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1. Introduction 
 

Structural designers are constantly looking for new 

materials that are more efficient, lighter, more durable and 

less expensive. For this purpose, orthotropic rectangular 

plates have been developed and widely used over the last 

three decades in several applications such as mechanics, 

aeronautics, civil engineering, biomechanics and other 

industries because of their good orthotropic mechanical 

properties than those composed of conventional materials 

such as steel, wood and concrete. These structures are new 

assortments of anisotropic materials which having different 

mechanical properties according to their three orthogonal 

directions with an inhomogeneous and complex structural 

nature used to produce parts or lightweight bodies of high 

reliability and mechanical strength. Thus, the intensive 

applications of orthotropic rectangular plates in engineering 

require comprehensive set of information regarding the 

behaviour of anisotropic plates. Previous research results 

show that the transverse shear effects are more important 

for orthotropic plates than for isotropic ones (Wang and 

Huang 1991); moreover, it is also exposed to the combined 

loading during their service life. For this reason, numerous 

analytical and numerical methods have been carried out to 

solve the free vibration and buckling problems of 

orthotropic plates.  

Therefore, it is very necessary to develop a suitable and  
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simplified theory with a minimized number of variables and 

equilibrium equations to handle the orthotropic plates 

subjected to different kinds of in-plane loading that can 

cause buckling and to calculate the natural frequencies of 

these structures in the event of vibration.  

The study of the free vibration and buckling of 

orthotropic plates is not a new topic. There are a variety of 

theoretical approaches on free vibration frequencies and 

critical buckling load of rectangular plates with a high 

diversity of boundary conditions. The most popular known 

are those of Leissa (1969, 1973, 1981), Laura et al. (1977), 

and Warburton and Edney (1984), The most important 

objective of Leissa’s work is to present in one place 

reasonably and accurate analytical results for free vibration 

frequencies and buckling response of various combinations 

of classical boundary conditions for rectangular plates, 

while Laura and his colleagues have applied a variational 

formulation by using a very simple polynomial expression, 

which identically satisfies the boundary conditions for 

determining the fundamental frequency of rectangular 

plates with elastically restrained edges. Although a simple 

approach based on the Rayleigh-Ritz method has been used 

by Warburton and Edney (1984) to compute natural 

frequencies in transverse vibration of isotropic rectangular 

plates with elastically restrained edges, it should be noted 

from this investigation that the obtained results agree very 

close with those of Laura et al. (1977). Subsequently, the 

same approach was extended to orthotropic plates and 

considerable efforts have been expended by several 

investigators to find an accurate solution for the free 

vibration and buckling analysis of orthotropic plates. 

Among these we mention the results presented by 
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Dickinson and Di Blasio (1986) for a number of flexural 

vibration and buckling problems for orthotropic rectangular 

plates with various boundary conditions. Gorman (1993) 

employed the method of superposition to obtain the 

analytical solution for the free vibration of orthotropic 

rectangular plates, in which the eigenvalue matrix is 

developed in a manner similar to that described earlier for 

completely free isotropic plates. Sladek et al. (2006) 

developed a meshless local Petrov–Galerkin method 

(MLPG) to solve the static and dynamic problems of thick 

orthotropic plates resting on a Winkler elastic foundation. 

According to this computational method, the Laplace 

transformation technique is applied to all partial differential 

equations governing the elastodynamic bending of 

Reissner-Mindlin plates. The general mathematical 

expression based on the method of separation of variables 

was proposed by Xing and Liu (2009) to solve the exact 

solutions for the free vibrations of thin orthotropic 

rectangular plates with all combinations of simply 

supported and clamped boundary conditions. Ghugal and 

Pawar (2011) developed a refined hyperbolic shear 

deformation theory based on three variables to determine 

the natural frequencies and buckling loads of single layer 

isotropic and orthotropic plates. Thai and Kim (2011, 2012) 

applied the state space approach to the Levy-type solution 

based on a two variable refined plate theory for free 

vibration and bucking analysis of orthotropic plates with 

two opposite edges simply supported and the other two 

edges having arbitrary boundary conditions. Papkov and 

Banerjee (2015) have developed a new approach for free 

vibration and buckling analysis of rectangular orthotropic 

plates. The method suggested in their work enhances the 

superposition method significantly to reduce the boundary 

value problem to an infinite system of linear algebraic 

equations. A unified solution procedure was developed by 

Wang et al. (2016) using the first-order shear deformation 

theory to obtain some useful results for the free vibration 

analysis of moderately thick orthotropic rectangular plates 

with general boundary restraints, internal line supports and 

resting on elastic foundation. Furthermore, Abualnour et al. 

(2019) proposed a new four variable trigonometric refined 

plate theory by using the principle of virtual works for 

thermo-mechanical analysis of antisymmetric laminated 

reinforced composite plates. 

In recent years, many studies and numerical 

investigations based on different shear deformation plate 

theories have been widely embraced by many researchers to 

examine the static and dynamic responses of orthotropic 

and multilayered composite structures (Panda and Katariya 

2015, Nguyen et al. 2016, Sarangan and Singh 2016, Sahoo 

et al. 2016ab, Singh and Panda 2016, Katariya and Panda 

2016, Hirwani et al. 2016, Swain et al. 2017, Adhikari and 

Singh 2017, Kolahchi et al. 2017, Sayyad and Ghugal 2017, 

Singh et al. 2017, Chikh et al. 2017, Joshan et al. 2017, 

Katariya et al. 2017a, Sahoo et al. 2017, Mehar et al. 2018, 

Karkon and Pajand 2018, Patni et al. 2018, Nor Hafizah et 

al. 2018, Benhenni et al. 2018, Sahoo et al. 2018, Chandra 

Mouli et al. 2018, Panda and Kolahchi 2018, Patle et al. 

2018, Katariya et al. 2018ab, Das et al. 2018ab, Katariya 

and Panda 2019ab, Medani et al. 2019, Sahoo et al. 2019, 

Hirwani and Panda 2019, Ranjan et al. 2019, Zaoui et al. 

