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1. Introduction 
 

In recent decades, carbon nanotubes (CNTs) (Iijima 

1991) and graphene sheets (GSs) (Novoselov et al. 2004) 

were discovered in materials science laboratories one after 

the other. These two nanoscale materials are regarded as the 

most crucial materials having the potential for applications 

in advanced engineering due to their excellent mechanical, 

chemical, thermal, and electrical material properties. With 

the rapid development of nanoscience and nanotechnology, 

various relevant applications of these materials have been 

exploited, including their use in double and multiple GS 

systems. For example, some nanoscale devices for double 

or multiple nanoplate systems have been developed, such as 

nano-resonators and nanoscale mass-sensors (Karličić  et al. 

2015, Rajabi and Hosseini-Hashemi 2017a, b), and the 

corresponding analytical and numerical models have also 

been presented (Arani et al. 2012, Karličić  et al. 2016, 

Khaniki 2018, Murmu and Adhikari 2010). CNTs and GSs 

have been used to mix with polymer, ceramic or metal 

materials to form the beam-, plate- and shell-like CNT- and 

GS-reinforced composite structures (Bakshi et al. 2010, 

Yengejeh et al. 2017). The double and multiple nanobeam 

structures were used to develop the cavity nanooptomechanical 

system (NOMs) (Metcalfe 2014). The practical applications 

of NOMs include displacement sensing and on-chip optical 

data processing (Kippenberg and Vahala 2007). In addition, 

graphene material is a two-dimensional (2D) sheet of  
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carbon atoms with a hexagonal configuration, which results 

in its extraordinary properties, such as a very large surface 

area, a tunable band gap, and high mechanical strength and 

thermal conductivity, and also gives GS the advantage of 

potential application in electrochemical sensing and 

biosensing (Kuila et al. 2011, Pumera et al. 2010).  

As mentioned above, graphene materials have many 

applications in cutting-edge industries, so development of a 

definitive theoretical methodology and numerical models to 

accurately predict their structural behavior has thus 

attracted considerable attention. Based on Eringen’s 

nonlocal constitutive relations (ENCR) (Eringen, 1972, 

2002; Eringen and Edelen, 1972), some 2D local plate 

theories have been reformulated to investigate the 

mechanical behavior of single- and multi-layered 

nanoplates and GSs embedded or non-embedded in an 

elastic medium. Aghababaei and Reddy (2009) developed 

Reddy’s nonlocal third-order shear deformation theory 

(TSDT) for the static and free vibration analyses of simply-

supported, single-layered nanoplates and GSs, in which 

Navier’s solutions for the stress and displacement 

components and natural frequency parameters of the GSs 

were presented. Based on a refined plate theory, Yazid et al. 

(2018) examined the buckling behavior of an orthotropic 

single-layered GS resting on the Pasternak foundation, in 

which the shear correction factor was unnecessary. 

Combining the ENCR and von Kármán geometrical 

nonlinearity (VKGN), Reddy (2010) investigated the 

nonlinear bending behavior of single-layered nanoplates 

using the nonlocal first-order shear deformation theory 

(FSDT) and the nonlocal classical plate theory (CPT), 

which were also extended to an analysis of double-layered 

nanoplates by Pradhan and Phadikar (2009). Some effects 

on the natural frequency parameters of the nanoplate were 
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studied, including the nonlocal parameter, the aspect ratio, 

the Young’s modulus of the nanoplate, and the stiffness of 

Winkler foundation effects. Based on the nonlocal CPT, 

Naderi and Saidi (2014) studied the postbuckling behavior 

of GSs in a polymer environment, in which the interaction 

force between adjacent GSs and that between the GSs and 

their surrounding medium were modelled as the Winkler 

model with a nonlinear stiffness function of the GS’s 

deflection. Based on the nonlocal CPT, Anjomshoa et al. 

