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1. Introduction 
 

The theory of thermoelasticity is a branch of applied 

mechanics, which deals with the mechanical and thermal 

influences on elastic bodies under the effect of mechanical 

disturbances and/or non-uniform temperature fields. It is, 

thus, an extension of the conventional theory of isothermal 

elasticity of processes, in which deformation and stresses 

are produced not only by mechanical forces alone but also 

by temperature variation as well. Biot (1956) formulated the 

equations of the theory of coupled theory of thermo-

elasticity to eliminate the paradox inherent in the classical 

uncoupled theory. In the coupled theory the equation of 

motion is a hyperbolic partial differential equation while the 

energy equation still remains parabolic. Lord-Shulman's 

theory is the first generalization of the coupled theory. The 

basis of the model proposed by Lord and Shulman (1967) 

was to modify Fourier’s law of the heat conduction 

equation by introducing a new physical concept called a 

relaxation time needed for acceleration of the heat flow. The 

heat equation of this theory of the wave type, it 

automatically ensures finite speeds of propagation of heat 

and elastic waves. The remaining governing equations for 

this theory, namely, the equations of motions and 

constitutive relations, remain the same as those for the 

coupled and uncoupled theories. Green and Lindsay (1972) 

introduced another theory of generalized thermoelasticity, 

known as temperature rate-dependent theory of thermo-

elasticity, including the rate of temperature in constitutive  
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equations. It is based on a form of the entropy inequality 

proposed by Green and Laws (1972). It does not violate the 

Fourier’s law of heat conduction when the body under 

consideration has a center of symmetry. This theory 

contains two constants that act as relaxation times and 

modifies all the equations of the coupled theory, not only 

the heat equation. 

Ozisik and Tzou (1994), and Tzou (1995a, b) developed 

a new model called the dual phase-lag model for the heat 

transport mechanism in which Fourier’s law is replaced by 

an approximation to the modification of Fourier’s law with 

two different time translations for the heat flux and the 

temperature gradient. The modification of Fourier’s law 

with two different times to take into account the micro-

structural effects that arise in high-rate heat transfer. In 

addition to its applications in the ultrafast pulse laser 

heating, temperature pulse propagation in liquid helium, 

nonhomogeneous lagging response in porous media, 

thermal lagging response in amorphous materials, the DPL 

heat conduction equation also arises in describing the 

effects of material defects and thermo-mechanical coupling 

due to ultrafast heating such as Tzou (1997), Al-Nimr and 

Al-Huniti (2000), Chen (2002), Lee and Tsai (2008), 

Abdallah (2009), Othman et al. (2015), Othman and Abd-

Elaziz (2015, 2017), Samia and Othman (2016), Marin and 

Nicaise (2016), Marin and Craciun (2017), Abualnour et al. 

(2019), Belbachir et al. (2019), Zarga et al. (2019), 

Alimirzaei et al. (2019), Mahmoudi et al. (2019).  

Diffusion can be defined as the random walk, of an 

ensemble of particles, from regions of great concentration 

to regions of lower concentration. There is now a great deal 

of interest in the study of this phenomenon, due to its many 

applications in geophysics and industrial applications. In 

integrated circuit fabrication, diffusion is used to introduce 

“dopants” in controlled amounts into the semiconductor 

substrate. In particular, diffusion is used to form the base 

and emitter in bipolar transistors, form integrated resistors, 
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form the source/drain regions in MOS transistors and dope 

poly-silicon gates in MOS transistors. Thermal diffusion 

utilizes the transfer of heat across a thin liquid or gas to 

accomplish isotope separation. Today, thermal diffusion 

remains a practical process to separate isotopes of noble 

gases (e.g. xexon) and other light isotopes (e.g. carbon) for 

research purposes. In most of the applications, the 

concentration is calculated using what is known as Fick’s 

law. This is a simple law which does not take into 

consideration the mutual interaction between the introduced 

substance and the medium into which it is introduced or the 

effect of temperature on this interaction. However, there is a 

certain degree of coupling with temperature and 

temperature gradients as temperature speeds up the 

diffusion process. The diffusion in thermoelastic solids is 

due to the coupling of fields of temperature, mass diffusion 

and that of strain in addition to heat and mass exchange 

with the environment. 

Nowacki (1974, 1976) developed the theory of coupled 

thermoelastic diffusion. This implies infinite speeds of 

propagation of thermoelastic waves. Problems of wave 

propagation in coupled or generalized diffusion thermo-

elasticity have been studied by various researchers 

(Gawinecki et al. 2000, Gawinecki and Szymaniec 2002, 

Sharma and Kumar (2016), Singh 2005, Sharma et al. 2008, 

Othman and Marin 2017, Marin et al. 2019).  

