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Abstract. The contribution of infill wall is generally not considered in the structural analysis of reinforced concrete (RC)
structures due to the lack of knowledge of the complex behavior of the infilled frame of RC structures. However, one of the
significant factors affecting structural behavior and earthquake performance of RC structures is the infill wall. Considering
structural and architectural features of RC structures, any infill wall may have openings with different amounts and aspect ratios.
In the present study, the influence of infill walls with different opening rates on the structural behaviors and earthquake
performance of existing RC structures were evaluated. Therefore, the change in the opening ratio in the infill wall has been
investigated for monitoring the change in structural behavior and performance of the RC structures. The earthquake performance
levels of existing RC structures with different structural properties were determined by detecting the damage levels of load-
carrying components. The results of the analyzes indicate that the infill wall can completely change the distribution of column
and beam damage level. It was observed that the openings in the walls had serious impact on the parameters affecting the
behavior and earthquake performance of the RC structures. The infill walls have a beneficial effect on the earthquake
performance of RC structures, provided they are placed regularly and there are appropriate openings rate throughout the RC
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structures and they do not cause structural irregularities.
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1. Introduction

It is realized by considering the earthquakes in recent
years and their places of occurrence that a large part of the
settlements in the world are located on the active
earthquake zones. Most residential structures in settlements
are RC structures with infill walls, which are a common
structural system in many parts of the world (Fardis 2006,
Cavaleri et al. 2017). If the infill walls are appropriately
distributed throughout the RC structures and properly
maintained, they usually have a beneficial effect on the
earthquake performance and response of the RC structures
(Shariq et al. 2008, Asteris et al. 2012, Ricci et al. 2008,
Asteris et al. 2016, 2017a, b, Pasca et al. 2017, Behnam and
Shojaei 2018, Dilmag et al. 2018, Kostinakis and
Athanatopoulou 2019). However, the contribution of the
infill wall is usually not considered due to a lack of
knowledge of the behavior of the surrounding frame and the
infill wall (Asteris et al. 2012).

In recent years, a large number of experimental and
numerical analyzes have been occurred by researchers,
particularly on the effect and contribution of the infill wall
on the seismic behavior and performance. In some of the
studies, the effect of the modeling of the infill wall
materials and components elements with the infill wall on
the seismic behavior of RC structures were examined (Uva
et al. 2012, Muho et al. 2019). In addition, the simplified
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mathematical methods were presented to predict the in-
plane/out-of-plane behaviors and modes of infill walls in
RC structures (Crowley and Pinho 2006, Asteris ef al. 2011,
Chrysostomou and Asteris 2012). Similarly, some studies
have been carried out to determine the seismic behaviors of
RC structures with infill walls using experimental
evaluation, energy-based assessment, probabilistic approach
or shaking-table test to improve strengthening methods and
earthquake performance (Penna et al. 2014, Sattar and Liel
2016, Khoshnoud and Marsono 2016, Furtado et al. 2016,
Merter ef al. 2017, Benavent-Climent ef al. 2018, Peng and
Guner 2018).

In the modeling of RC structures, infill wall is generally
considered as equivalent compressive diagonal struts. The
diagonal strut approach was developed for the nonlinear
analysis of structures with infill walls subjected to seismic
forces, and its effect on structural behavior was examined
(Saneinejad and Hobbs 1995). This approach was
developed for the openings in the infill wall, and the effect
on seismic behavior was investigated by considering a
reduction factor. Considering the limited ductility of the
fillers, the approach regards the nonlinear behavior of the
infill wall. This approach to stimulate the behavior of infill
walls has been found to be accurately sufficient to assess
the seismic response of infilled RC frame structures (Perera
2005, Samoil'a 2012).

When considering the architectural properties of RC
structures, infill walls usually have openings in certain
proportions for different purpose. Therefore, the effect of
the infill wall with openings on the reduction of rigidity and
fundamental periods of filled RC structures is determined
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by analysis and experimental studies (Asteris 2003, Asteris
et al. 2015a, b, 2016). One of the important parameters is
the fundamental period of vibration, which is critical for the
seismic design of structures according to the modal
superposition method. Although the presence of infill walls
in structures significantly increase the structure weight and
seismic design loads, it has a positive contribution to
stiffness and earthquake safety (Asteris et al. 2017). In
addition, the location and size of the infill wall with
openings are also considered as parameters. However, the
contribution of the infill wall on the seismic behavior an
performance is not exactly determined, as it would be taken
from the expression “In spite of the general success of
modeling infilled frames with solid panels, major
difficulties still remain unresolved regarding the modeling
approach for infilled frames with opening” in FEMA 306
(1999).