(2014) developed a finite element method for the buckling 

analysis of multi-layered GSs on an elastic substrate. Naderi 

and Saidi (2014) developed a modified nonlocal Mindlin 

plate theory for the stability analysis of nanoplates under 

either a uniaxial or a biaxial in-plane loading. Sobhy (2017) 

developed a nonlocal four-unknown shear deformation 

theory for the coupled hygro-thermo-mechanical vibration 

and buckling analyses of functionally graded (FG) 

nanoplates resting on a two-parameter Pasternak foundation, 

where the material properties of the nanoplate were 

assumed to obey two exponential function distributions 

through the thickness direction. Khetir et al. (2017) 

proposed a new nonlocal trigonometric shear deformation 

theory to study the thermal buckling behavior of FG 

nanoplates embedded in an elastic medium under different 

thermal environments. Based on the nonlocal refined 

sinusoidal shear deformation theory (SSDT), Thai (2012), 

Thai and Vo (2012), and Thai et al. (2014) presented 

analytical solutions for the bending, buckling, and vibration 

problems of simply-supported, single-layered nanobeams 

and nanoplates. In their articles, it was concluded that the 

small length scale effect and shear deformation have 

significant effects on the structural behavior of 

nanostructures as they become thicker. Bessaim et al. (2015) 

reformulated a nonlocal quasi-three-dimensional (3D) 

trigonometric plate theory for the free vibration analysis of 

nanoscale plates, and FG nanoplates were also examined by 

Belkorissat et al. (2015), Besseghier et al. (2017) and 

Bounouara et al. (2016) using a nonlocal refined four-

variable shear deformation theory, a nonlocal trigonometric 

shear deformation theory, and a zeroth-order shear 

deformation theory, respectively.   

Three-dimensional (3D) benchmark solutions for 

assorted structural analyses of local and nonlocal plates and 

shells are valuable because they can provide a reference for 

assessing various 2D local and nonlocal refined/advanced 

theories. However, these 3D solutions are rare in the open 

literature due to their mathematical complexity and the fact 

that they are difficult to solve as compared with those 

obtained using the 2D theories. Pagano (1969) is a pioneer, 

who presented the exact 3D solutions for the stress and 

deformation analyses of laminated composite plates 

subjected to cylindrical bending-type loading on the top 

surface of a plate. Consequently, there have been numerous 

articles with regard to this issue available in the literature 

(Fahsi et al. 2012, Navazi and Haddadpour 2008, Park and 

Lee 2003, Sayyad et al. 2014, She et al. 2017). Based on 

the 3D nonlocal elasticity theory, Jomehzadeh and Saidi 

(2011) presented a 3D vibration analysis of nanoplates. In 

their formulation, the basic equations of the 3D nonlocal 

elasticity theory were decoupled as three equations in terms 

of the displacement components and another three 

equations in terms of the rotation components. The Navier 

method was used to obtain the frequency parameters of 

nanoplates by solving these two sets of decoupling 

equations. Within the framework of nonlocal plane strain 

theory, Wu and Chen (2019) developed a nonlocal 

asymptotic theory for the cylindrical vibration analysis of 

multiple GS systems embedded in an elastic medium.  

After a close literature survey, it can be found that 3D 

benchmark solutions for assorted structural analyses of 

nanoplates and GSs are rare as compared with those for 

various analyses of their local counterparts. To the best of 

the authors’ knowledge, there is no article examining the 

cylindrical bending behavior of multiple GS systems. This 

article is thus aimed toward investigating the current issue 

using the perturbation method (Nayfeh 1993). The multiple 

GS system is considered to be infinitely long in the y 

direction, simply supported at the two edges in the x 

direction, subjected to the sinusoidal load on the topmost 

surface of the multiple GS system, and resting on a Winkler 

foundation. In the formulation, both the interaction effects 

between adjacent GSs and those between the multiple GS 

system and its surrounding medium are modelled as 

Winkler models with different stiffness coefficients, namely 

cw and kw, respectively. The eight basic equations for an 

individual GS are first reduced into four equations using the 

direct elimination method. After a series of mathematic 

manipulations, such as nondimensionalization, asymptotic 

expansion to the primary field variables, and asymptotic 

integration through the thickness direction for each basic 

equation, recursive sets of the governing equations (GEs) of 

each individual GS can be obtained for various order 

problems, in which the differential operators of these GEs 

for various order problems are identical to one another, 

although with different forms of nonhomogeneous terms. 