This paper investigates the effect of diffusion and laser 

pulse on a linear, isotropic, homogeneous microstretch 

thermoelastic solid influenced by the gravitational field 

based on DPL theory. The analytic methodology used to get 

the exact solutions of the considered physical quantities was 

the normal mode analysis. The variations of the considered 

variables are obtained and illustrated graphically. The 

effects of time, gravity, and heat flux parameter on the 

distributions of the considered variables are of concern and 

discussed in detail. 

 

 

2. Basic equations 
 

Following Eringen (1999) and Tzou (1995a) the 

equations of motion and the constitutive relations in a 

homogeneous isotropic microstretch thermoelastic diffusion 

solid in the absence of body forces, and in the presence of  

the body couples, the stretch force, and the heat sources, 

under the effect of Laser pulse Q with dual-phase-lag are 

given by, 
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The constitutive relations are 
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where 0 0 0 1, , , , , , , , ,b k         are material constants ρ is 

the mass density u is the displacement vector and ϕ is the 

micro rotation vector, ϕ* is the scalar micro stretch function, 

T is the small temperature increment, T0 the reference 

temperature of the body chosen such that 0 0( ) / 1T T T−  , 

C is the concentration of the diffusion material in the elastic 

body, k* is the coefficient of the thermal conductivity, CE 

the specific heat at constant strain, a, b are the coefficients 

describing the measure of thermo diffusion and mass 

diffusion effects respectively, 𝛽1 = (3𝜆 + 2𝜇 + 𝑘)𝛼𝑡1
, 

𝛽2 = (3𝜆 + 2𝜇 + 𝑘)𝛼𝑐1
,  𝑣1 = (3𝜆 + 2𝜇 + 𝑘)𝛼𝑡2

,  𝑣2 =

(3𝜆 + 2𝜇 + 𝑘)𝛼𝑐2
, 𝛼𝑡1

, 𝛼𝑡2
 are the coefficients of linear 

thermal expansion and 𝛼𝑐1,𝛼𝑐2
 are the coefficients of linear 

diffusion expansion, d is the thermoelastic diffusion 

constant, j is the coefficients of micro-inertia, j0 is the 

micro-inertia for the micro-elements, σij, mij, are the 

components of stress and couple stress tensors respectively, 

δij is the Kronecker delta, τθ is the phase-lag of the gradient 

of temperature, τq is the phase-lag of heat flux where 

0 q   . 

The plate surface is illuminated by a laser pulse given 

by the heat input (Al-Qahtani and Datta 2008) 
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Here t0 0( 0.01 )t ps=  is the pulse rise time, I0 is the 

energy absorbed, r is the beam radius, and γ* is the 

absorption coefficient.  

 

 

3. Formulation and solution of the problem 
 

We consider a homogeneous, isotropic generalized 

diffusion thermoelastic medium in the undeformed state at 

temperature T0 The rectangular Cartesian coordinate system 

(x,y,z) having origin on the surface y=0 with the y− axis 

pointing normally into the medium is introduced. For two 

dimensional problem, we assume the dynamic displacement 
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vector as ( , , ) ( ,0, ),x z t u w=u  the micro rotation vector   

ϕ = (0, ϕ2, 0) the scalar micro stretch function 
*( , , )x z t

and we define the dimensionless, quantities as 
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and ω* is the 

characteristic frequency of the medium.  

We introduce the potential functions 

( , , ), ( , , )q x z t x z t  such that  

, , , ,, .x z z xu q w q = − = +
 (11) 

From Eqs. (10) and (11) into the basic governing 

equations we obtain, (dropping the dashed for 

convenience), 

2
2 *

20 4 52
( ) 0,a q a T a C g

xt




 
 − + − − − =

  
(12) 

2
2

2 3 22
( ) 0,

q
a a g

xt
 

 
 − − + =

  
(13) 

2
2 2

6 7 2 72
( 2 ) 0,a a a

t
 


 − − +  =

  
(14) 

2
2 * 2

8 10 29 9 112
( ) 0,a a a T a C a q

t



 − − + + −  =

  
(15) 

2 2
2 2

14 122 2
[(1 ) ( )] ( )q qa T a q

t t tt t
  
    

+  − + − + 
     

2 2
*

13 152 2
( ) ( ) (1 ) ,q q qa a C Q

t t tt t
   

    
− + − + = − +

     

(16) 

4 2 * 2 2

16 17 18 19( ) 0.a q a a T a C
t




 +  +  − + =
  

(17) 

where the constants ( 1,2,....,30)ia i =  are defined in the 

Appendix A. 

