused from the wind load by a  

 
Fig. 10. Curves representing the Bending Moment on the 

central core assessed via the Euler-Bernoulli equation 

(EB), with a planar finite element model (FEM) and with 

the proposed Multi-Beam approach (MB) 

 

 
Fig. 11. Curves representing the Axial Action on the 

lateral columns assessed via the Euler-Bernoulli equation 

(EB), with a flat finite element model (FEM) and with 

the proposed Multi-Beam approach (MB) 

 

 

rocking effect. The EB model is not able to reproduce this 

resistant mechanism therefore the total value of the 

overturning momentum must to be supported in terms of 

bending moment on central core. The proposed MB model 

is able to capture this aspect. In fact, the horizontal 

structures (beams and slabs) are the ones that couple 

together the flexural behaviour of the central core with the 

axial mechanism of the external pillars. The proposed MB 

model provides, once more, a solution that is significantly 

close to that of the FEM model. 

Fig. 11 underlines this rocking resistant mechanism with 

a graph showing the axial actions in the external pillars. The 

EB solution leads to a null value for the axial action while 

the FEM model and the MB model lead to two curves that 

are very close to one another. It is worth noting that by 

multiplying the maximum value of the MB model’s axial 

action (or that of the FEM model) by the distance between 

the two equivalent lateral columns, it is possible to get: 

5930 x 33,6 = 199 MNm which is the difference between 

the maximum moment at the base as evaluated with the EB 

model and that evaluated with the MB (or FEM) model. 

Table 2 shows the error calculated with regards to the 

reference solution for the finite elements of the two 

Table 2 Error % assessed in relation to the finite element 

reference solution 

 EB - Max MB EB - Min 

Horizontal displacement 72.3 7.32 133 

Rotation in the bending 

plane 
66.4 8.40 182 

Shear action (central core) 3.81 0.0130 3.81 

Bending moment (central 

core) 
63.3 3.25 63.3 

Axial action (lateral pillar) 100 4.77 100 

 

 

differential formulations considered. The error is calculated 

at the top of the building for horizontal displacement and 

rotation and at the base of the internal actions. 

As described in the introduction, the approach proposed 

in this paper is less effective and less efficient than the 

approaches proposed by Cuni et al. (2013) and Fujita et al. 

(2015) but does not require any parameters calibration 

procedure. 

From the point of view of the efficiency, once the 

problem was formulated analytically, in this paper the 

solution was assessed numerically. The number of unknown 

variables needed to obtain the solution is greater than the 

one required for the Cuni et al. (2013) and Fujita et al. 

(2015) models but less than the one required for a similar 

finite element model (Section 3.2). 

From the point of view of the accuracy, the proposed 

model does not take into account the shear deformability of 

structural elements, since it was developed on the basis of 

Eulero Bernoulli's classical theory. On this point, we can 

notice that the importance of shear deformability in an MB 

model is less important than in Cuni et al. (2013) and Fujita 

et al. (2015) models, where the building is modelled as a 

single cantilever element. 

In the proposed approach, the vertical elements (central 

core and pillars) are in fact modelled as separate elements. 

The behaviour of the central core is flexural and involves 

the entire height of the building (the ratio length/deep of the 

element is about 10). For the lateral columns, the 

contribution of shear deformability is more important. 

However, the proposed MB modelling is not able to capture 

the shear deformability between two floors because the 

horizontal elements appear distributed on the vertical 

elements. Such imprecision is intrinsic to this type of 

modelling. Probably, by using a different theory to develop 

the MB model and through an identification process (as in 

the models of Cuni et al. 2013 and Fujita et al. 2015) it 

would be possible to improve this aspect.  

 

 

6. Conclusion 
 

This paper provides a novel approach for modelling 

high-rise buildings subjected to a static horizontal load. The 

approach presented is an approach based on the formulation 

of a set of fourth-degree differential equations equal to the 

number of vertical structures (columns or walls) contained 
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in the building (ODE). This formulation is presented in 

reference to an existing 37-floor building, modelled as a 

planar frame. Thus, only three vertical structures are taken 

into consideration for the model, which reproduce, in an 

equivalent way, the stiffness of the outer columns of the 

building and central core. By distributing the stiffness of the 

slabs along the height of the floors, we get a structural 

model composed of three Euler-Bernoulli beams 

interconnected by an infinite amount of springs. This model 

(MB), which can operate with a variable number of Euler-

Bernoulli beams, is a generalisation of the double-beam 

systems which are already studied by the literature. The 

formulation, applied to the selected case study, leads to a 

system of three ordinary fourth-degree differential 

equations, which must be solved using the necessary 

boundary conditions. 

The same building was modelled using the finite 

elements method, assuming the same modelling hypotheses 

(FEM). 

By comparing the results, it becomes clear that the 

proposed model is capable of reproducing the results that 

are obtainable with a similar finite elements model with an 

error of around 5% and is also capable of describing 

mechanisms that a simplified cantilever model is not able to 

reproduce (for example, the resistant mechanism provided 

by the axial action in the exterior columns). 

If the proposed approach is compared with other 

approaches in the literature (Cuni et al. 2013, Fujita et al. 

2016), it can be seen that the proposed MB modelling is a 

more approximate approach because it does not take into 

account the shear deformability of the elements. However, 

the approach has two advantages. A first advantage over the 

two approaches mentioned is that no calibration procedure 

is required. The proposed approach can be directly used for 

any high-rise building with the same characteristics of the 

studied building and for any type of load. A second 

advantage of the proposed modelling is that the formulation 

is analytical. This can lead to a symbolic solution of the 

equations that govern the problem. 

Further developments of the approach may also concern 

the possibility to model the 3D behaviour of the building or 

the introduction of a dynamic load. 

 

 

Dedication 

 

In memory of Noemi Basso, a friend and esteemed 

colleague of Waseda University who recently passed away. 

A flower too delicate to overcome the storms of life. 
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