With using the assembly process, the GEs of the multiple 

GS system for various order problems can be formed. By 

solving these resulting GEs, the stress and deformation of 

the GSs constituting the multiple GS system can thus be 

obtained in a hierarchic and consistent manner, and the 

solution process applied in the leading order problem can be 

repeatedly used for the higher-order problems. 

 

 

2. The asymptotic nonlocal plane strain elasticity 
theory 

 
2.1 Basic equations 
 
As mentioned above, a simply-supported, Nl-GS system 

with an infinite length subjected to a cylindrical bending-

type load is considered. Figure 1 shows the cross-section of 

a triple-GS system and the Winkler’s models used to 

describe the interaction effects between the triple-GS 

system and its surrounding medium as well as those 

between adjacent GSs, in which a set of Cartesian 

coordinates ( zyx and, m) is located at the mid-plane of 

the mth-GS and the thickness and dimension in the x 

direction for each GS are denoted as H and xL , respectively. 
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Fig. 1 Configuration, dimensions, and loading conditions 

of a cross-section of the triple-GS system 

 

 

According to the ENCR (Eringen 1972, 2002 and 

Eringen and Edelen 1972), the nonlocal constitutive 

behavior of a Hookean solid can be written as 

( ) ( ) ( ) ( ), ,ij ijkl klC dV V     = −  x x x x x x
 

(1) 

where the elastic modulus tensor of classical isotropic 

elasticity is defined as Cijkl, and σij and εkl denote the stress 

and strain components, respectively. The nonlocal modulus 

or attenuation function, which incorporates the constitutive 

equations into the nonlocal effect at the reference point x 

produced by local strain at the source 𝐱′, is defined as 

α( ‖𝐱 − 𝐱′‖, 𝜏 ), in which the symbol ‖𝐱 − 𝐱′‖  is the 

Euclidean distance. lae /0= , in which e0 is a constant 

appropriate to each material, a is an internal characteristic 

length (e.g., length of C-C bond, lattice parameter, or 

granular distance), and l is an external characteristic length 

(e.g., crack length or wavelength).  

For the sake of convenience of computation, the 

integral-partial differential equations of Eq. (1) are 

transformed to the singular partial differential equations of a 

special class of physically admissible kernels, as follows: 

( ) klijklij C  =− 21
 

(2) 

where μ is the nonlocal parameter, and μ =(e0a)2. 2 is the 

Laplacian operator, in which 2=(∂xx+∂zz) is used for the 

current nonlocal plane strain problem. 

According to Eringen’s elasticity theory, the linear 

constitutive equations valid for the symmetrical class of 

elastic materials for a plane strain problem are given by 

( )
11 13

2

13 33

55

0

1 0

0 0

xm xm

zm zm

xzm xzm

c c

c c

c

 
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 

     
    

−  =    
           

(3) 

where εxm, εzm, and γxzm denote the strain components 

induced in the mth-GS. 𝜎𝑥𝑚
𝑙 , 𝜎𝑧𝑚

𝑙  and 𝜏𝑥𝑧𝑚
𝑙  as well as 

𝜎𝑥𝑚, 𝜎𝑧𝑚 and 𝜏𝑥𝑧𝑚are defined as the local and nonlocal 

stress components induced in the mth-GS, respectively, in 

which (𝜎𝑥𝑚
𝑙 , 𝜎𝑧𝑚

𝑙 , 𝜏𝑥𝑧𝑚
𝑙 )= (1 − 𝜇∇2)(𝜎𝑥𝑚, 𝜎𝑧𝑚, 𝜏𝑥𝑧𝑚). cij 

(i, j=1, 3 and 5) are the elastic coefficients relative to the 

geometrical axes of the GS system. For an isotropic 

material GS system the coefficients cij will be reduced to 

𝑐11 = 𝑐33 = [(1 − 𝜐)𝐸/(1 + 𝜐)(1 − 2𝜐)], 𝑐13 = [𝜐𝐸/(1 +

𝜐)(1 − 2𝜐)], and ( )55 / 2 1c E  = +  , in which E and   

are the Young’s modulus and Poisson’s ratio, respectively. 

