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1. Introduction 
 

Functionally graded materials (FGMs) are a novel class of 

composites increasingly used in many fields of engineering 

fields, especially in high temperature applications such as 

thermo-mechanical loadings structures, aircraft, spacecraft, 

plasma coatings for fusion reactors and other engineering 

structures under high-temperature environment (Li et al. 

2008, Kar and Panda, 2015, Taleb et al. 2018, Tu et al. 

2019), the important advantages offered by functionally 

graded materials over conventional composite materials are 

eliminated the interface problems of conventional 

composite materials and the stress distribution becomes 

mitigated (Taleb et al. 2018). This can be obtained by 

gradually varying the volume fraction of constituent 

materials, their material properties show a smooth and 

continuous change from one surface to another. Typically 

FGM is made of ceramic and metal, the ceramic constituent 

provides the high-temperature resistance due to its low  
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thermal conductivity, while the ductile metal constituent 
prevents fracture due to its toughness, thus are being 
capable to withstand intense high temperature gradient 
while preserve structural integrity (Tu et al. 2019, Huang 
and Shen 2004). Functionally graded materials were in first 
time designed as thermal barrier materials for fusion 
reactors and aerospace structures where extremely high 
temperature and large thermal gradient exist (Ebrahimi, 
2013). Thus, thermal response of these structures have been 
receiving considerably attention. Nowadays, functionally 
graded materials are employed in wide engineering 
applications including nuclear, mechanical and civil 
engineering. Hence, examining their responses under 
various types of loading using accurate models of structures 
(plates, beams and shell) is extremely important. 
Subsequently, many studies on analysis of bending, 
vibration, thermomechanical and buckling behaviors of 
functionally graded structural members have been 
performed in recent years by many researchers (Ebrahimi 
and Jafari,2016, Kar and Panda, 2014, Kolahchi et al. 2015, 
Darilmaz et al. 2015, Darilmaz, 2015, Pandey and 
Pradyumna, 2015, Khalili and Mohammadi, 2012, 
Yaghoobi and Yaghoobi, 2013, Alibeigloo and Alizadeh, 
2015, Fazzolari, 2016, Mehar and Panda, 2018, Lashkari 
and Rahmani, 2016, Van Long et al. 2016, Akbaş, 2017, 
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Abstract.   This paper presents a new hyperbolic shear deformation plate theory including the stretching effect for free vibration of 

the simply supported functionally graded plates in thermal environments. The theory accounts for parabolic distribution of the 

transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction 

factors. This theory has only five unknowns, which is even less than the other shear and normal deformation theories. The present 

one has a new displacement field which introduces undetermined integral variables. Material properties are assumed to be 

temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume 

power laws of the constituents. The equation of motion of the vibrated plate obtained via the classical Hamilton’s principle and 

solved using Navier’s steps. The accuracy of the proposed solution is checked by comparing the present results with those available 

in existing literature. The effects of the temperature field, volume fraction index of functionally graded material, side-to-thickness 

ratio on free vibration responses of the functionally graded plates are investigated. It can be concluded that the present theory is not 

only accurate but also simple in predicting the natural frequencies of functionally graded plates with stretching effect in thermal 

environments. 
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Adhikari and Singh, 2019, Tornabene, 2009, Neves et al. 
2019, Carrera et al. 2011, El Meiche et al. 2011, Zenkour 
and Sobhy, 2010, Zarga et al. 2019, Karami et al. 2019), 
and an extensive range of plate theories have been 
developed to provide more correctly their mechanical 
responses. These plate theories can be divided into three 
groups namely: classical plate theory (CPT), first-order 
shear deformation plate theory (FSDT) and higher-order 
shear deformation plate theory (HSDT). The Classical plate 
theory (CPT), which neglects the transverse shear 
deformation effect, gives a reasonable results only for the 
analysis of thin plates without transverse shear deformation 
effect. However, the first-order shear deformation plate 
theory (FSDT) surmounts this problem by taking into 
account this effect, is appropriate for both thin and 
moderately thick plates. Nevertheless, an appropriate shear 
correction factor is needed to correct the transverse shear 
stress distribution. In order to avoid using shear correction 
factors, the higher-order shear deformation theories 
(HSDTs) have been developed which are either based on 
the three-dimensional approach or the two dimensional 
approach with a nonlinear variation of high order axial 
displacement giving parabolic variation of transverse shear 
strains through the plate thickness (Kant, 1993). Therefore, 
this theory has been more and more used to predict the 
behavior of functionally graded plates by giving the 
possibility to increase the accuracy of numerical evaluations 
for moderately thick plates and very thick plates (Kant and 
Swaminathan, 2001). A significant number of articles about 
the free vibrations of functionally graded plates in thermal 
environment have been performed using various plate 
theories. Chakraverty and Pradhan (2014) have used the 
classical plate theory to investigate the free vibration of 
functionally graded plate in thermal environment subject to 
various sets of boundary conditions. Wang and Zu (2017) 
studied the free vibrations of FG rectangular plates with 
porosities and moving in thermal environment by using von 
Kármán nonlinear plate theory. Parida and 
Mohanty (2018) investigated free vibration behavior of FG 
skew plates using higher-order shear deformation plate 
theory (HSDT) under thermal environment. Yang et 
al. (2003) developed a semi-analytical approach in terms of 
one-dimensional differential quadrature and Galerkin 
technique to analyze the large amplitude vibration of 
initially stressed FGM laminated rectangular plates with 
thermo-electromechanical loading. Kim (2005) developed a 
method to analyze the effect of temperature on the vibration 
behaviour of the functionally graded pre-stressed plate. 
Huang and Shen (2004) applied the perturbation technique 
to studied the nonlinear vibration and dynamic response of 
functionally graded material plates by taking into account 
heat conduction and temperature-dependent material 
properties. Li et al. (2008) studied the free vibration of 
rectangular FGM plate in thermal environment with simply 
supported and clamp boundary conditions using the three 
dimensional elasticity theory in which displacements are 
expressed by a series of Chebyshev polynomial multiplied 
by appropriate functions. Joshi et al. (2016) studied the 
buckling and free vibration of partially cracked 
thin orthotropic rectangular plates in thermal environment. 
Cui and Hu (2016) studied the natural vibration and thermal 
buckling of uniformly heated rectangular thin plates with stick-
slip-stop boundaries. Pandey and Pradyumna (2015) carried 