Although infill walls are not accepted as load-carrying
system elements per se, their interaction with RC frames
significantly affect the dynamic and static behavior of an
RC structure in terms of ductility, rigidity, strength and
earthquake performance. The main aim of this study was to
investigate the effect of window and door openings in infill
walls on the -earthquake performance and dynamic
parameters of RC structures. In this paper, a three-
dimensional modeling of existing RC structures with
different structural properties was made according to
project information, plans and architectural properties. The
nonlinear analysis of existing RC structures was performed
using the SAP2000 software (2002). The effect of likely
opening rates in the walls on damage levels of load-carrying
components and their impact on earthquake performance
were examined. Therefore, the change in the opening ratio
in the infill wall has been investigated for monitoring the
change in structural behavior and performance of the RC
structures. The results of the analyzes indicate that the infill
wall can completely change the distribution of column and
beam damage level. It is observed that the openings in the
walls have a serious impact on the parameters affecting the
behavior and earthquake performance of RC structures. The
infill walls have a beneficial effect on earthquake
performance of RC structure, provided they are placed
regularly and there are appropriate openings rate throughout
the RC structures and they do not cause structural
irregularities. The earthquake performance analyzes of the
RC structures were carried out by considering the
requirements of the Turkish Earthquake Code (TEC)
(2007).

2. Earthquake performance of existing RC structures

The first step in the earthquake performance analysis of
existing RC structures is to collect information about the
construction year, structural features and the material
strengths. According to the collected the information for
existing RC structures that classified with scope of the
structural data and the load-carrying system of structures.
These levels are “limited”, “moderate” and
“comprehensive”. The information factors are applied to the
calculated member capacities, which are 0.75 for the

limited, 0.90 for the moderate, and 1.0 for the
comprehensive knowledge levels, respectively (TEC 2007).

The pushover analysis with single mode method is used
in the numerical analyses that lateral loads are increased
until the seismic displacement demand is reached in this
paper. The base shear force against the roof displacement
curves is obtained by using plastic hinges at the both ends
of the columns and beams. the steel tensile strain and
concrete compressive strain demands are determined by
considering the moment-curvature diagrams. The
determined moment-curvature diagrams of column and
beams are obtained using the confined and unconfined
concrete models developed (Mander 1988). The calculated
strain demands are compared with the damage limits to
determine the damage level in concrete section. The base
shear force against the roof displacement curves is obtained
by using plastic hinges at the midpoint of the equivalent
compressive diagonal struts for modeling of the infill wall.
The infill wall compressive force demands at the plastic
regions are calculated with the help of the force-
displacement diagram. The inelastic behavior of the infill
wall and level of damage according to the level of seismic
load are investigated by using adoption of the plastic hinge
method (Panagiotakos and Fardis 1996). The tensile
strength values of the infill wall are used in the calculation
of the axial load hinge to be assigned on the equivalent
diagonal strut. However, the damages occurring in the walls
under the influence of earthquake loads are not considered
in the RC structure performance evaluation. Their damage
levels are often not taken into account due to the lack of the
information of the composite behavior of the surrounding
frame and the infill wall. Therefore, the earthquake
performance of RC structures is determined according to
the damage levels of beams and column.

The TEC (2007) defines three damage limits that
concrete and steel strain limits at the fibers of a cross
section for minimum damage limit (MN), safety limit (SL),
and collapse limit (CL). The earthquake performance levels
of structures are defined after determining the damage
levels of load-carrying components members. The
earthquake performance of RC structures is expected as life
safety performance level under the design spectrum
obtained for %10 probability of exceeding in 50 years. The
rules for determining structure performance are given below
for each performance level (TEC 2007):