2019, Batou et al. 2019, Chaabane et al. 2019, Boulefrakh 

et al. 2019, Boutaleb et al. 2019, Meksi et al. 2019, 

Boukhlif et al. 2019, Khiloun et al. 2019, Bourada et al. 

2019, Zarga et al. 2019, Salah et al. 2019, Tounsi et al. 

2020, Kaddari et al. 2020, Boussoula et al. 2020). 

In this paper, a simple analytical model is presented 

based on a new refined higher-order shear deformation 

theory with two unknown variables recently developed by 

Fellah et al. (2019) for the buckling analysis of isotropic 

plates is successfully extended for the free vibration and 

buckling analysis of orthotropic rectangular plates with 

various loading conditions. The kinematics of the proposed 

theoretical model is defined by an undetermined integral 

component and uses the parabolic shape function of 

Reddy’s theory to include the influences of the transverse 

shear stress through the plate thickness without requiring a 

shear correction factor. The governing equations and its 

boundary conditions are established by utilizing the 

principle of virtual works and solved via Navier-type 

analytical procedure. Numerical results of natural 

frequencies and critical buckling load for simply supported 

orthotropic plates are provided and compared with other 

shear deformation theories to confirm the validity and 

effectiveness of the present theory. 
 

 

2. Theoretical formulation 
 

2.1. Orthotropic plate under consideration 
 

Consider an elastic orthotropic rectangular plate of the 

length a, width b and a constant thickness h in z-direction. 

The plate is simply supported on all four edges and 

subjected to various in-plane compressive loads 𝑁𝑥
0, 𝑁𝑦

0 

and 𝑁𝑥𝑦
0 . The plate under consideration occupies the 

region0 ≤ x ≤ a, 0 ≤ y ≤ b, -h/2 ≤ z ≤ h/2 in Cartesian 

coordinate system. 

 

2.2. Kinematic and constitutive relations 
 

The conventional higher-order shear deformation theory 

is usually based on five independent unknowns, but this 

number can be decreased by introducing some simplifying 

suppositions, in which it is assumed that, the axial 

displacements in the x and y directions, respectively, consist 

of bending and shear components, while the transverse 

displacement in the z-direction consists of bending 

component. The displacement field at any point ),,( zyx of 

the plate becomes in the following form. 

( ) ( )

( ) ( )

( ) ( )

0

0

0

, , ( ) ,

, , ( ) ,

, , ,

w
u x y z z f z x y

x

w
v x y z z f z x y

y

w x y z w x y






= − +




= − +



=

 (1) 

where , v u and w denote the displacement components 

along the ,x y and z  coordinate directions, respectively, 

  and   represents the rotations about the y and x axes, 
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whereas f(z) denote a shape function determining the 

distribution of the transverse shear strains and the stresses 

through the thickness of the plate. By employing that 

( , )x y dx =  and ( , )x y dy =  , the new displacement 

field of the proposed refined parabolic shear deformation 

theory (RPSDT) can be expressed only with two unknowns 

in the most simplified form as (Fellah et al. 2019)  

),(),,(
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(2) 

where  w0
and θ are two unknowns displacement functions 

of middle surface of the orthotropic plate. The constants k1 

and k2 depends on the geometry. In this paper, the present 

theory is obtained by putting 

2

3

3

4
)(

h

z
zzf −=  (3) 

Using the strain-displacement relationships from linear 

theory of elasticity, we can obtain the following strain field 

associated with Eq. (2) 
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and 

dz

zdf
zg

)(
)( =  (6) 

The integrals adopted in the previous relations shall be 

resolved by a Navier solution and can be determined by 
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where 'A and 'B are defined according to the type of 

solution employed, in this case via Navier. Thus, the 

parameters 'A  and 'B are expressed by 
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where the parameters α and β are given as 
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The stress-strain relationships accounting for transversal 

shear deformation in the orthotropic plate coordinates, can 

be written as 
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(10) 

where Qij are the reduced stiffness coefficients as given 

below 

1 2 12 2
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66 12 44 23 55 13
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= = =
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= = =

 
(11) 

In which E1 and E2 are Young’s moduli, G12, G13 and 

G23 are shear moduli, and ν12 and ν21 are Poisson’s ratios. 
 

2.3 Governing equations 
 

In the proposed RPSDT, the dynamic version of the 

principle of virtual work is used to obtain the governing 

equations and boundary conditions for the orthotropic 

rectangular plate under consideration. The principle can be 

stated in analytical form as (Akbas 2016 and 2017c, 

Ebrahimi and Barati 2017 ,2018 and 2019, Mirjavadi et al. 

2019b, Eltaher and Mohamed 2020, Hamed et al. 2020, 

Barati and Shahverdi 2020) 

( ) 0   
2

1

=+−
t

t

dtKVU   (12) 

where symbol δ denotes the variational operator, t1 is the 
initial time, t2 is the final time, δU, δV and δK represents the 
variations of strain energy, work done by external forces 
and kinetic energy, respectively. Eq. (12) leads to the 
following form 
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(13) 

where dot-superscript convention represents the second derivative with respect to the time variable t , A is the top surfaceof 
the plate, ρ is the mass density, q and (𝑁𝑥

0, 𝑁𝑦
0,𝑁𝑥𝑦

0 ) are transverse and in-plane distributed loads, respectively. By substituting 
the terms for virtual strains given in Eq. (4) into Eq. (13) and integrating over the thickness direction, the principle of virtual 
work can be rewritten as 
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(14) 

where ,  b sM M and
sS are the stress resultants and ( )iI  1,  2,  3,  4i =  are the inertia coefficients can be defined by the 

following integrations 
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Substituting stress-strain relations from Eq. (10) into the 

Eq. (15), the stress resultants are obtained in terms of strains 

as following form 
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where ijijij HFD ,,  and
s

ijA are the plate stiffness 

coefficients given by 
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(17b) 

Substituting strain-displacement and stress-strain 

relations from Eq. (5) and (10) of the proposed theory into 

Eq. (14) and integrating by parts and collecting the 

coefficients of
0w and  ,the governing differential 

equations in terms of stress resultants are obtained as 

follows 
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Next, by substituting the stress resultants from Eq. (16) 

into Eq. (18), the following differential equations of the 

proposed theory can be rewritten in terms of displacement 

variables as follow 
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2.4 Analytical solution for simply supported 
orthotropic plates 

 

According to the present theory, the free vibration and 

buckling analysis of a simply supported orthotropic plate is 

obtained by using Navier solution procedure. The following 

boundary conditions along the edges of the simply 

supported plate can be obtained as
 

),0(  edgesOn     00 axMMw s
x

b
x ===== 

 

),0(  edgesOn     00 byMMw s
y

b
y =====   

(20a) 

 

(20b) 

For the analytical solution of Eq. (19), the Navier 

procedure is used under the specified boundary conditions. 