out the free vibration analysis of the sandwich plates with 
functionally graded material face-sheets and the sandwich 
plates with functionally graded material core using the 
layerwise finite element formulation under nonlinear 
temperature distribution through the thickness. Daikh 
(2019) presented an exact solution of nonlinear temperature 
distribution for free vibration of simply supported 
functionally graded sandwich plates resting on elastic 
foundation. Free and forced vibration responses of 
functionally graded plates under high temperature loading 
was investigated by Wattanasakulpong et al. (2013) 
applying the improved third-order shear deformation plate 
theory. Using the eight-unknown higher order shear 
deformation plate theory, Tran et al. (2019) investigated 
free vibration responses of functionally graded plates 
subjected to thermal loads.  

The novelty of this paper is the use of recently 
developed polynomial and nonpolynomial based higher-
order shear deformation theories presented by Tounsi and 
his co-workers (Karami et al. 2018ab, Zaoui et al. 2019, 
Medani et al. 2019, Mahmoudi et al. 2019) by including the 
so-called stretching effect to investigate the free vibration 
analysis of graded plates in thermal environment including 
the stretching effect. It should be noted that the thickness 
stretching effect is ignored in these new four variable plate 
theories and the transverse displacement is considered 
constant in the thickness direction, as in Kirchhoff–Love 
type thin plate theories. This appears quite inadequate since 
FGM plates are characterized by a strong variation of 
material properties in the thickness direction. The most 
interesting feature of this theory is that it accounts for a 
hyperbolic variation of the transverse shear strains across 
the thickness and satisfies the zero traction boundary 
conditions on the top and bottom surfaces of the plate 
without using shear correction factors. It should be noted 
that the hyperbolic function was used in the first time by 
Nguyen (2015) and Taleb et al. (2018). Using the proposed 
theory, both free vibration analysis of FG plates in thermal 
environment are investigated. Three types of environmental 
condition namely uniform, linear and nonlinear thermal 
load are imposed at the upper and lower surface for simply 
supported FG plates. Material properties are assumed to be 
temperature-dependent, and vary continuously with the 
thickness according to a power law distribution in terms of 
the volume power laws of the constituents. In this study, 
analytical of vibration solutions are obtained for 
functionally graded plate and accuracy is verified by 
comparing the obtained results with those reported in the 
literature. The influences of some parameters including 
gradient index, plate geometry, mode number and thermal 
loading on the vibration characteristics of the FG plates are 
presented. It can be concluded that the present theories are 
not only accurate but also simple in predicting the free 
vibration responses of temperature-dependent FG plates. 

 

 

2. Theoretical formulation 
 

2.1. Power-law FG plate equations based 
 

Consider a simply supported rectangular functionally 
graded plate of length a, width b and uniform thickness h in 
the unstressed reference configuration. The coordinate 
system for FG plates is shown in Fig. 1.  
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Fig. 1 Geometry of rectangular FGM plate with uniform 

thickness in the rectangular cartesian coordinates 

 

 

The FG plate is made of elastic and isotropic 

functionally graded material with its material properties 

vary smoothly through the thickness direction only. The 

effective material properties of the FG plate such as 

Young’s modulus E(z), thermal conductivity k(z), thermal 

expansion α(z) and mass density ρ(z) based on the rule of 

mixture, and are expressed as (Bourada et al. 2019, 

Berghouti et al. 2019): 
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To predict the behavior of FGMs under high 

temperature more precisely, it is needful to consider the 

temperature dependency on material properties. The 

nonlinear equation of thermo-elastic material properties in 

function of temperature T(K) can be expressed as the 

following (Shahrjerdi et al. 2011, Attia et al. 2015): 
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where P(z) denotes material property and T=T0+ΔT(z) 

indicates the environmental temperature, T0=300(K) is room 

temperature, P-1, P0, P1, P2 and P3 are the coefficients of 

temperature dependent material properties unique to the 

constituent materials which can be seen in the table of 

materials properties (Table 1) for FG (ZrO2/Ti-6Al-4V) and 

(Si3N4/ SUS304), and ΔT(z) is the temperature rise only 

through the thickness direction, whereas thermal 

conductivity k is temperature-independent. 
 

2.2 Constitutive equations 
 

For elastic and isotropic FGMs, the linear constitutive 

relations can be written as: 
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(3) 

where ( )xyxzyzzyx  ,,,,,  and ( )xyxzyzzyx  ,,,,,  

are stress and strain components, respectively.  