Four performance levels are defined for the structure
according to TEC (2007) that has similarities with FEMA-
356 (2000) guidelines. The earthquake performance level
defined as Immediate Occupancy (IO), in any story, in the
direction of the applied earthquake loads, not more than
10% of beams are in the significant damage state whereas
all other structural members are in the minimum damage
state. Earthquake performance level defined as Life Safety
(LS), in any story, in the direction of the applied earthquake
loads, not more than 20% of beams and some columns are
in the extreme damage state whereas all other structural
members are in the minimum or significant damage states.
However, shear carried by those columns in the extreme
damage state should be less than 20% of the story shear at
each story. The performance level defined as Collapse
Prevention (CP), in any story, in the direction of the applied
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Fig. 1 The modeling diagonal strut of infill wall (Dilmag
et al. 2018)

earthquake loads, not more than 20% of beams and some
columns were in the collapse state whereas all other
structural members are in the minimum, significant or
extreme damage states. However, shear carried by those
columns in the collapse state should be less than 20% of the
story shear at each story. Furthermore, such columns should
not lead to a stability loss. Occupancy of the structure
should not be permitted. Performance level defined as
Collapse (C), if the structure fails to satisfy any of the above
performance levels, it is accepted as in the collapse state.

3. Modelling of the infill wall

The infill walls can be modelled using the equivalent
compressive diagonal struts model as given in Fig.
1(Dilmag et al. 2018). For attempting to model the behavior
of RC structures with infill walls, experimental and
conceptual observations have shown that a diagonal strut
with appropriate geometric and mechanical properties can
likely provide a solution to the problem (Asteris et al.
2012).

In the adoption of diagonal struts is supported with
experimental and analytical study by considering the effect
of the infilling in each wall as equivalent to diagonal
bracing (Polyakov 1960, Holmes 1961, Smith1967, Asteris
et al. 2012). The proportional relationship between the
width (wer) and the length of (r.) of the diagonal strut is
indicated by using experimental data related the wer  to the
infill/frame contact ry, using the analytical equations. In this
study, the structural and mechanical properties of the infill
wall are determined by the equations mentioned in FEMA
356 (2000). The wef is taken into account by Eq. (1).

Wer = 0.175.(4, h) %, (1)
0.25
_ | Eptwsin26
H { 4Ec1chy, } @

Displacement
Fig. 2 The force-displacement relationships of the
compressive diagonal struts

where hy is height of story and stiffness factor (Av) is taken
into account by Eq. (2). The thickness (tw) is considered as
constant; 200 mm, O is angle of diagonal to horizontal in
degrees is given in Eq. (3), hy is height of wall, L is length
of span of equivalent diagonal strut and E. and E., are the
elastic modulus of concrete and the infill wall, respectively.
E. and E,, are given by Eq. (4) and Eq. (5), respectively.

0 =tan 1(h—"v) 3)
LW

E, =5000,/f, (4)

Ep, =550.f, (35)

where fg, is the compressive strength of concrete in MPa.
The fn is the compressive strength of infill wall that shall be
taken as 2.1 MPa, 4.1 MPa and 6.2 MPa by a factor as
specified as poor, fair, good of wall condition, respectively
(FEMA-273 1997).

The model of nonlinear behavior of the infill wall is
described by assigned axial load hinges on diagonal strut
that features are defined (Panagiotakos and Fardis 1996).
The model is consist of three stages. The first state (K;) is
defined the initial sliding behavior and the second stage
(K>) shows the behavior of the infill wall after it has left the
frame. The attenuation behavior of the infill wall is
modelled at the last stage (K3). The force-displacement
relation for the diagonal strut representing the infill wall is
illustrated in Fig. 2.

The initial rigidity (K;) is calculated in Eq.6 using the
simple method defined in ECOEST-PREC 8 Report (Fardis
1996).

_ Gulutw

K== (©)

where Gy, is the shear modulus of the infill wall and is
considered as equal to 0.4 times the elastic modulus of the
infill wall (Kakaletsis et al. 2011, Celarec et al. 2012, Uva
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et al. 2012). The axial rigidity (K») and the attenuation rigidity
(K3) of the infill wall is calculated using the Eq. (7) and (8).

Ky = Emawtw 7
rW
0.005K; < K3 <0.1K; ®)

The yield load (Fy) of the infill wall, the yield shortening
(Sy) of the infill wall, the maximum compression strength of
the infill wall (Fi) and the shortening (Sm) at the Fi, point
and the axial shortening (S;) in case of mechanism are
calculated by equations given below:

Fy = fptwlw 9)
F

S, = 10
YTk, (10)
Fm =1.3F 0<F, <0.1F, (a1

Fm —F Fm—F
Sy =S, +—~ S, =S 4-m T 12
m y K, r mt Ks (12)

The cracking strength of the infill wall (fy,) is taken as
0.54 MPa (Jinya and Patel 2014) in the analyzes. The term
F: in Eq. (11) is defined as the permanent load of the infill
wall and an appropriate value is taken in the given range.