The displacement variables that satisfy the equations of 

boundary conditions given by Eqs. (20), are assumed as the 

following Fourier series 
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where Wmn and Φmn are the unknown coefficients and ω is 

the eigenfrequency or buckling load factor related to the (m, 

n) eigenmode of the orthotropic plate. By substitution Eq. 

(21) into the governing equations (19), analytical solutions 

can be obtained from the following general equation 
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The Eq. (22) can elaborately be written as  
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where {Δ} is the vector of unknown coefficients, {fi} is the 

force vector as specified in Eq. (23) and [Kij], [Mij] and [Nij] 

are stiffness, inertia and geometric matrices, respectively. 

The elements of these matrices can be defined for 

orthotropic plates as follows 
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(24) 

Eq. (22) is a general form for bending, buckling and free 

vibration analysis of simply supported orthotropic 

rectangular plates subjected to in-plane and transverse 

loads. In case of free vibration problem the in-plane 

compressive and transverse loads 0 0( 0)N q= = are set to 

zero, which leads to an eigenvalue equation described as 

follows 

 

 

 
 

 
 

 
Fig. 1 The loading conditions of orthotropic rectangular 

plate: (a) uniaxial compression along x-axis, (b)uniaxial 

compression along y-axis and(c) biaxial compression. 
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( )   0][][ 2 =− ijij MK   (25) 

However the critical buckling loads crN as shown in 

Fig.1, can be obtained by setting the transverse load 0q

equal to zero and neglecting the inertia terms as follows  

( )   0][][ 0 =− ijij NNK  (26) 

 
 
3. Numerical results and discussions 
 

To ensure the precision and effectiveness of the present 

RPSDT in predicting the free vibration and buckling 

responses of simply supported orthotropic plates, various 

numerical examples are presented and compared with those 

obtained by the classical plate theory (CPT) of Kirchhoff 

(1850), first-order shear deformation theory (FSDT) of 

Mindlin (1951), higher-order shear deformation theories 

(HSDTs) and the exact elasticity theory available in the  

 

 

literature. The description of the different displacement 

models for the plate theories is presented in Table 1. 

The following material properties are used to obtain the 

numerical results 

Material 1 (Srinivas and Rao 1970) 
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Material 2 (Reddy 1984) 

1 2 12 2 13 2
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/ ,   / / 0.5,  
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 (28) 

The following non-dimensional form is used while 

presenting numerical result of natural frequencies and 

critical buckling loads 

3
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Table 1 Displacement models of several plate theories 

Model Theory Unknowns 

CPT 

FSDT 

HSDT 

TSDT 

ESDT 

Classical plate theory(Kirchhoff 1850) 

First-order shear deformation theory (Mindlin 1951) 

Higher-order shear deformation theory (Reddy 1984) 

Trigonometric shear deformation theory (Ghugaland Sayyad 2011) 

Exponential shear deformation theory (Sayyadand Ghugal 2014) 

3 

5 

5 

4 

3 

RPT Two variablerefined plate theory (Thai and Kim 2012) 4 

Present Refined parabolic shear deformation theory 2 
 

Table 2 Comparison of non-dimensional natural frequencies ̂ of simply supported orthotropic square plate (a/h=10, 

material 1 

Mode Exact (a) Present 

Sayyad 

and Ghugal 

(2014) 

Reddy 

(1984) 

Ghugal 

and Sayyad 

(2011) 

Shimpi and 

Patel 

(2006) 

Mindlin 

(1951) (a) 
CPT (a) 

(1, 1) 0.0474 0.0477 0.0474 0.0474 0.0474 0.0477 0.0474 0.0497 

(1, 2) 0.1033 0.1040 0.1033 0.1033 0.1031 0.1040 0.1032 0.1120 

(1, 3) 0.1888 0.1898 0.1888 0.1888 0.1793 0.1898 0.1884 0.2154 

(1, 4) 0.2969 0.2980 0.2969 0.2969 0.2932 0.2980 0.2959 0.3599 

(2, 1) 0.1188 0.1198 0.1190 0.1189 0.1196 0.1198 0.1187 0.1354 

(2, 2) 0.1694 0.1722 0.1697 0.1695 0.1696 0.1722 0.1692 0.1687 

(2, 3) 0.2475 0.2520 0.2480 0.2477 0.2478 0.2520 0.2469 0.3029 

(2, 4) 0.3476 0.3533 0.3482 0.3479 0.3468 0.3534 0.3463 0.4480 

(3, 1) 0.2180 0.2197 0.2191 0.2184 0.2199 0.2197 0.2178 0.2779 

(3, 2) 0.2624 0.2675 0.2637 0.2629 0.2671 0.2675 0.2619 0.3418 

(3, 3) 0.3320 0.3407 0.3337 0.3326 0.3326 0.3407 0.3310 0.4470 

(4, 1) 0.3319 0.3340 0.3351 0.3330 0.3346 0.3344 0.3311 0.4773 

(4, 2) 0.3707 0.3774 0.3743 0.3720 0.3727 0.3774 0.3696 0.5415 

(a) Results taken from reference of Srinivas and Rao (1970) 
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3.1 Free vibration analysis of orthotropic plates 
 

In this example, free vibration analysis of moderately 

thick (a/h=10) orthotropic square and rectangularplates is 

investigated using Eq. (25) in the absence of external load. 

The material properties of orthotropic plates utilized in the 

present study are given in Eq. (27).