The nonzero strain components of the mth-GS in terms 

of the displacement components are  

xm
xm

u

x



=


, 

zm
zm

m

u

z





=

, 

xm zm
xzm

m

u u

z x

 


 
= +

 
(4a-c) 

where uxm and uzm are the displacement components induced 

in the mth-GS. 

The stress equilibrium equations of an elastic body 

without accounting for body forces for the mth-GS are given 

by 

0
xzmxm

mx z

 
+ =

 
 

(5) 

0
x zm zm

mx z

  
+ =

 
 

(6) 

The boundary conditions of the problem are specified, 

as follows: 

On the top and bottom surfaces of the mth-GS, the 

transverse loads are given by 

0   on x zm zm zm mq z h     = =      
(7) 

where h denotes one-half of the total thickness (H) of the 

mth-GS. The positive directions of 𝑞̅𝑧𝑚
+  and 𝑞̅𝑧𝑚

−  are 

defined to be upward and downward, respectively, and 

𝑞̅𝑧𝑚
+ = 𝑐𝑤(𝑢̅𝑧(𝑚+1) − 𝑢̅𝑧𝑚)  when m=1-(Nl-1) and 𝑞̅𝑧𝑚

− =

𝑐𝑤(𝑢̅𝑧𝑚 − 𝑢̅𝑧(𝑚−1))  when m=2-Nl, 𝑞̅𝑧𝑁𝑙
+ = −𝑞̅𝑧(𝑥) and 

1 1z w zq k u− = , in which kw is the Winkler stiffness of the 

surrounding elastic medium, respectively, and cw is that of 

the medium between adjacent GSs. 𝑞̅𝑧(x) is the applied 

external load, the positive direction of which is defined to 

be downward, and 𝑢̅𝑧𝑚  denotes the out-of-plane 

displacement component at the mid-plane of the mth-GS 

layer. 

The edge boundary conditions of the mth-GS are 

considered as simply-supported edges, and are given as 

follows: 

At the edges (x=0 and x=Lx), the boundary conditions 

are  

0xm zmu = =
 (8) 

Equations (3)-(6) represent 8 basic equations of each 

individual GS for the nonlocal plane strain problem. 

  

2.2 Nondimensionalization 
 

A set of dimensionless coordinates and elastic field 

variables is defined, as follows: 

( )1 3/ , /mx x L x z L= = 
, 

( )1 / ,m xmu u L= 
 

3 /m zmu u L=
, 

( )1 / ,m xm Q = 
 

( ) ( )2 3

13 3/ , /m x zm m zmQ Q   =  = 
, 

( )2 2 4

1 2/ , /L L   = = 
 

(9a-i) 
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where Lh /= . L and Q denote the reference length and 

elastic modulus, and these are given as 
xL L=  and Q=E in 

this work. 

In order to make the formulation suitable for 

mathematical treatment, the authors eliminate the in-plane 

stress (σxm) and strain ( , ,xm zm x zm   ) components from 

Eqs. (3)-(6), introduce Eq. (9) in the resulting equations, 

and then express the basic equations in terms of the 

dimensionless forms of displacement ( 1 3,m mu u ) and 

transverse stress ( 13 3,m m  ) components, as follows: 

 

( )

2 4 1

3 3 13 1 ,1 33 1 11 3

6 1

33 2 33 3

, 1m m m

m

u c u c

c

 

 

−

−

= − +  − 

+  − 
 

(10) 

 

( )

2 1

1 3 3 1 55 1 11 13

4 1

55 2 33 13

, , 1m m m

m

u u c

c

 

 

−

−

= − +  − 

+ − 
 

(11) 

( ) ( )

( ) ( )

2

1 11 13 3 11 1 11 2 33 13 3

2 4

13 1 11 3 1 13 2 33 3 1

1 , , ,

1 , , ,

m m m

m m

Q u

c c

   

   

  −  = − +    

  − −  − −      

(12) 

( ) ( )1 11 3 3 1 11 13 11 , 1 ,m m      −  = − −      
(13) 

where 

, ,

QQQ ijij /
~

=
,  

( ) ( )3 3 33/ , 1and 3ij ij i jQ c c c c i j= − =
. 