The computation of the elastic constants Qij depends on 

which assumption of εz are considered. Using the material 

properties defined in Eq. (1), stiffness coefficients, Qij, can 

be expressed as 
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Note that for higher-order shear deformation theory 

(HSDT) which neglect the thickness stretching εz = 0, the 

coefficients Qij should be: 
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Based on the thick plate theory and including the effect 

of transverse normal stress (thickness stretching effect), the 

basic assumptions for the displacement field of the plate can 

be described as 
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The coefficients k1 and k2 depends on the geometry and 

the proposed theory of present study has a hyperbolic 

function in the form (Taleb et al. 2018, Nguyen 2015) 
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It can be observed that the kinematic in Eq. (6) uses 

only five unknowns (u0, v0, w0, θ and φz). Nonzero strains of 

the five variable plate model are expressed as follows: 
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It can be observed from equation (7) that the transverse 

shear strains (γxz, γyx) are equal to zero at the upper (z= h/2) 

and lower (z= -h/2) surfaces of the plate. A shear correction 

coefficient is, hence, not required. The integrals used in the 

above equations shall be resolved by a Navier type 

procedure and can be expressed as follows (Taleb et al. 

2018): 
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Table 1 Temperature-dependent material properties for (ZrO2/Ti-6Al-4V) and (Si3N4/ SUS304)  

Material Properties 0P
 1−P

 1P
 2P

 3P
 

43NSi
 

(GPa)E
 

348.43 0 -3.070 × 10-4 2.160 × 10-7 -8.946 × 10-11 

)(K-1
 

5.8723 × 10-6 0 9.095 × 10-6 0 0 

)mKg( 3
 

2370 0 0 0 0 

  0.24 0 0 0 0 

k  9.19 0 0 0 0 

SUS304   

(GPa)E
 

201.04 0 3.079 × 10-4 -6.534 × 10-7 0 

)(K-1
 

12.330 × 10-6 0 8.086 × 10-4 0 0 

)mKg( 3
 

8166 0 0 0 0 

  0.3262 0 -2.002 × 10-4 3.797 × 10-7 0 

k  12.04 0 0 0 0 

2ZrO
 

(GPa)E
 

244.27 0 -1.371 × 10-3 1.214 × 10-6 -3.681 × 10-10 

)(K-1
 

12.766 × 10-6 0 -1.491 × 10-3 1.006 × 10-5 -6.788 × 10-11 

)mKg( 3
 

3000 0 0 0 0 

  0.3330 0 0 0 0 

k  1.80 0 0 0 0 

4V-6Al-Ti  

(GPa)E
 

122.56 0 -4.586 × 10-4 0 0 

)(K-1
 

7.75788 × 10-6 0 6.638 × 10-4 -3.147 × 10-6 0 

)mKg( 3
 

4429 0 0 0 0 

  0.2888 0 1.108 × 10-4 0 0 

k  7.82 0 0 0 0 
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where the coefficients 'A  and 'B  are considered 

according to the type of solution employed, in this case via 

Navier method. Therefore, 'A , 'B , k1 and k2 are expressed 

as follows: 
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where α, and β are defined in equation (33). 

 

2.3 Governing equations 
 

The equations of motion for the free vibration of the 

functionally graded plates can be derived from the 

Hamilton's principle: 
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where t is the time, t1 and t2 are the initial and end times, 

respectively, K  is the variation of the kinetic energy and 

U  is the variation of the total strain energy. The total 

strain energy of the beam can be represented as: 

Td UUU +=
 (13) 

where Ud is the strain energy due to the mechanical stresses 

and UT is the strain energy caused by the initial stresses due 

to temperature rise. The strain energy Ud and UT are given 

by (Li et al. 2008, Kim, 2005, Shahrjerdi et al. 2011): 
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where dij, (i,j =1,2) is the nonlinear strain-displacement 

relationship (Shahrjerdi et al. 2011). By substituting dij into 

Eq. (14) the following equation is obtained: 
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(15) 

In Eq. (15), the thermal stresses 𝜎𝑥
𝑇 and 𝜎𝑦

𝑇 are given 

by (Attia et al. 2015, Daikh, 2019): 
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The kinetic energy of plate can be expressed as: 
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By substituting eqs. (13)-(17), into Eq. (12) and 

integrating by parts with respect to space and time 

variables, the equations of motion in terms of the 

displacement components of the FG plate are obtained as 
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where dij, dijl and dijm are the following differential 

operators: 
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and stiffness components are calculated as: 
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The inertias are also defined as 

( ) ( )
−

=

2/

2/

2
2100 )(,),(,1,,,

h

h

dzzzzzgIIJI 

 

(25a) 

( ) ( )
−

=

2/

2/

22
3221 )()(),(),( ),(,,,

h

h

dzzzgzfzfzzfKKJJ 

 

(25b) 

 

 

2.4 Temperature field 
 

In this study, four cases of one-dimensional temperature 

distribution through the thickness are considered, with 

( )zTT =
. 

 

2.4.1 Uniform temperature 
In this case, a uniform temperature field is used as 

follows 

( ) ( )zTTzT += 0  (26) 

where ΔT(z) denotes the temperature change and T0=300K 

is room temperature. 

2.4.2 Linear temperature 
For a functionally graded plate, assuming temperatures 

Tb and Tt are imposed at the bottom and top of the plate, the 

temperature field under linear temperature rise along the 

thickness can be obtained as follows: 

( ) 
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h
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(27) 

 

2.4.3 Nonlinear temperature 
The nonlinear temperature rise across the thickness of 

the plate is determined by solving the one dimensional heat 

conduction equation. The one dimensional steady-state heat 

conduction equation in the z-direction is given by: 

( ) ( ) 
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zk
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(28) 

with the boundary condition T(h/2)= Tt and T(-h/2)= Tb = 

T0. Here a stress-free state is assumed to exist at T0=300K. 