 The obtained resultsof non-dimensional natural 

frequencies for different modes of vibration are depicted in 

Tables 2 and 3, respectively. These results are 

subsequentlycompared with those presented by Reddy 

(1984), Shimpi and Patel (2006), Ghugal and Sayyad 

(2011), Sayyad and Ghugal (2014), the exact elasticity 

solution given by Srinivas et al. (1970), and with the 

corresponding values of FSDT and CPT. From the 

examination of Tables 2 and 3, it can be seen that the 

present refined parabolic shear deformation theory 

(RPSDT) shows the best accuracy and agree well with those 

reported by Shimpi and Patel (2006), exact elasticity 

solution and the previous studies based on the HSDTs. 

However, FSDT gives the lower values of frequencies as 

compared to those of HSDTs and exact results, whereas 

CPT gives the higher values for these frequencies for all 

modes of vibration. 

Moreover, another example is extended from the 

previous one; the analytical model of the proposed theory is 

checked for the free vibration analysis of simply supported 

orthotropic rectangular plates made up of material 2. 

Numerical results of natural frequencies for first mode of 

vibration are illustrated in Table 4 for various values of 

modulus ratio )40,30,20,10,3/( 21     EE = and for different 

values of both side-to-thickness ratio )50 ,20 ,10 ,5/( =ha

and geometric ratio )2,1,5.0/(   ba = . Again the obtained 

results are compared with the solution reported by Thai and 

Kim (2012) using the two variable refined plate theory 

(RPT) and those computed using FSDT and CPT. This 

comparison displays clearly that the present results are in 

 

 

excellent agreement with those presented by Thai and Kim 

(2012) for all parameters. 

The impacts of modulus ratio,side-to-thickness and 

geometric ratio on the natural frequencies of simply 

supported orthotropic rectangular plates made up of 

material 2 are shown from Figs. 2, 3 and 4, respectively. For 

all Figs., it can be proved that the present theory is more 

precise and efficient in predicting the natural frequencies of 

moderately thick orthotropic rectangular plates when 

compared to the analytical model provided by Thai and Kim 

(2012). Moreover, it is observed that the difference in the 

curves obtained using the present theory, RPT and FSDT 

becomes small when the modulus ratio decreases (see Fig. 

2). The non-dimensional natural frequencies increase with 

the side-to-thickness ratio a/h, but the rate of increase in 

frequencies is negligible as the plate becomes thinner as 

shown in Fig. 3. Whereas the CPT overestimates the natural 

frequencies as compared to the results of other shear 

deformation theories due to the neglect of transverse shear 

strains and yields acceptable results only for thin 

orthotropic plates.  It is also observed that the increase of 

the geometric ratio have a significant impact on the increase 

of the natural frequencies (see Fig. 4). 
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Fig. 2 The impact of modulus ratio on non-dimensional 

natural frequencies  of simply supported orthotropic 

rectangular plate with ( ,5.0/,10/ == baha material 2) 

Table 3 Comparison of non-dimensional natural frequencies ̂ of simply supported orthotropic rectangular plate 

( ,2/,10/ == abha material 1) 

Mode Present 
Ghugal and 

Sayyad (2011) 

Reddy 

(1984) 

Shimpi and 

Patel (2006) 

Mindlin (1951) 

(b) 
CPT (b) 

(1, 1) 0.0378 0.0376 0.0378 0.0378 0.0377 0.0390 

(1, 2) 0.0670 0.0653 0.0676 0.0670 0.0669 0.0701 

(1, 3) 0.1130 0.1066 0.1142 0.1130 0.1132 0.1210 

(1, 4) 0.1733 0.1768 0.1750 0.1733 0.1739 0.1903 

(2, 1) 0.1105 0.1104 0.1104 0.1105 0.1100 0.1225 

(2, 2) 0.1377 0.1371 0.1377 0.1377 0.1362 0.1533 

(2, 3) 0.1805 0.1728 0.1804 0.1805 0.1779 0.2032 

(2, 4) 0.2366 0.2136 0.2366 0.2366 0.2333 0.2711 

(3, 1) 0.2112 0.2114 0.2110 0.2112 0.2102 0.2575 

(3, 2) 0.2360 0.2365 0.2352 0.2360 0.2329 0.2870 

(3, 3) 0.2751 0.2701 0.2735 0.2751 0.2695 0.3352 

(4, 1) 0.3264 0.3269 0.3262 0.3264 0.3246 0.4381 

(4, 2) 0.3488 0.3500 0.3475 0.3488 0.3442 0.4661 

(b) Results taken from reference of Ghugal andSayyad (2011) 
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Table 4 Comparison of non-dimensional natural frequencies  of simply supported orthotropic rectangular plate, material 2 

ba /  ha /
 

Theory
 

Model 
  E1/E2   

3 10 20 30 40 

0.5 

5 
Present RPSDT

 
4.8399 6.9857 8.2401 8.8813 9.2832 

Thai and Kim (2012)
 

RPT 4.8399 6.9857 8.2401 8.8813 9.2832 

 Mindlin(1951)
 

FSDT 4.8382 6.9158 8.0499 8.5941 8.9153 

 Kirchhoff (1850)
 

CPT 5.4110 9.1558 12.7197 13.5648 13.5746 

10 
Present RPSDT

 
5.3202 8.5241 11.0551 12.6703 13.8239 

Thai and Kim (2012)
 

RPT 5.3202 8.5241 11.0551 12.6703 13.8239 

 Mindlin(1951)
 

FSDT 5.3199 8.4965 10.9543 12.4918 13.5717 

 Kirchhoff (1850)
 

CPT 5.4930 9.2945 12.9124 15.7186 18.0948 

20 
Present RPSDT

 
5.4685 9.1141 12.4009 14.7974 16.7105 

Thai and Kim (2012)
 

RPT 5.4685 9.1141 12.4009 14.7974 16.7105 

 Mindlin(1951)
 

FSDT 5.4684 9.1061 12.3666 14.7293 16.6047 

 Kirchhoff (1850)
 

CPT 5.5141 9.3301 12.9619 15.7789 18.1643 

50 
Present RPSDT

 
5.5126 9.3044 12.8804 15.6246 17.9239 

Thai and Kim (2012)
 