3.1 Influence of openings in the infill wall

Infill walls have openings at certain rates originating
from doors and windows when considering the architectural
properties of the RC structures according to the purpose of
use. However, most researches have focused on the effect of
simple infill walls without openings on structural behavior.
In addition, research on the openings of infill walls are
often analytical, limited to particular cases. Therefore, this
case cannot exactly represent the actual structural behavior.
It is a known fact that the contribution of the infill wall to
the lateral stiffness of the frame is reduced when the
structure is exposed to a reverse cycle loading under the
effect of the earthquake, as in the case of the actual
structures.

In this paper, a finite element method proposed by
Asteris (Asteris 2003, 2014) was used to investigate the
influence of the openings of walls on the seismic behavior
and performance of RC structures. The main feature of the
method is that the fill/frame contact lengths and contact
stresses are predicted as an integral part of the solution
(Asteris et al. 2012). The effect of reducing the stiffness of
the openings rate in the infill wall is taken into account in

Eq. (13).

2=1-2a0% +al ©)
where a,, is area of opening to the area of the infill wall. The
stiffness reduction factor (1) coefficient can be used to find

the equivalent wer of a diagonal strut using the reduction of
the stiffness factor (Ay) given in Eq. (2).

To examine the influence of the infill wall and openings
rates on earthquake performance and behavior, the analyses
of existing RC structures with different numbers of stories
were carried out in this study. The openings rates of infill
walls in existing RC structures were analyzed by
considering six different cases. The openings rates in infill
walls that were taken into account in the analyses are
indicated in Fig 3.

The opening case-1 (OpC-1) is when the structural
system is a fully infilled frame. The openings areas are 1.2
m?, 1.8 m? 2.4 m? and 3.4 m? in OpC-2, 3, 4 and 5,
respectively. The bare-frame is displayed in OpC -6 in
Fig.3. In this paper, the analyzes are carried out for each
case. However, all the frames of the RC structures are not
considered as infilled. Therefore, some frames are modelled
as bare-frame by considering the architectural properties of
the RC structures.

4. Determination of earthquake performance of
existing RC structures

The major portion of structure stock in many countries
consists of low and mid-rise RC structures (Ozmen et al.
2012, 2017). In this section, the earthquake performance
level of existing mid-rise RC structures with different
opening rates in their infill walls was investigated using
pushover analysis method. These structures are located in
high-hazard zones in Turkey. In the analyzes, the locations
and openings of the infill walls were determined according
to the RC structure architectural plan. Therefore, the
thickness of the infill wall (ty) is considered as a constant
200 mm. The plan views of the some selected RC structures
with infill walls are given in Fig. 4.

Nonlinear analyzes were performed in both directions of
existing RC structures to investigate the effect of the
openings on structural behavior and earthquake
performance. However, in the analyzes, all infill walls in
the plans of RC structures were modelled for six different
cases as indicated in Fig.3. In other words, all the infill
walls in the plans of the RC structures were modelled and
analyzed either infilled, as in OpC-1 or different opening
rate, as OpC -2, 3, 4, 5 and 6. Three-dimensional modelling
and nonlinear analysis of the selected existing RC structures
were carried out using the SAP 2000 software (2002).

Three types of plastic hinges were modelled by taking
into account PM2M3, M2M3 and P in the nonlinear
modelling of the columns, beams and walls, respectively.
Gravity and seismic loads were considered by assuming a
design ground acceleration of 0.4g and a soil class of C
according to FEMA 356 (2000). To better examine the
effect of openings on earthquake performance, the material
strengths were chosen as 10 MPa for concrete and 220 MPa
for steel in the analyses.

5. Influence of openings on structural behavior
and seismic vulnerability
5.1 Influence of openings on fundamental period

The RC structure fundamental period is an important
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Fig. 3 Positions of openings for different cases

parameter that contains many structural information about
the RC structure and is directly related to the rigidity of RC
structures (Asteris 2015b). Therefore, the infill wall
increases the lateral rigidity of the structures. However, it
decreases the lateral rigidity in proportion to percentage of
the openings in the infill wall. The influence of the opening
rate (aw) on the fundamental periods according to the
number of stories of the some selected RC structures are
displayed in Fig. 5.