The thermal conductivity coefficient k(z) is assumed here to 

obey the power-law relation in Eq. (1). The analytical 

solution to Eq. (28) is 
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In the case of power-law FG plate, the solution of Eq. 

(16) also can be expressed by means of a polynomial series 

(Shahrjerdi et al. 2011, Attia et al. 2015): 
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where bttb kkk −= , with kt and kb are the thermal 

conductivity of the top and bottom faces of the plate, 

respectively. 
 

 

3. Analytical Solution of Simply Supported FG 
plate 

 

In this work, we are concerned with the exact solutions 

of equation (18) for a simply supported nanoplate. Using 

the Navier solution procedure, the following expressions of 

displacements ( 0 u
, 0v

, 0w
,  , and z ) are taken: 
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Fig. 2 Variation of elastic modulus versus non-

dimensional thickness of FG plate in room temperature 

field and different values of grading index (p) 

 

am / = , 
bn / =

 (33) 

where 1−=i ,   is the natural frequency, and (Umn,

mnV
, mnW

, mnX
, mnZ

) are the unknown maximum 

displacement coefficients.  

Substituting equations (32) into equation (18), the 

analytical solutions can be determined by 
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(34) 

where aij and Mij are given in Appendix. 

 

 

4. Results and discussion 
 

In this paper, numerical results are presented to illustrate 

the effect of temperature on the free vibration of FG plates 

using a new hyperbolic shear deformation plate theory 

including the stretching effect. With self-developed Maple’s 

code, various examples are presented to verify the accuracy 

and efficiency of the present theory in predicting the free 

vibration responses of simply supported FG plates in 

thermal environments. 

 

4.1 Thermal environment, temperature distributions 
and material properties 

 

According to the above literature, temperature 

distribution has a significant influence on the behavior of 

the FGM plate. Thermal and mechanical properties of the 

FGMs subjected to high perform surgering temperature 

have importantly been affected by the temperature 

variation. For example, Young's modulus of stainless steel, 

nickel, Ti-6Al-4V, and zirconia is reduced by 37%, 21%, 

34% and 31%, respectively, when the temperature rises 

from room temperature 300–1000(K) (Yang and Shen 

2003). The real structural response of functionally graded 

plate required to account the temperature dependency of the 

material properties and temperature distribution through the  

 
Fig. 3 Variation of elastic modulus versus non-

dimensional thickness of FG plate in linear temperature 

field and different values of grading index (p) 

 
Fig. 4 Variation of elastic modulus versus non-

dimensional thickness of FG plate in non linear 

temperature field and different values of grading index (p) 

 

 
Fig. 5 Variation of elastic modulus versus non-

dimensional thickness of FG plate in sinusoidal 

temperature field and different values of grading index 

(p). 

 

 

thickness of the plate. The variation of Young modulus in 

FG plates through the thickness in room temperature, 

uniform, linear, nonlinear and sinusoidal thermal conditions 

is presented in Figs. 2-5, respectively.  
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Fig. 6 Variation of elastic modulus versus non-

dimensional thickness of FG plate in uniform, linear, 

nonlinear and sinusoidal temperature field 

 

 

Room temperature is defined at T0=300(K) for all 

thermal conditions. The temperature rise in linear 

temperature is Tb = Tt = 600(K), the nonlinear thermal 

conditions are Tb = 0(K) and Tt=600(K) and the sinusoidal 

thermal conditions are Tb=300(K) and Tt=300(K). 

Figs. 2 and 3 show that the variation of elastic Young's 

modulus of functionally graded plates on room temperature 

and linear temperature variation with the volume fraction 

index. It is seen from the above figures that Young's 

modulus is similar for conditions with room temperature 

and uniform temperature, but the graphs move to smaller 

values with the uniform temperature rise. It is clear that 

Young's modulus decreases with increasing the power law 

index. In addition, it can be observed from Figs. 4 and 5 

that the behavior of Young’s modulus in nonlinear and 

sinusoidal thermal loads is completely different from that in 

room and linear temperature cases. The value of Young’s 

modulus increases close to the lower surface, then decreases 

when p<1, and the modulus decreases when 1 ≤ p <10. 

However, Young’s modulus decreases then increases close 

to upper surface for the large value of grading index p>10. 

Thus, it can be concluded that the environmental conditions 

type has a considerable effect on Young’s modulus.  A 

comparison study on Young’s modulus is carried out for 

uniform, linear, nonlinear and sinusoidal thermal conditions 

in Fig. 6. 

 
4.2 Validation of the results 
 
4.2.1 Validation 
In this section, the accuracy of the presented refined 

hyperbolic plate theory with stretching effect (εz ≠ 0) having 

five unknowns only for the free vibration of the 

temperature-dependent FG plates only is demonstrated by 

comparing the present solution with those of other available 

results in the literature of higher-order shear deformation 

theories those of Taleb et al. (2018), Huang and Shen 

(2004) and Shahrjerdi et al. (2011) without stretching effect 

and with more unknowns (Huang and Shen, 2004, 

Shahrjerdi et al. 2011). In addition, the influences various 

parameters like power law index parameter p, shear 

deformation, temperature distribution on vibration response 

of functionally graded plate have been investigated. The 

nondimensional frequency parameter is taken as, where and 

is at (Huang and Shen, 2004, Shahrjerdi et al. 2011). Two 

types of FGMs are considered: (ZrO2/Ti-6Al-4V) and 

(Si3N4/ SUS304). The description of material properties 

used in the analysis are listed in Table 1. 