RPT 5.5126 9.3044 12.8804 15.6246 17.9239 

  Mindlin(1951)
 

FSDT 5.5126 9.3030 12.8743 15.6120 17.9033 

  Kirchhoff (1850)
 

CPT 5.5201 9.3402 12.9759 15.7960 18.1838 

1 

5 
Present RPSDT

 
6.1425 7.8304 9.0458 9.7339 10.1864 

Thai and Kim (2012)
 

RPT 6.1425 7.8304 9.0458 9.7339 10.1864 

 Mindlin(1951)
 

FSDT 6.1305 7.7094 8.6452 9.1072 9.3832 

 Kirchhoff (1850)
 

CPT 7.0877 10.1671 13.3976 15.9889 18.2155 

10 
Present RPSDT

 
6.9515 9.5628 11.9334 13.5598 14.7744 

Thai and Kim (2012)
 

RPT 6.9515 9.5628 11.9334 13.5598 14.7744 

 Mindlin(1951)
 

FSDT 6.9468 9.5089 11.6839 13.0892 14.0902 

 Kirchhoff (1850)
 

CPT 7.2577 10.4110 13.7190 16.3725 18.6524 

20 
Present RPSDT

 
7.2194 10.2349 13.2676 15.5845 17.4839 

Thai and Kim (2012)
 

RPT 7.2194 10.2349 13.2676 15.5845 17.4839 

 Mindlin(1951)
 

FSDT 7.2180 10.2185 13.1790 15.3966 17.1822 

 Kirchhoff (1850)
 

CPT 7.3021 10.4748 13.8030 16.4728 18.7666 

50 
Present RPSDT

 
7.3012 10.4530 13.7360 16.3474 18.5726 

Thai and Kim
 

RPT 7.3012 10.4530 13.7360 16.3474 18.5726 

  Mindlin(1951)
 

FSDT 7.3009 10.4502 13.7201 16.3120 18.5132 

  Kirchhoff (1850)
 

CPT 7.3147 10.4928 13.8268 16.5012 18.7990 

2 5 Present RPSDT
 

10.9975 11.6394 12.3588 12.9019 13.3277 

  Thai and Kim (2012)
 

RPT 10.9975 11.6394 12.3588 12.9019 13.3277 

  Mindlin(1951)
 

FSDT 10.8944 11.5883 12.0725 12.3295 12.4887 

  Kirchhoff (1850)
 

CPT 14.3271 15.8800 17.9300 19.7753 21.4640 

 10 Present RPSDT
 

13.7909 14.9934 16.4739 17.7038 18.7467 

  Thai and Kim (2012)
 

RPT 13.7909 14.9934 16.4739 17.7038 18.7467 

  Mindlin(1951)
 

FSDT 13.7345 14.9802 16.2729 17.1922 17.8809 

  Kirchhoff (1850)
 

CPT 15.1523 16.7946 18.9626 20.9142 22.7001 

 20 Present RPSDT
 

14.9772 16.5030 18.4742 20.2036 21.7468 

  Thai and Kim (2012)
 

RPT 14.9772 16.5030 18.4742 20.2036 21.7468 

  Mindlin(1951)
 

FSDT 14.9578 16.5002 18.3978 19.9828 21.3363 

  Kirchhoff (1850)
 

CPT 15.3818 17.0490 19.2499 21.2310 23.0440 

 50 Present RPSDT
 

15.3796 17.0294 19.1992 21.1436 22.9151 

  Thai and Kim (2012) RPT 15.3796 17.0294 19.1992 21.1436 22.9151 

  Mindlin(1951)
 

FSDT 15.3761 17.0290 19.1851 21.1009 22.8324 

  Kirchhoff (1850)
 

CPT 15.4480 17.1223 19.3327 21.3223 23.1432 
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3.2 Buckling analysis of orthotropic plates  
 

In the case of static problem, the efficiency of present 

theory is investigated for buckling response of simply 

supported orthotropic square and rectangular plates 

s u b j e c t e d  t o  i n - p l a n e  d i s t r i b u t e d  l o a d s

)0,,( 0
02

0
01

0 === xyyx NNNNN  , as shown in Fig.1. 

The properties of orthotropic material used for this problem  

 

 

are given in Eq. (28). Three specific loading conditions are 

examined in this study, which are uniaxial compression 

along the x-axis, uniaxial compression along the y-axis and 

biaxial compression.  

Since the exact elasticity solution is not available for the 

buckling analysis of orthotropic plates, the present results 

are compared and discussed with the corresponding results 

generated by using HSDT of Reddy (1984), RPT developed 

by Kim et al. (2009), TSDT reported by Ghugal and Sayyad  

Table 5 Comparison of non-dimensional critical buckling load crN of simply supported orthotropic square plates under uniaxial 

compression (   nm     ,1,0,1 21 ===−=  material 2). 