Following a similar derivation process, the authors 

rewrite the in-surface stresses in the dimensionless form, as 

follows: 

( ) ( )

( ) ( )

2

1 11 1 11 1 1 2 33 1

2 4

13 1 11 3 13 2 33 3

1 ,

1

m m m

m m

Q u

c c

   

   

−  = +  

+ −  − 
 

(14) 

The dimensionless forms of the boundary conditions of 

the problem are specified as follows: 

On the top and bottom surfaces the transverse loads are 

given by 

13 3 3 30 on 1m m mq x   = =       (15) 

where 𝑞̅3𝑚
± = 𝑞̅𝑧𝑚

± /(𝑄 ∈3),such that 𝑞̅3𝑚
+ = 𝐶𝑊(𝑢̅3(𝑚+1) −

𝑢̅3𝑚) when m=1-(Nl-1), 𝑞̅3𝑚
− = 𝐶𝑊(𝑢̅3𝑚 − 𝑢̅3(𝑚−1)) when 

m=2-Nl, 𝑞̅3𝑁𝑙

± = −𝑞̅3  and 𝑞̅31
− = 𝐾𝑊𝑢̅31, in which 

( )3

3 /zq q Q+ +=   and ( ) 34 /),(),( QhLkcKC wwWW = . 

At the edges (x1=0 and x1=Lx/L), the boundary 

conditions are 

1 3 0m mu = =
 (16) 

 

2.3 Asymptotic expansion 
 

Because Eqs. (10)-(14) contain terms involving only 

even powers of  , the authors asymptotically expand the 

field variables in the powers 
2 , as given by 

(0) 2 (1) 4 (2)
1 3 1 3 1 3( , ) ( , ) ( , )f f x x f x x f x x= +  +  +

 (17) 

Substituting Eq. (17) into Eqs. (10)-(14) and collecting 

the coefficients of equal powers of  , the authors obtain 

the recursive sets of the basic equations of each individual 

GS for various order problems as follows: 

For the 
0 -order problem, 

(0)

3 3, 0mu =
 

(18) 

(0) (0)

1 3 3 1, ,m mu u= −
 

(19) 

( ) (0) (0)

1 11 13 3 11 1 111 , , ,m mQ u  −  = −   
(20) 

( ) ( )(0) (0)

1 11 3 3 1 11 13 11 , 1 ,m m      −  = − −      
(21) 

( ) (0) (0)

1 11 1 11 1 11 ,m mQ u −  =
 

(22) 

For the 
k2 -order problem (k=1, 2, 3, etc.), 

( ) ( )

( )

1( ) 1 ( 2)

3 3 13 1 1 33 1 11 3

1 ( 3)

33 2 33 3

, , 1
kk k

m m m

k

m

u c u c

c

 

 

− − −

− −

= − + − 

− 
 

(23) 

( ) ( )

( )

( ) 1 ( 1)

1 3 3 1 55 1 11 13

1 ( 2)

55 2 33 13

, , 1
k k k

m m m

k

m

u u c

c

 

 

− −

− −

= − + − 

− 
 

(24) 

( ) ( ) ( )

( ) ( )

( ) ( 1)

1 11 13 3 11 1 11 2 333 13

( 1) ( 2)

13 1 11 3 1 13 2 33 3 1

1 , ,

1 , ,

kk k

m m m

k k

m m

Q u

c c
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   

−

− −

 −  = − +  

   − −  +      

(25) 

( ) ( )( ) ( )

1 11 3 3 1 11 13 11 , 1 ,k k

m m      −  = − −      
(26) 

( ) ( ) ( )

( ) ( )

( ) ( 1)

1 11 1 11 1 1 2 33 1

( 1) ( 2)

13 1 11 3 13 2 33 3

1 ,

1

kk k

m m m

k k

m m

Q u

c c

   

   

−

− −

−  = + 

+ −  − 
 

(27) 

The boundary conditions of each individual GS for 

various order problems are specified as follows: 

On the lateral surface the transverse loads are Order 
0 , 

( )
(0)

(0) (0)

13 3 3 30 on 1m m mq x     = =       
(28a) 

Order 
k2  (k =1, 2, 3, etc.), 

( )
( )

( ) ( )

13 3 3 30 on 1
k

k k

m m mq x     = =       
(28b) 