 

Example 1 
The first example aims to verify the accuracy of the 

present theory in predicting the natural frequency 

parameters of FG plates in thermal environment. A 

comparison of the first non-dimensional natural frequency 

parameters is realized for a (ZrO2/Ti-6Al-4V) FG plate in 

thermal environments are tabulated in Table 2. The FG plate 

is made of titanium alloy (Ti-6Al-4V) on its lower surface 

and zirconium oxide (ZrO) on its upper surface. For this 

end, the geometric of FG plates is taken as: h = 0.0025 m, 

a=b=0.2 m. An identical value of Poisson's ratio v=0.3 is 

assumed for both ceramic and metal. The validation of the 

proposed refined hyperbolic plate model with stretching 

effect (εz ≠ 0) is carried out by comparing the obtained 

results with those computed via four variable hyperbolic 

shear deformation plate theory obtained by Taleb et al. 

(2018), the second order shear deformation plate theory 

(SSDT) developed by Shahrjerdi et al. (2011) and  the 

higher-order shear deformation plate theory (HSDT) 

developed by Huang and Shen (2004). 

As clearly shown in Table 2, the results of the four 

variable hyperbolic shear deformation plate theory obtained 

by Taleb et al. (2018), the (SSDT) plate theory developed 

by Shahrjerdi et al. (2011) and  the (HSDT) plate theory 

developed by Huang and Shen (2004) are in a good 

agreement with the present results of refined hyperbolic 

plate theory with stretching effect (εz ≠ 0) and these for all 

values of power law index p, either for the case of 

temperature-dependent and temperature-independent FG 

plates. Also, inspection of Tables 2 reveals that the 

dimensionless fundamental frequencies of the FG plate 

decreases with the increase of power law index p and the 

temperature rise decreases the dimensionless fundamental 

frequencies. The inclusion of thickness stretching effect (εz 

≠ 0) makes a FG plates stiffer, and hence, leads to increase 

slightly of the natural frequency. 
 

Example 2 
In the second example, a FG (Si3N4/ SUS304) plate is 

examined. For this materials, the Poisson’s ratio is taken 

v=0.28. The dimensionless fundamental frequencies 

obtained by the proposed refined hyperbolic plate model 

with stretching effect (εz ≠ 0) are compared with the 

published results of the four variable refined hyperbolic 

plate theory obtained by Taleb et al. (2018), Shahrjerdi et 

al. (2011) and Huang and Shen (2004) in Table 3 for 

different values of power law index p. It can be seen that 

the fundamental frequency values computed from present 

model are in a good agreement with those reported by Taleb 

et al. (2018), Shahrjerdi et al. (2011) and Huang and Shen 

(2004). Also , the inclusion of thickness stretching effect (εz 

≠ 0) makes a FG plates stiffer, and hence, leads to increase 

of the natural frequency. 
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Example 3 
In the section, the comparison is performed for 

(ZrO2/Ti-6Al-4V) FG plate. This example aims to verify the 

obtained results with those obtained by Taleb et al. (2018) 

using the four variable hyperbolic refined plate theory, the 

(SSDT) of Shahrjerdi et al. (2011) and (HSDT) of Huang 

and Shen (2004). The non-dimensional fundamental 

frequency is given in Table 4 for different vibration mode. 

For the modes (m, n), the integers m and n denote the 

number of half-waves in the x and y directions, respectively. 

It is observed that the present refined hyperbolic plate 

theory with stretching effect (εz ≠ 0) is in a good agreement 

with the previously published results (Taleb et al. 2018, 

Shahrjerdi et al. 2011, Huang and Shen 2004) and these for 

different considered shape mode. 

 
 

 
 

Example 4 
In order to verify the accuracy of the present theory for 

large value of volume fraction index p and different values 

of thermal loads, an (Si3N4/ SUS304) FG plate is now 

examined. The nondimensional frequencies for FG (Si3N4/ 

SUS304) plates predicted by Shahrjerdi et al. (2011) using 

second order shear deformation theory (SSDT), and present 

theory are presented in Table 5. An excellent agreement 

between the results predicted by (SSDT) of Shahrjerdi et al. 

(2011), Taleb et al. (2018) and present theory is observed. It 

should be noted that the present theory contains five 

unknowns with stretching effect (εz ≠ 0) as against seven in 

the case of (SSDT) of Shahrjerdi et al. (2011). It can be 

concluded that the present theory is not only accurate but 

also efficient and simple in predicting the free vibration 

responses of FG plates in thermal environment. 