a/h Theory Model 
1 2/E E  

3 10 20 30 40 

5 Present RPSDT 3.9587 6.3478 8.3967 9.6821 10.578 

Sayyad and Ghugal (2014) ESDT 3.9650 6.3014 8.0946 9.2166 10.049 

Reddy (1984) HSDT 3.9434 6.2072 7.8292 8.7422 9.3472 

Ghugal and Sayyad (2011) TSDT 4.0572 6.3212 7.9324 8.8418 9.4502 

Kim et al. (2009) RPT — 6.3478 — — 10.579 

Mindlin (1951) FSDT 3.9386 6.1804 7.7450 8.5848 9.1084 

Kirchhoff (1850) CPT 5.4248 11.163 19.383 27.606 35.830 

10 Present RPSDT 4.9637 9.3732 14.563 18.772 22.258 

Sayyad and Ghugal (2014) ESDT 4.9612 9.2998 14.080 17.748 20.676 

Reddy (1984) HSDT 4.9568 9.2772 14.001 17.577 20.386 

Ghugal and Sayyad (2011) TSDT 5.0128 9.3646 14.116 17.711 20.534 

Kim et al. (2009) RPT — 9.3732 — — 22.258 

Mindlin (1951) FSDT 4.9562 9.2734 13.982 17.532 20.304 

Kirchhoff (1850) CPT 5.4248 11.163 19.383 27.606 35.830 

20 Present RPSDT 5.3015 10.653 17.898 24.689 31.069 

Sayyad and Ghugal (2014) ESDT 5.3004 10.625 17.681 24.146 30.094 

Reddy (1984) HSDT 5.2994 10.621 17.664 24.108 30.025 

Ghugal and Sayyad (2011) TSDT 5.3194 10.653 17.714 24.175 30.107 

Kim et al. (2009) RPT — 10.653 — — 31.069 

Mindlin (1951) FSDT 5.2994 10.620 17.662 24.102 30.014 

Kirchhoff (1850) CPT 5.4248 11.163 19.383 27.606 35.830 

50 Present RPSDT 5.4046 11.078 19.129 27.094 34.972 

Sayyad and Ghugal (2014) ESDT 5.4044 11.072 19.087 26.982 34.758 

Reddy (1984) HSDT 5.4040 11.072 19.085 26.976 34.748 

Ghugal and Sayyad (2011) TSDT 5.4116 11.081 19.098 26.993 34.769 

Kim et al. (2009) RPT — 11.078 — — 34.972 

Mindlin (1951) FSDT 5.4046 11.072 19.085 26.976 34.748 

Kirchhoff (1850) CPT 5.4248 11.163 19.383 27.606 35.830 

100 Present RHSDT 5.4197 11.141 19.319 27.477 35.612 

Sayyad and Ghugal (2014) ESDT 5.4196 11.400 19.308 27.447 35.554 

Reddy (1984) HSDT 5.4192 11.139 19.307 27.466 35.553 

Ghugal and Sayyad (2011) TSDT 5.4250 11.145 19.314 27.453 35.562 

Kim et al. (2009) RPT — 11.142 — — 35.612 

Mindlin (1951) FSDT 5.4206 11.142 19.309 27.448 35.554 

Kirchhoff (1850) CPT 5.4248 11.163 19.383 27.606 35.830 
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(2011), ESDT presented by Sayyad and Ghugal (2014), 

FSDT and CPT.  

The results of the non-dimensional critical buckling load 

of simply supported orthotropic square plates subjected to 

the uniaxial and biaxial loading conditions for various values 

of both side-to-thickness ratio ha /  and modular ratio E1/E2 

are presented in Tables 5 and 6. 

It can be noticed that the numerical results obtained by  

 

 

using the present theory are in excellent agreement with 

those computed according to the different shear deformation 

plate theories, especially with those presented by Kim et al. 

(2009). It may be noted that the results of the critical 

buckling load increase significantly with the increase of the 

modular ratios. Besides,FSDT underestimates the value of 

critical buckling loads, whereas the CPT overestimates for 

all thickness ratio and modular ratio due to the negligence 

of the transverse shear deformation effect. 

Table 6 Comparison of non-dimensional critical buckling load crN of simply supported orthotropic square plates  

under biaxial compression ( ,1,1,1 21  nm    ==−=−=  material 2). 

a/h 

Theory Model 
21 / EE  

3 10 20 30 40 

5 Present RPSDT 1.9793 3.1739 4.1984 4.8410 5.2892 

Sayyad and Ghugal (2014) ESDT 1.9825 3.1507 4.0473 4.6083 5.0246 

Reddy (1984) HSDT 1.9717 3.1036 3.9146 4.3711 4.6736 

Ghugal and Sayyad (2011) TSDT 2.0281 3.1606 3.9662 4.4209 4.7251 

Kim et al. (2009) RPT — 3.1739 — — 5.2895 

Mindlin (1951) FSDT 1.9693 3.0902 3.8725 4.2924 4.5542 

Kirchhoff (1850) CPT 2.7124 5.5814 9.6917 13.8034 17.9154 

10 Present RPSDT 2.4818 4.6866 7.2816 9.3862 11.1290 

Sayyad and Ghugal (2014) ESDT 2.4806 4.6499 7.0402 8.8741 10.3380 

Reddy (1984) HSDT 2.4784 4.6386 7.0002 8.7885 10.1929 

Ghugal and Sayyad (2011) TSDT 2.5064 4.6823 7.0582 8.8558 10.2674 

Kim et al. (2009) RPT — 4.6866 — — 11.1290 

Mindlin (1951) FSDT 2.4781 4.6367 6.9910 8.7662 10.1522 

Kirchhoff (1850) CPT 2.7124 5.5814 9.6917 13.8034 17.9154 

20 Present RHSDT 2.6508 5.3267 8.9490 12.3448 15.5343 

Sayyad and Ghugal (2014) ESDT 2.6502 5.3125 8.8405 12.0731 15.0470 

Reddy (1984) HSDT 2.6497 5.3101 8.8320 12.0540 15.0127 

Ghugal and Sayyad (2011) TSDT 2.6597 5.3266 8.8574 12.0875 15.0537 

Kim et al. (2009) RPT — 5.3267 — — 15.5345 

Mindlin (1951) FSDT 2.6497 5.3100 8.8311 12.0513 15.0070 

Kirchhoff (1850) CPT 2.7124 5.5814 9.6917 13.8034 17.9154 

50 Present RHSDT 2.7023 5.5390 9.5646 12.3448 17.4859 

Sayyad and Ghugal (2014) ESDT 2.7022 5.5364 9.5437 13.4911 17.3791 

Reddy (1984) HSDT 2.7020 5.5360 9.5424 13.4884 17.3744 

Ghugal and Sayyad (2011) TSDT 2.7058 5.5407 9.5490 13.4969 17.3849 

Kim et al. (2009) RPT — 5.5390 — — 17.4860 

Mindlin (1951) FSDT 2.7023 5.5362 9.5425 13.4885 17.3745 

Kirchhoff (1850) CPT 2.7124 5.5814 9.6917 13.8034 17.9154 

100 Present RPSDT 2.7098 5.5707 9.6596 13.7383 17.8060 

Sayyad and Ghugal (2014) ESDT 2.7098 5.5700 9.6542 13.7238 17.7779 

Reddy (1984) HSDT 2.7096 5.5697 9.6533 13.7230 17.7767 

Ghugal and Sayyad (2011) TSDT 2.7124 5.5727 9.6571 13.7269 17.7811 

Kim et al. (2009) RPT — 5.5710 — — 17.8060 

Mindlin (1951) FSDT 2.7103 5.5710 9.6544 13.7241 17.7772 

Kirchhoff (1850) CPT 2.7124 5.5814 9.6917 13.8034 17.9154 
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Fig. 3 The impact of side-to-thickness ratio on non-

dimensional natural frequencies  of simply supported 

orthotropic rectangular plate with( 1 2/ 40, / 0.5,E E a b= =

material 2). 