Since the opening rate in the wall decreases the rigidity
of the wall, the structure fundamental periods change in
direct proportion to the percentage of the openings, as
expected. Although there is no clear relationship between

the structure fundamental period and the opening rate, it is
certain that the infill wall affects the structural behavior and
earthquake performance of the RC structures. When the
period-opening rate relationship of an existing RC structure,
given in Fig.5. (a), is examined, the period difference
between OpC-1 and opening OpC -6 varies by about 50 per
cent. Likewise, considering the decreased opening rates in
the infill walls of existing RC structures, there is an increase
between 10 and 13 per cent between OpC-1, 2, 3, 4 and
OpC-5, respectively. The reason for this increase is the
decrease in wall stiffness. However, it may not always be
possible to clearly state the amount of change in
fundamental period according to the opening rate.
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Fig. 5 The variation of structure fundamental period with openings rate
The main reason for this may be the differences in the structural irregularities can change the form of infill walls.
structural properties such as different number of span and It is possible to obtain the results that this rate increases
width of bays. In addition, it is possible that changes in the with the reduction of the number of stories. Considering the

fundamental period occur since vertical and horizontal demand spectrum of the RC structures, this clearly
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Fig. 6 The relative story drift and displacement at each story level

demonstrates that it contributes positively to limiting the
damage levels of the load-carrying components of the RC
structures under the earthquake load.

5.2 Influence of openings on relative story drift ratio
and story displacement

The relative story drift ratio or total story displacement
occurring at the story levels of the structures under
earthquake loads are the most effective factor determining
the damage levels of the structural load-carrying
components of RC structures. Therefore, the relative story
drift and displacement changes along the height of the RC
structure are an important way of demonstrating the
behavior of the load-carrying components in each story. It is

important to determine the effect on the relative story drift
or total story displacement in the analysis by considering
the nonlinear behavior of infill walls with and without
openings. The influence of the opening rate (aw) on the
story drift ratio and the total displacement according to the
height and story level of the some selected RC structure is
displayed in Fig. 6.

The differences in the peak relative story drift rates and
total story displacement can be observed in the pushover
analysis by evaluating Fig. 6. The displacement differences
between the story levels, especially between the first and
second stories, are caused by rigidity changes. However,
since the existing RC structures are evaluated in the
analyzes, it is usual that story displacement does not show a
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Fig. 7 The comparison with drift values corresponding to the performance level

steady regular difference between the first and second
stories, considering the presence of possible weak ant soft
story irregularities in these structures. The presence of the
infill wall leads to a different performance level, as it causes
different story drifts between the story levels. The
comparison of drift values and their corresponding
performance levels for each case are displayed in Fig. 7
according to story levels.

When comparing limit performance levels and story
drift, the recommended limit conditions in the ASCE/SEI
(2007) according to the maximum drift rate at each story
level are taken into account. In the analyzes made according
to design earthquake loads, it was seen that the damage to
the column and beam components occurred at the first story.
It was observed that these damages were gradually
decreasing. However, significant differences were observed
in the drift values and performance levels between OpC-1
and OpC-6. As the infill walls can cause increased shear
stress at the column ends, its damages can be expected to
increase. However, despite this shear effect, it is clear that
the infill walls have a greater contribution to the overall
rigidity and earthquake performance of RC structures.

The damage levels of the load-carrying components of
the RC structural system under the earthquake effect were
determined according to the damage limit values defined in
the stress-strain relationship of the composite reinforced
concrete components. To explain it more accurately, the
earthquake performance of the existing RC structure was
determined according to the moment-curvature and
moment-rotation values of the reinforced concrete section.

The changes in the hinge rotations according to the opening
rates in the infill wall of some selected existing RC
structures are given in Fig. 8.

5.3 Influence of openings on capacity of existing
RC structures

The pushover analysis is a nonlinear static analysis

under dead and live loads of the structures and under
incremental lateral loads. Pushover analysis was carried out
to obtain the lateral capacity curves and the values of
ductility of displacement of the existing RC structures. The
pushover curves of the some selected existing RC structures
with infill walls with different opening rates were obtained
from the static nonlinear analysis, as given in Fig. 9.
The lateral loads for pushover analyzes were defined based
on the shape of first mode, for which the lateral load or
seismic load were approximately equal to the total mass of
the existing RC structure. The distribution of the lateral load
effects was practically the same for OpC-1 and OpC-6.
However, it can be seen that the presence of the infill wall
greatly increased the lateral rigidity and lateral load-bearing
capacity of the RC structures by considering the P-A effects
indicated in Fig. 9. The ratio of total base shear to seismic
weight of the OpC -6 was smaller than that of the OpC-1,2,
3,4 and 5. In addition, while the earthquake performance of
the existing RC structures with the OpC-6 did not provide
the LS performance level, it can be seen that provide LS
performance levels of structures with the OpC-1 and OpC-
2,3,4and 5.
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Fig. 8 The hinge rotation of at each story level