The solution of the considered physical variable can be 

decomposed in terms of the normal modes in the following 

form  
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where R is the wave number and ω is the frequency. 

From (18) in (12)-(17) we obtained 
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Eliminating ψ, ϕ2, ϕ* and T among (19)-(24), we obtain 

the differential equation 
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Equation (25) can be factored as 
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where 𝑘𝑛
2(𝑛 = 1,2,3,4,5,6)  are the roots of the 

characteristic equation of the homogeneous equation of Eq. 

(25). 

The general solution of (26) bounded as z→∞, is given 

by  
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To obtain the components of the displacement vector, 

from (27) and (28) in (11) 
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The stress tensor and the couple stress tensor and the 

microrotation from (6)-(8), dimensionless quantities are 

given by. 
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where 1, ( 1,...,17), ,inH i L= and , ( 1,...,48)id i = are defined in 

the Appendix C. 

 

 

4. Boundary conditions 
 

In order to determine the parameters Mj, (j=1,2,3,4,5) 

we consider the boundary conditions at z=0, as follows: 
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where f1 is constant, from (45) in (38), (40), (42), (44), (32), 

(30), and solving these equations for Mj, (j=1,2,3,4,5) by 

using the inverse of matrix method and the Matlab program 

we can obtain 
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5.  Special cases of microstretch thermoelastic 
theory: 

 

(i) Equations of the microstretch thermoelastic with 

(DPL) theory when 0.q    

(ii) Equations of the microstretch thermoelastic with the 

(L-S) theory when 0, q =     

(iii) Equations of the microstretch thermoelastic with 

(CT ) theory when 0, 0.q = =  
 

 

6. Numerical results and discussion 
 

The analysis is conducted for a magnesium crystal-like 

material. Following Eringen (1984), the values of micro-

polar parameters are, 
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1.74 10 , 1.753 10 , 0.2 10 ,

Nm Nm k Nm

kgm j m j m

 



− − −

− − − − −

=  =  = 

=  =  = 

90.779 10 , 20.N x −=  =  
Thermal parameters are given by, 

3 1 1 * 6 1 1 1

5 1 5 1

1

0

1 2

1.04 10 , 1.7 10 ,

2.33 10 , 2.48 10 , 1,

298 .

E

t t

C jkg k k Jm s k

k k f

T k

 

− − − − −

− − − −

=  = 

=  =  =

=

Diffusion parameters are given by 

1 2

4 3 1 4 3 1 0

5 1 2 8 3 4 2 2 1

2.65 10 , 2.83 10 , 0.03,

32 10 , 0.85 10 , 2.9 10 .

c cm kg m kg

b kg s d kgm s a m s k

  − − − −

− − − − − −

=  =  =

=  =  = 

The laser pulse parameters are, 

5 2 * 3 1

0 10 / , 100 , 10 .I J m r m m  − −= = =
 

And, the microstretch parameters are taken as, 

9 10 2 10 2

0 0 10.779 10 , 0.5 10 , 0.5 10 .N Nm Nm  − − −=  =  =   

The comparisons have established for two cases: 

i) For two values of time (t=0.9 sec, 0.85 sec) in the 

context of DPL model, L-S theory and CT theory in the 

presence gravitational field (g=9.8) and laser pulse with the 

pulse duration (t0=0.01 p.sec). 

ii) For three values of heat flux parameter τq(τq=0.5, 

0.55, 0.6) in the context of DPL theory in the presence 

gravitational field (g=9.8 and 9.5). 

The numerical technique outlined above is used for the 

distribution of the real part of the non-dimensional 

displacement w, the non-dimensional temperature T, the 

distributions of the non-dimensional stress σzz, the non-

dimensional micro-rotation ϕ2, the concentration of the 

diffusion material in the elastic body C, the scalar micro-

stretch function ϕ*, and the micro-stress 𝜆𝑥
∗  and the non-

dimensional couple stress mzy for the problem.  