 

 

Tables 7–9 display the comparison of non-dimensional 

critical buckling load for simply supported thick orthotropic 

rectangular plates )5/( =ha for three modular ratio values 

( 40,25,10/ 21   EE = ) and various values of geometric 

ratiob/a. To confirm again the accuracy of this model, three 

loading conditions were considered in this analysis, uniaxial 
compression along x-axes, uniaxial compression along y-
axes and biaxial compression, respectively.It can be seen 

that, the non-dimensional critical buckling load obtained by  
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Fig. 4 The impact of geometric ratio on non-dimensional 

natural frequencies  of simply supported orthotropic 

rectangular plate with( ,40/,10/ 21 == EEha material 2). 

 

 

present refined theory (RPSDT) and Kim et al. (2009) is in 

excellent agreement for geometric ratio )2,1/(  ab =  and 

with the analytical solutions provided by Sayyad and 

Ghugal (2014) for all geometric ratios. Besides, it should be 

noted that in the case of uniaxial compression along x-axes, 

the critical buckling load decreases with increasing value of 

geometric ratio, whereas it increases in the case of uniaxial 

compression along the y-axes. 
 

 

 

 

Table 7 Comparison of non-dimensional critical buckling load crN of simply-supported orthotropic rectangular plates 

subjected to uniaxial compression along x-axes ( ,1,0,1,5/ 21 ===−== nm      ha  material 2). 

E1/E2 Theory Model 
b/a 

1 1.5 2 2.5 3 3.5 4 

10 Present RPSDT 6.3478 5.3284 5.0109 4.8706 4.7961 4.7518 4.7232 

Sayyad and Ghugal (2014) ESDT 6.3014 5.3026 5.0148 4.8939 4.8317 4.7953 4.7723 

Reddy (1984) HSDT 6.2072 5.2245 4.9412 4.8223 4.7611 4.7253 4.7026 

Ghugal and Sayyad (2011) TSDT 6.3212 5.2923 4.9940 4.8682 4.8033 4.7654 4.7412 

Kim et al. (2009) RPT 6.3478 — 5.0109 — — — — 

Mindlin (1951) FSDT 6.1804 5.2025 4.9205 4.8021 4.7412 4.7056 4.6831 

Kirchhoff (1850) CPT 11.163 9.3549 8.8428 8.6270 8.5154 8.4500 8.4083 

25 Present RPSDT 9.1039 7.9407 7.5409 7.3561 7.2557 7.1952 7.1559 

Sayyad and Ghugal (2014) ESDT 8.7062 7.8373 7.6007 7.5047 7.4562 7.4281 7.4109 

Reddy (1984) HSDT 8.3394 7.4929 7.2631 7.1701 7.1231 7.0961 7.0792 

Ghugal and Sayyad (2011) TSDT 8.4398 7.5414 7.2929 7.1909 7.1391 7.1091 7.0905 

Kim et al. (2009) RPT 9.1039 — 7.5409 — — — — 

Mindlin (1951) FSDT 8.2199 7.3805 7.1530 7.0610 7.0154 6.9883 6.9713 

Kirchhoff (1850) CPT 23.495 21.690 21.179 20.964 20.854 20.783 20.744 

40 Present RPSDT 10.578 9.2342 8.7587 8.5368 8.4158 8.3426 8.2950 

Sayyad and Ghugal (2014) ESDT 10.049 9.2310 9.0145 8.9282 8.8853 8.8608 8.8454 

Reddy (1984) HSDT 9.3472 8.5541 8.3455 8.2628 8.2217 8.1983 8.1837 

Ghugal and Sayyad (2011) TSDT 9.4502 8.6015 8.3719 8.2791 8.2324 8.2056 8.1888 

Kim et al. (2009) RPT 10.579 — 8.7587 — — — — 

Mindlin (1951) FSDT 9.1084 8.3237 8.1178 8.0363 7.9958 7.9728 7.9585 

Kirchhoff (1850) CPT 35.830 34.027 33.516 33.300 33.189 33.124 33.082 
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Table 8 Comparison of non-dimensional critical buckling load crN of simply supported orthotropic rectangular plates 

subjected to uniaxial compression along y-axes (  nm      ha ,1,1,0,5/ 21 ==−===  material 2). 