The damage levels of the load-carrying components of
the RC structures were taken into account in the
determination of the earthquake performance under the
effect of seismic force. It is understood from the figures
given above that the OpC-1,2, 3, 4 and 5 restrict the
displacement of the load-carrying components of the RC
structures. Therefore, the changes occur in the damage
levels of the carrying components for different opening
rates. The damage level changes in the load-carrying
components and the infill wall on merely one axis of a
three-story RC structure is given in Fig. 10.

Although most of the infill wall in the existing RC
structures under the effect of earthquake load was severely
damaged, the infill wall had a significant effect on limiting
damage to the frame components. However, the different
opening rate caused changes in the damage levels of the
columns and beams. As can be seen from the analysis
results, the damage levels of all the columns and beams in
the first story were detected as CL in Fig. 10(a). Therefore,
the RC structure earthquake performance provided the CP
performance level. However, the percentage of the opening
rates in the infill wall in Fig. 10(b) was analyzed as 48%,
which restricted the damage to the columns and beams
according to OpC-6. Due to the insufficiency of the shear
capacity of the RC structures, it was not obtained as LS.
The RC structures displayed in Fig. 10(c) and Fig. 10(d)
provided the target earthquake performance level by
considering the percentage of the opening rate as 11% and
23%, respectively.
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5.4 Influence of openings on earthquake

performance of existing RC structures

Nonlinear static analyzes are carried out for six different
OpC of all selected existing RC structures in two direction.
The analysis results of the eight existing RC structures are
given in Table 1, Table 2, Table 3 and Table 4 according to
2, 3,4, and 5 story structures, respectively. The architectural
properties of these structures were taken into account.
Therefore, in the pushover analyzes, the diagonal struts
were placed between the appropriate axes to contribute to
the seismic behavior of the existing RC structures that were
chosen as smooth and symmetrical as possible. Where T is
the fundamental period of the RC structure, d., is the target
elasto-plastic displacement of the structure, Ryi is the
earthquake load reduction coefficient, p is the ductility of
structures, ay is the equivalent yield acceleration of the first
mode of the RC structures, Sqay) is the nonlinear spectral
displacement of the first mode of the structure and V. is the
inelastic earthquake load acting on the structure. The
necessary procedures for calculating these structural
parameters are available in TEC and are not given in this
paper. It is clearly seen that the infill wall provided a
beneficial contribution to almost all parameters affecting
the structural behavior and earthquake performance of the
RC structures. It was observed that it provided target
earthquake performance in almost all selected existing RC
structures except in OpC-6. This is displayed in Fig. 11.
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Fig. 9 The normalized pushover curves of selected some RC structures
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Fig. 10 The damage levels of load-carrying components of RC structures
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Fig. 11 The performance level of existing RC structures

5. Conclusions

Most RC structures are defined by the presence of infill
walls as a traditional construction application in many
countries with high seismicity.

Infill walls are not considered in the analyzes as infill
walls are generally not accepted among the structural
system elements.

Failure to consider this assumption in analyzes can have
a negative effect on the determination of seismic fragility or
damage of load-carrying elements, since the presence of
infill walls and change of structural properties can cause
significant differences in all parameters of RC structures
related to earthquake safety. Therefore, their interaction
with the RC frames should be understood to examine the
ductility, rigidity, strength and earthquake performance of
RC structures.

The results of the study indicate that the infill walls
increased the rigidity and strength of the RC structures as
long as seismic demand did not exceed the load-carrying
capacity of the infill walls.

Infill walls with or without openings have a beneficial
effect on many parameters such as the fundamental period, r

elative story drift rate, shear capacity and seismic
vulnerability of RC structures and are taken into account
when determining their earthquake performance.

In the determination of the earthquake performance of
RC structures under earthquake loads, only the damage
levels of the columns and beams are considered by codes.
However, the effect of the infill walls on the seismic
vulnerability of investigated RC structures is useful both in
collapse limit cases and damage limitation. This result
applies to many frame

structures with infill, provided that the distribution of
the walls does not cause structural irregularities in the plan.
In addition, bending and shear failures due to the bending
and shear impact can be prevented in columns and beams,
respectively.
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