Table 2 Non-dimensional natural frequency parameter of simply supported (ZrO2/Ti-6Al-4V) FG plate in thermal environments 

Mode (1,1) Natural frequency 

 of ( )4V-6Al-TiZrO2  FG plate  

(K)300Tb =  

(K)300Tt =  

(K)400Tt =  
(K)600Tt =  

Temperature- 

dependent 

Temperature- 

independent 

Temperature- 

dependent 

Temperature- 

independent 

2ZrO
 

SSDT(a) 0z =
 8.333 7.614 7.892 5.469 6.924 

TSDT (b) 0z =
 8.273 7.886 8.122 6.685 7.686 

RSDT(c) 
0z =

 8.288 7.818 8.070 6.547 7.613 

Present 
0z 

 8.478 7.919 8.189 6.305 7.578 

5.0=p
 

SSDT(a) 0z =
 7.156 6.651 6.844 5.255 6.175 

TSDT (b) 0z =
 7.139 6.876 7.154 6.123 6.776 

RSDT(c) 
0z =

 7.120 6.791 6.968 5.941 6.656 

Present 
0z 

 7.288 6.896 7.088 5.832 6.672 

1=p
 

SSDT(a) 0z =
 6.700 6.281 6.446 5.167 5.904 

TSDT (b) 0z =
 6.657 6.435 6.592 5.819 6.362 

RSDT(c) 
0z =

 6.665 6.383 6.537 5.675 6.275 

Present 
0z 

 6.825 6.491 6.658 5.608 6.309 

2=p
 

SSDT(a) 0z =
 6.333 5.992 6.131 5.139 5.711 

TSDT (b) 0z =
 6.286 6.101 6.238 5.612 6.056 

RSDT(c) 
0z =

 6.294 6.055 6.189 5.476 5.974 

Present 
0z 

 6.445 6.163 6.308 5.449 6.023 

4V-6Al-Ti  

SSDT(a) 0z =
 5.439 5.103 5.333 4.836 5.115 

TSDT (b) 0z =
 5.400 5.322 5.389 5.118 5.284 

RSDT(c) 
0z =

 5.410 5.290 5.357 5.097 5.250 

Present 
0z 

 5.533 5.398 5.463 5.188 5.321 

(a) Shahrjerdi et al. (2011) 

(b) Huang and Shen (2004) 

(c) Taleb et al. (2018) 
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4.2.2 Numerical results of present study 
In the view of previous sections, it is can be seen that 

the proposed theory delivers results which are in good 

agreement with the four variable hyperbolic refined plate 

theory obtained by Taleb et al. (2018), the second order 

shear deformation plate theory (SSDT) developed by 

Shahrjerdi et al. (2011) and  the higher-order shear 

deformation plate theory (HSDT) developed by Huang and 

Shen (2004) of the vibrated FG plate in thermal 

environment. In this example, the effects different 

parameters such as the power law index p, the mode 

numbers, and temperature fields on the free vibration 

responses of FG plates are investigated here. All predicted 

results are carried out using present refined hyperbolic plate 

theory with stretching effect (εz ≠ 0) and compared with the 

four variable hyperbolic refined plate theory obtained by  

 

 

Taleb et al. (2018) without stretching effect (εz ≠ 0) with the 

same shape function for each theory. 

Table 6 show the non-dimensional frequencies values in 

(ZrO2/Ti-6Al-4V) FG plate for different thermal loads. The 

non-dimensional natural frequency parameter is defined as 

( ) ( ) bb Eha 22 1  −=
, where Eb and ρb are at T0=300(K) 

(Shahrjerdi et al. 2011). To see the effect of the power index 
p

on the frequencies, the same values of the thermal load 

and the shape mode are considered. It is observed that the 

result for plates is in between those for pure material plates, 

because Young's modulus increases from pure metal to pure 

ceramic. Also, the frequencies decrease by increasing the 

temperature difference between top and bottom surfaces for 

the same value of power law index and shape mode that 

represent the effects of thermal loads. The difference  

Table 3 Non-dimensional natural frequency parameter of simply supported (Si3N4/ SUS304) FG plate in thermal environments  

Mode (1,1) Natural frequency 

 of ( )SUS304NSi 43  FG plate 

(K)300Tb =  

(K)300Tt =  

(K)400Tt =  
(K)600Tt =  

Temperature- 

dependent 

Temperature- 

independent 

Temperature- 

dependent 

Temperature- 

independent 

43NSi
 

SSDT(a) 0z =
 12.506 12.175 12.248 11.461 11.716 

TSDT (b) 0z =
 12.495 13.397 12.382 11.984 12.213 

RSDT(c) 
0z =

 12.519 12.319 12.389 11.899 12.126 

Present 
0z 

 12.749 12.513 12.586 12.012 12.254 

5.0=p
 

SSDT(a) 0z =
 8.652 8.361 8.405 7.708 7.887 

TSDT (b) 0z =
 8.675 8.615 8.641 8.269 8.425 

RSDT(c) 
0z =

 8.617 8.461 8.507 8.127 8.281 

Present 
0z 

 8.782 8.596 8.643 8.190 8.358 

1=p
 

SSDT(a) 0z =
 7.584 7.306 7.342 6.674 6.834 

TSDT (b) 0z =
 7.555 7.474 7.514 7.171 7.305 

RSDT(c) 
0z =

 7.551 7.406 7.444 7.090 7.225 

Present 
0z 

 7.698 7.523 7.563 7.137 7.286 

2=p
 

SSDT(a) 0z =
 6.811 6.545 6.575 5.929 6.077 

TSDT (b) 0z =
 6.777 6.693 6.728 6.398 6.523 

RSDT(c) 
0z =

 6.777 6.638 6.670 6.330 6.454 

Present 
0z 

 6.906 6.738 6.773 6.362 6.499 

SUS304  

SSDT(a) 0z =
 5.410 5.161 5.178 4.526 4.682 

TSDT (b) 0z =
 5.405 5.311 5.335 4.971 5.104 

RSDT(c) 
0z =

 5.415 5.278 5.300 4.929 5.061 

 Present 
0z 

 5.515 5.346 5.369 4.922 5.066 

(a) Shahrjerdi et al. (2011) 

(b) Huang and Shen (2004) 

(c) Taleb et al. (2018) 

202



 

A novel hyperbolic plate theory including stretching effect for free vibration analysis… 

 

 
Fig. 7 First four Non-dimensional frequency parameters 

versus uniform temperature field for simply supported 

(ZrO2/Ti-6Al-4V) FGP when a / h = 10 and a = 0.2, p = 1 

 

between temperature-dependent and independent FG plates 

is less significant, tables 6 reveals the smaller frequencies in 

temperature-dependent FG plates, which proves the 

accuracy and effectiveness of temperature-dependent 

material properties. 