E1/E2 Theory Model 
b/a 

1 1.5 2 2.5 3 3.5 4 

10 Present RPSDT 6.3478 11.989 20.044 30.441 43.165 58.210 75.572 

Sayyad and Ghugal (2014) ESDT 6.3014 11.930 20.059 30.587 43.485 58.743 76.356 

Reddy (1984) HSDT 6.2072 11.755 19.765 30.139 42.849 57.885 75.242 

Ghugal and Sayyad (2011) TSDT 6.3212 11.907 19.975 30.426 43.229 58.375 75.859 

Kim et al.(2009) RPT 6.3478 — 20.044 — — — — 

Mindlin (1951) FSDT 6.1804 11.705 19.682 30.013 42.670 57.644 74.929 

Kirchhoff (1850) CPT 11.163 21.048 35.371 53.918 76.638 103.51 134.53 

25 Present RPSDT 9.1039 17.866 30.164 45.976 65.302 88.141 114.49 

Sayyad and Ghugal (2014) ESDT 8.7062 17.634 30.403 46.904 67.107 90.999 118.57 

Reddy (1984) HSDT 8.3394 16.859 29.052 44.813 64.110 86.931 113.27 

Ghugal and Sayyad (2011) TSDT 8.4398 16.968 29.171 44.943 64.253 87.089 113.44 

Kim et al.(2009) RPT 9.1039 — 30.164 — — — — 

Mindlin (1951) FSDT 8.2199 16.606 28.611 44.131 63.132 85.604 111.54 

Kirchhoff (1850) CPT 23.495 48.803 84.716 131.02 187.66 254.63 331.92 

40 Present RPSDT 10.578 20.777 35.034 53.355 75.742 102.19 132.72 

 Sayyad and Ghugal (2014) ESDT 10.049 20.769 36.058 55.801 79.968 108.55 141.42 

 Reddy (1984) HSDT 9.3472 19.246 33.382 51.642 73.995 100.42 130.93 

 Ghugal and Sayyad (2011) TSDT 9.4502 19.353 33.487 51.744 74.092 100.52 131.02 

 Kim et al.(2009) RPT 10.579 — 35.034 — — — — 

 Mindlin (1951) FSDT 9.1084 18.728 32.471 50.226 71.962 97.667 127.33 

 Kirchhoff (1850) CPT 35.830 76.560 134.06 208.12 298.69 405.76 529.31 

Table 9 Comparison of non-dimensional critical buckling load crN of simply supported orthotropic rectangular plates 

subjected to biaxial compression ( ,1,1,1,5/ 21  nm      ha ==−=−==  material 2). 

E1/E2 Theory Model 
b/a 

1 1.5 2 2.5 3 3.5 4 

10 Present RPSDT 3.1739 3.6889 4.0087 4.1988 4.3165 4.3932 4.4454 

Sayyad and Ghugal (2014) ESDT 3.1507 3.6710 4.0118 4.2189 4.3485 4.4334 4.4915 

Reddy (1984) HSDT 3.1036 3.6170 3.9530 4.1571 4.2849 4.3687 4.4260 

Ghugal and Sayyad (2011) TSDT 3.1606 3.6639 3.9952 4.1967 4.3230 4.4057 4.4623 

Kim et al.(2009) RPT 3.1739 — 4.0087 — — — — 

Mindlin (1951) FSDT 3.0902 3.6017 3.9364 4.1398 4.2671 4.3505 4.4076 

Kirchhoff (1850) CPT 5.5814 6.4765 7.0743 7.4371 7.6638 7.8122 7.9137 

25 Present RPSDT 4.5519 5.4974 6.0327 6.3415 6.5302 6.6521 6.7349 

Sayyad and Ghugal (2014) ESDT 4.3531 5.4258 6.0806 6.4696 6.7107 6.8678 6.9750 

Reddy (1984) HSDT 4.1697 5.1874 5.8105 6.1811 6.4110 6.5609 6.6631 

Ghugal and Sayyad (2011) TSDT 4.2199 5.2210 5.8343 6.1991 6.4253 6.5728 6.6734 

Kim et al.(2009) RPT 4.5519 — 6.0327 — — — — 

Mindlin (1951) FSDT 4.1099 5.1096 5.7224 6.0870 6.3132 6.4607 6.5613 

Kirchhoff (1850) CPT 11.747 15.016 16.943 18.072 18.767 19.217 19.524 

40 Present RPSDT 5.2892 6.3929 7.0069 7.3593 7.5742 7.7129 7.8070 

Sayyad and Ghugal (2014) ESDT 5.0246 6.3907 7.2116 7.6967 7.9968 8.1920 8.3251 

Reddy (1984) HSDT 4.6736 5.9221 6.6764 7.1231 7.3995 7.5796 7.7023 

Ghugal and Sayyad (2011) TSDT 4.7251 5.9549 6.6975 7.1372 7.4092 7.5863 7.7071 

Kim et al.(2009) RPT 5.2895 — 7.0069 — — — — 

Mindlin (1951) FSDT 4.5542 5.7626 6.4942 6.9278 7.1963 7.3711 7.4903 

Kirchhoff (1850) CPT 17.915 23.557 26.813 28.707 29.870 30.623 31.136 
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4. Conclusions 
 

In this article, a refined parabolic shear deformation 

theory (RPSDT) with only two unknowns is applied for free 

vibration and buckling analysis of simply supported 

orthotropic rectangular plates, in which the displacement 

field is modeled by an undetermined integral term in order 

to reduce the number of variables and the governing 

equations. The proposed theory accounts for a parabolic 

distribution of the transverse shear stress through the 

thickness direction and satisfies the edge boundary 

conditions of the plate, without needing a shear correction 

factor. The governing equations are obtained from the 

principle of virtual work and solved analytically by using 

Navier’s solution procedure. Several parameters are 

considered in this study such as the modular ratio, the side-

to-thickness ratio and the geometric ratio. The numerical 

results of natural frequencies and critical buckling load for 

simply supported orthotropic square and rectangular plates 

are obtained and compared with various theories available 

in the literature. Finally, it can be stated that the simple 

analytical model is not only more precise but also simple 

than the other shear deformation theories in predicting the 

free vibration and buckling responses of orthotropic 

rectangular plates. An improvement of the present 

formulation will be considered in the future work to 

consider other type of materials (Othman and Lotfy 2009, 

Abbas  and Othman 2009, Kar and Panda 2015, Mehar et 

al. 2017, Akbas  2017ab, Katariya et al. 2017b, Faleh et al. 

2018, Othman and Mahdy 2018, Panjehpour et al. 

2018,Mehar et al. 2018 and 2019, Alimirzaei et al. 2019, 

Pandey et al. 2019, Mehar and Panda 2019, Ramteke et al. 

2019, Kunche et al. 2019, Hussain et al. 2019, Balubaid et 

al. 2019, Rajabi and Mohammadimehr 2019, Karami et al. 

2019ab, Mirjavadi et al. 2019a,Adda Bedia et al. 2019, 

Eltaher et al. 2019,Semmah et al. 2019, Draoui et al. 2019, 

Ebrahimi et al. 2019, Berghouti et al. 2019, Al-Osta 2019, 

Karami et al. 2019cd, Selmi 2019, Karami et al. 2019e and 

2020, Eltaher and Wagih 2020, Khosravi et al. 2020, 

Hussain et al. 2020ab, Asghar et al. 2020, Bousahla et al. 

2020). 
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