136



 

Dual-phase-lag model on microstretch thermoelastic medium with diffusion under the influence of gravity and laser pulse 

 

 

Fig. 1 Distribution of the displacement component w at 

two values of time 

 

 
Fig. 2 Distribution of the temperature at two T values of 

time 

 

 
Fig. 3 Distribution of the concentration C at two values 

of time 

 

 

The figures (1-8) are plotted to show the variation of the 

above quantities against the distance z in the context of 

(DPL) model, (L-S) theory and (CT) theory for two values 

of the time t=0.85, 0.9. Fig. 1 demonstrates that the 

distribution of the displacement w in the context of the three 

theories, begins from positive values and decreasing to 

negative values, then increasing to zero, it is also observed 

that the values of the displacement w at t=0.9 is greater than 

that at t=0.85 the value of w under the theory (CT) is greater 

 
Fig. 4 Distribution of the stress component σzz at two 

values of time 

 

 
Fig. 5 Distribution the microrotation vector component ϕ2  

at two values of time 
 

 

than that under the (DPL) model while it is smaller than that 

under the (L-S) theory. Fig. 2 depicts that the temperature T 

in the context of the three theories, begins from positive 

values and decreasing to zero, it is also noticed that the 

values of the temperature T at t=0.85, is greater than that at 

t=0.9, it is obvious that the temperature T under the theory 

(L-S) is greater than that under the (DPL) model while it is 

smaller than that under the (CT) theory. Fig. 3 depicts that 

the distribution of the diffusion C in the context of the three 

theories, begins from zero and decreasing to negative values 

then increasing to zero, It is also observed that the values of 

the diffusion C at t=0.9 is greater than that at t=0.85 it is 

obvious that the diffusion C under the theory (CT) is greater 

than that under the (DPL) model while it is smaller than that 

under the (L-S) theory. Fig. 4 shows that the stress σzz 

begins from zero and increasing to positive values, then 

decreasing to zero in the context of the three theories, it is 

also noticed that the values of the stress σzz at t=0.85 are 

greater than that at t=0.9, it is obvious that the stress σzz 

under the theory (L-S) is greater than that under the (DPL) 

model while it is smaller than that under the (CT) theory.  
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Fig. 6 Distribution of 𝜆𝑥
∗ at two values of time 

 

 

 
Fig. 7 Distribution of the couple stress mzy at two values of 

time 

 

 

Fig. 8 Distribution of the scalar micro stretch function 𝜙∗ 

at two values of time 

 

 

Fig. 9 Distribution of the displacement component w at 

two values of gravity 

 

 
Fig. 10 Distribution of the temperature T at two values of 

gravity 

 

 

Fig. 11 Distribution of the concentration C at two values 

of gravity 
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Fig. 12 Distribution of the stress component σzz at two 

values of gravity 

 

 
Fig. 13 Distribution of the microrotation vector 

component ϕ2 at two values of gravity 

 

 
Fig. 14 Distribution of the micro-stress 𝜆𝑥

∗  at two values of 

gravity 

 

 

Fig. 15 Distribution of the couple stress mzy at two values 

of gravity 

 

 

Fig. 16 Distribution of the scalar microstretch function ϕ*
 

at two values of gravity 

 

 
Fig. 17 3D Curve distribution of the displacement w 

versus the distances at: g=9.8, t = 0.9, I0=105
, τq =0.5, τθ 

=0.4 
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Fig. 18 3D Curve distribution of the temperature θ versus 

the distances at: g=9.8, t = 0.9, I0=105
, τq =0.5, τθ =0.4 

 

 
Fig. 19 3D Curve distribution of the concentration C  
versus the distances at:

 
g=9.8,

 
t = 0.9,

 
I0=105

, 
τq =0.5, τθ 

=0.4 

 

 
Fig. 20 3D Curve distribution of the stress component σzz 

versus the distances at: g=9.8, t = 0.9, I0=105, τq =0.5, τθ 

=0.4 

 

 

Fig. 5 demonstrates that the micro-rotation ϕ2, begins from 

positive values and decreasing to zero in the context of the 

three theories, it is also noticed that the values of the micro-

rotation ϕ2 at t=0.85 are greater than that at t=0.9 and the 

micro-rotation ϕ2 under the theory (L-S) is greater than that 

under the (DPL) model while it is smaller than that under 

the (CT) theory. Fig. 6 depicts that the distribution of 𝜆𝑥
∗  in 

the context of the three theories, begins from positive values 

and decreasing to negative values, then increasing to zero, 

also, it is observed that the values of 𝜆𝑥
∗ at t = 0.9 are greater 

than that at t = 0.85 It is clear that 𝜆𝑥
∗  under the theory 

(CT) is greater than that under the (DPL) model, while it is 

smaller than that under the (L-S) theory. Fig. 7 shows that 

the couple stress mzy begins from zero and decreasing to 

negative values, then increasing to zero in the context of the 

three theories, it is also noticed that the values of mzy at t = 

0.9 are greater than that at t = 0.85 and the couple stress mzy 

under the theory (CT) is greater than that under the (DPL) 

model, while it is smaller than that under the (L-S) theory. 