The variation of the first four frequencies as a function 

of uniform, linear, nonlinear and sinusoidal temperature 

fields in simply supported FG plate is plotted in Figs. 7-10. 

The combination of (ZrO2/Ti-6Al-4V) (Table 1) is assumed 

with material and geometric parameters of p=1, a=b=0.2 

and a/h=10. The non-dimensional natural frequency 

parameter is defined as ( ) 00
22 DIb  = , where I0= ρh 

and ( )23
0 112 −= EhD  and it is noted that ρ, v and E are 

chosen to be the values of (ZrO2/Ti-6Al-4V) evaluated at 

the room temperature.  As expected, the frequencies 

are reduced with increasing temperature and this is due to 

the decrease of Young’s modulus with rising temperatures.  

Table 4 Non-dimensional frequency parameter of simply supported (ZrO2 / Ti-6Al-4V) FG plate in thermal environments (p=2)  

Mode numbers of of 

( )4V-6Al-TiZrO2  FG plate 

(K)300Tb =  

(K)300Tt =  

(K)400Tt =  
(K)600Tt =  

Temperature- 

dependent 

Temperature- 

independent 

Temperature- 

Dependent 

Temperature- 

Independent 

(1,1) 

SSDT(a) 0z =
 6.333 5.992 6.132 5.139 5.711 

TSDT (b) 0z =
 6.286 6.101 6.238 5.612 6.056 

RSDT(c) 
0z =

 6.294 6.055 6.189 5.476 5.974 

Present 
0z 

 8.478 6.163 6.308 5.449 6.023 

(1,2) 

SSDT(a) 0z =
 14.896 14.383 14.684 13.260 14.253 

TSDT (b) 0z =
 14.625 14.372 14.655 13.611 14.474 

RSDT(c) 
0z =

 14.699 14.301 14.588 13.453 14.363 

Present 
0z 

 15.073 14.622 14.927 13.633 14.633 

(2,2) 

SSDT(a) 0z =
 22.608 21.942 22.386 20.557 21.935 

TSDT (b) 0z =
 21.978 21.653 22.078 20.652 21.896 

RSDT(c) 
0z =

 22.197 21.663 22.082 20.581 21.849 

Present 
0z 

 22.784 22.190 22.633 20.958 22.330 

(1,3) 

SSDT(a) 0z =
 27.392 26.630 27.163 25.077 26.700 

TSDT (b) 0z =
 26.454 26.113 26.605 24.961 26.435 

RSDT(c) 
0z =

 26.811 26.190 26.689 24.954 26.446 

Present 
0z 

 27.534 26.850 27.377 25.453 27.059 

(2,3) 

SSDT(a) 0z =
 34.106 33.211 33.867 31.425 33.384 

TSDT (b) 0z =
 32.659 32.239 32.840 30.904 32.664 

RSDT(c) 
0z =

 33.271 32.540 33.148 31.118 32.904 

Present 
0z 

 34.192 33.393 34.034 31.803 33.715 

(a) Shahrjerdi et al. (2011) 

(b) Huang and Shen (2004) 

(c) Taleb et al. (2018) 
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Fig. 8 First four Non-dimensional frequency parameters 

versus linear temperature field for simply supported 

(ZrO2/Ti-6Al-4V) FGP when a / h = 10 and a = 0.2, p = 1 

 

It can be seen that the decreasing slope of frequencies in 

lower modes is smaller than those in higher modes. At the 

same temperature, we note that the difference between two 

consecutive lower modes is greater than that in two 

consecutive higher modes. 

 

 
Fig. 9 First four Non-dimensional frequency parameters 

versus non-linear temperature field for simply supported 

(ZrO2/Ti-6Al-4V) FGP when a / h = 10 and a = 0.2, p = 1 

 

5. Conclusion 
 

The new hyperbolic shear deformation plate theory 

including the stretching effect proposed by the authors, is  

Table 5 Non-dimensional natural frequency of temperature dependent (Si3N4/SUS304) FG plate for different volume fraction 

index p in thermal environments, Mode (1, 1) 

Thermal Loads 

T0 = 300 (K), b = a = 0.2, h = 0.025 

(K)300Tb =  

(K)300Tt =  

(K)300Tb =  

(K)400Tt =  

(K)300Tb =  

(K)600Tt =  

43NSi
 

SSDT(a) 
0z =

 12.506 12.175 11.461 

RSDT(b) 
0z =

 12.519 12.319 11.899 

Present 
0z 

 12.749 12.513 12.012 

5.0=p
 

SSDT(a) 
0z =

 8.652 8.361 7.708 

RSDT(b) 
0z =

 8.617 8.461 8.127 

Present 
0z 

 8.782 8.596 8.190 

10=p
 

SSDT(a) 
0z =

 5.907 5.645 5.031 

RSDT(b) 
0z =

 5.868 5.731 5.412 

Present 
0z 

 5.975 5.809 5.419 

20=p
 

SSDT(a) 
0z =

 5.711 5.450 4.825 

RSDT(b) 
0z =

 5.676 5.540 5.210 

Present 
0z 

 5.781 5.613 5.212 

40=p
 

SSDT(a) 
0z =

 5.591 5.329 4.694 

RSDT(b) 
0z =

 5.558 5.420 5.083 

Present 
0z 

 5.660 5.492 5.082 

SUS304  

SSDT(a) 
0z =

 5.410 5.161 4.526 

RSDT(b) 
0z =

 5.415 5.278 4.929 

Present 
0z 

 5.515 5.346 4.922 

(a) Shahrjerdi et al. (2011) 

(b) Taleb et al. (2018) 
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Fig. 10 First four Non-dimensional frequency parameters 

versus sinusoidal temperature field for simply supported 

(ZrO2/Ti-6Al-4V) FGP when a / h = 10 and a = 0.2, p = 1 

 

 

implemented in this study to analyze the free vibration for 

simply supported FGM in thermal environments and 

developed for temperature-dependent FG plates subjected to 

uniform, linear, nonlinear, and sinusoidal temperature 

fields. The proposed theory satisfies free transverse shear 

stress at the top and bottom surfaces of the plate, and takes 

into account stretching effect in thickness direction, thus the 

numerical results show a good agreement with which is 

available from related literature. Material properties of FG 

plates are assumed to be temperature-dependent and graded 

through the thickness according to a power-law distribution 

in terms of volume fractions of constituents. By considering 

further simplifying suppositions to the existing higher order 

shear deformation theory, with incorporation of an 

undetermined integral term, the present theory has only five 

unknowns, which is even less than the other shear 

deformation theories including stretching effect, and hence, 

make this model simple and efficient to employ. The 

equation of motion of the vibrated structure obtained via the 

Table 6 Non-dimensional natural frequency parameter of simply supported (ZrO2/Ti-6Al-4V) FG plate in thermal environments 

and for different modes of vibration 

Mode numbers of FGP  

(ZrO2 and Ti-6Al-4V ) 

(K)300Tb =  

(K)300Tt =  

(K)400Tt =  
(K)600Tt =  

Temperature- 

dependent 

Temperature- 

independent 

Temperature- 

dependent 

Temperature- 

independent 

2ZrO
 

(1,1) 
8.478 

8.478 

6.163 

6.163 

6.163 

6.308 5.449 6.023 

(1,2) 19.862 18.999 19.558 16.945 18.935 

(2,2) 30.065 28.930 29.749 26.432 29.106 

(1,3) 36.361 35.050 36.031 32.244 35.363 

(2,3) 45.195 43.653 44.860 40.473 44.182 

5.0=p
  

(1,1) 7.288 6.896 7.088 5.832 6.672 

(1,2) 17.091 16.481 16.881 15.080 16.454 

(2,2) 25.890 25.090 25.673 23.373 25.234 

(1,3) 31.325 30.403 31.099 28.470 30.641 

(2,3) 38.957 37.878 38.728 35.686 38.266 

1=p
  

(1,1) 6.825 6.491 6.658 5.608 6.309 

(1,2) 15.994 15.469 15.818 14.284 15.459 

(2,2) 24.215 23.526 24.032 22.065 23.663 

(1,3) 29.289 28.495 29.098 26.847 28.713 

(2,3) 36.410 35.483 36.218 33.612 35.830 

2=p
 

(1,1) 6.445 6.163 6.308 5.449 6.023 

(1,2) 15.073 14.622 14.927 13.633 14.633 

(2,2) 22.784 22.190 22.633 20.958 22.330 

(1,3) 27.534 26.850 27.377 25.453 27.059 

(2,3) 34.192 33.393 34.034 31.803 33.715 

Ti-6Al-4V 

(1,1) 5.533 5.398 5.463 5.188 5.321 

(1,2) 12.963 12.724 12.890 12.303 12.741 

(2,2) 19.623 19.292 19.546 18.682 19.392 

(1,3) 23.732 23.343 23.652 22.616 23.491 

(2,3) 29.498 29.030 29.417 28.140 29.253 
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classical Hamilton’s principle and solved using Navier’s 

steps. The subsequent main points can be drawn from the 

present study: 

(1) The accuracy of the present work is ascertained 

by comparing it with existing shear deformation theory and 

excellent agreement was observed.  

(2) The frequency decreases as temperature change 

increases in all types of temperature fields. 

(3)  The present novel hyperbolic shear deformation 

plate theory is not only accurate but also simple in 

predicting the vibration analysis of FG plates in thermal 

environment. 

(4) The inclusion of thickness stretching effect (εz ≠ 

0) makes a FG plates stiffer, and hence, leads to increase of 

the natural frequency. 

(5) The thickness stretching effect plays a significant 

role in moderately thick and thick FG plates and it needs to 

be taken in consideration in the modeling. 

Finally, the formulation lends itself particularly well to 

study several problems related to the bending, vibration and 

dynamic behavior of isotropic, classical and advanced 

composite macro/nanostructures (Youzera et al. 2017, 

Draiche et al. 2019, Karami et al. 2019abcd, Khiloun et al. 

2019). 
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Appendix  
 

The stiffness and inertia coefficients aij and Mij appeared 

in governing equation (20) are as follows. 
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