Fig. 8 depicts that the distribution of the scalar microstretch 

function ϕ* begins from positive values and decreasing to 

negative values, then increasing to zero, it is also noticed 

that the values of ϕ* at t = 0.9 are greater than that at t = 

0.85, it is obvious that the values of ϕ*under the theory (CT) 

are greater than that under the (DPL) model while it is 

smaller than that under the (L-S) theory. 

The figures (9-16) are plotted to show the variation of 

the above quantities against the distance z for three values 

of heat flux parameter τq(τq=0.5, 0.55, 0.6) in the context of 

(DPL) model in the presence gravitational field (g=9.8 and 

9.5). Fig. 9 depicts that the distribution of the displacement 

w begins from positive values and decreasing to negative 

values then increasing to zero, it is also noticed that the 

values of the displacement w at g=9.8 are greater than that 

at g=9.8, it is obvious that the displacement w at τq=0.6 is 

greater than that at τq=0.55, while it is smaller than that at 

τq=0.5. Fig. 10 depicts that the temperature T in the context 

of the three theories, begins from positive values and 

decreasing to zero, it is also noticed that the values of the 

temperature T at g=9.8 are greater than that at g=9.8, it is 

obvious that the temperature T at τq=0.5is greater than that 

at τq=0.55 while it is smaller than that at τq=0.6. Fig. 11 

depicts that the distribution of the diffusion C in the context 

of the three theories, begins from zero and decreasing to 

negative values, then increasing to zero, it is also observed 

that the values of the diffusion C at g=9.8 are greater than 

that at g=9.5, it is obvious that the diffusion C at τq=0.6 is 

greater than that at τq=0.55 while it is smaller than that at 

τq=0.5. Fig. 12 shows that the stress σzz begins from zero 

and increasing to positive values, then decreasing to zero in 

the context of the three theories, it is also noticed that the 

values of the stress σzz at g=9.5 are greater than that at 

g=9.8, it is obvious that the stress σzz at τq = 0.5 is greater 

than that at τq=0.55 while it is smaller than that at τq=0.6.  

Fig. 13 demonstrates that the micro-rotation ϕ2, begins 

from positive values and decreasing to zero in the context of 

the three theories, also, it is noticed that the values of the ϕ2 

at g=9.5 are greater than that at g=9.8 and the values of ϕ2 at 

τq=0.5 are greater than that at τq=0.55 while it is smaller 

than that at τq=0.6. Fig. 14 depicts that the distribution of 

𝜆𝑥
∗  in the context of the three theories, begins from positive 

values and decreasing to negative values, then increasing to 

zero, it is also observed that the values of 𝜆𝑥
∗  at g=9.8 are 
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greater than that at g=9.5, it is obvious that the values of 𝜆𝑥
∗  

at τq=0.6 are greater than that at τq=0.55, while it is smaller 

than that at τq=0.5. 

Fig. 15 shows that the couple stress mzy begins from 

positive values and decreasing to negative values, then 

increasing to zero in the context of the three theories. It is 

also noticed that the values of the couple stress mzy at g=9.8 

are greater than that at g=9.5 and the couple stress mzy at 

τq=0.6 is greater than that at τq=0.55 while it is smaller than 

at τq=0.5. Fig. 16 depicts that the distribution of the scalar 

microstretch function ϕ* begins from positive values and 

decreasing to negative values, then increasing to zero. It is 

also noticed that the values of ϕ* at g=9.8 are greater than 

that at g=9.5. It is clear that the values of ϕ*at τq=0.6 are 

greater than that at τq=0.55, while it is smaller than that at 

τq=0.5.  

Figures 17–20 are giving 3D surface curves for the 

physical quantities, i.e., the displacement w, the temperature 

T, the concentration of diffusion C, and the normal stress 

σzz, for the dual-phase-lag theory with diffusion by taking 

into account the effect of the gravity and laser pulse. The 

importance of these figures is that they give the dependence 

of the above physical sizes regarding the vertical 

component of distance. 

 

 

7. Conclusion 
 

According to the above results, we can conclude that: 

The value of all physical quantities converges to zero with 

an increase in distance z and all functions are continuous. 

The comparison of different theories of thermoelasticity, i.e. 

CT theory, L-S theory, and DPL theory are carried out. The 

analytical solutions based upon normal mode analysis for 

microstretch thermoelastic problems in solids have been 

developed and used.  The deformation of a body depends 

on the nature of the applied forces and thermal loading due 

to laser pulse as well as the type of boundary conditions. 

The presence of gravity and laser pulse plays significant 

roles in all the physical quantities. 
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
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