Along the edges (x1=0 and x1 = Lx/L), the boundary 

conditions are given, as follows: order 
k2  (k =0, 1, 2, 3, 

etc.), 

( )2and1/~
3333 == iccc ii

( )/ 3 and 5kk kkc c Q k= =
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( ) ( )

1 3 0k k

m mu = =
 

(29) 

2.4 Governing equations for various order problems 
 

2.4.1 The leading order problems 
The sets of GEs for various order problems can be 

carried out by integrating the corresponding basic equations 

through the thickness direction. The authors thus integrate 

Eqs. (18)
 
and (19) to obtain 

(0) 0

3 3 1( )m mu u x=
 

(30) 

( ) ( )( ) ( )

1 1 1 3 3 1 1 1 3, ,k k k k

m m m mu u x x u x x= − +
 

(31) 

where 𝑢3𝑚
0  and 𝑢1𝑚

0  represent the displacement 

components on the mid-plane of each individual GS, and 

these also refer to the Kirchhoff-Love type displacement 

model in CPT. 

With the lateral boundary conditions on x3=-1 given in 

Eq. (28a), the authors then proceed to integrate Eqs. (20)
 

and (21), which yields 

( ) ( )
3(0) 0 0

1 11 13 11 1 11 3 111
1

1 , ,
x

m m mQ u u d   
−

 −  = − −
 

 
(32) 

( ) ( )

( )
3

(0)
(0)

1 11 3 3

0 0

3 11 1 111 3 1111
1

1

( ) , ,

m m

x

m m

q

x Q u u d

 

  

−

−

 −  −
  

 = − − − −
   

(33) 

Imposing the remaining lateral boundary conditions on 

x3=1 given in Eq. (28b) on Eqs. (32)
 
and (33), the authors 

obtain 

0 0

11 1 11 11 3 111, , 0m mA u B u− + =
 

(34) 

( ) ( ) ( )
(0) (0)

0 0

11 1 111 11 3 1111 1 11 3 3, , 1m m m mB u D u q q + − − + = −  −
    

(35) 

where ,
~~

3

1

1
dxQA ijij −=  

1

3 3
1

,ij ijB x Q dx
−

=   and 

3

1

1

2

3

~~
dxQxD ijij −= . 

In this article, the edge boundary conditions of the 

infinite multiple-GS system in the x direction are considered 

to be fully simply-supported edges. After the asymptotic 

process, the authors thus obtain the edge conditions for the 

leading order problem, as follows: 

0

3 0 mu = ,  
(0)

1 0  andmN =    
(0)

1m 0 M = , 

 at 1 0 x =  and 1 /  xx L L=  
(36) 

where 
1

(0) (0)

1 1 3
1

m mN dx
−

=  , 
1

(0) (0)

1 3 1 3
1

m mM x dx
−

=  . 

By introducing the tractional normal foces (𝑞̅3𝑚
+ )(0) 

and (𝑞̅3𝑚
− )(0) on the top and bottom surfaces of the mth-GS, 

and then assembling the GEs of each individual GS to form 

the GEs of the multiple GS system, the resulting GEs for 

the single-, double-, and triple-GS system are expressed in 

detail as follows: 

For a single GS system,  

( ) ( )

0
11 13

11

* 0
1 11 313 33 33 31

0

1

K K u

qK K K u 

        
=     

− − +           

(37) 

where 11 11 11K A= −  , 13 11 111K B=  , 31 11 111K B= −  ,  

33 11 1111K D=  , and ( )*

33 1 111 wK K= −  . 

For a double GS system, 

( )

( ) ( )

0
11 13

11
* 0

13 33 33 33 33 31

0

1211 13
0

1 11 33233 13 33 33

0 0 0

0 0

00 0

10

K K u

K K K D D u

uK K

quD K K D 

     
     

+ + −     
=    

    
   − −  − +      

(38) 

where ( )33 1 111 wD C= −  . 

For a triple GS system, 

( )

( )

( )

( )

0
11 13

11
* 0

13 33 33 33 33 31

0

1211 13
0

3233 13 33 33 33
0

1311 13
0

3333 13 33 33

1 11 3

0 0 0 0

0 0 0

0 0 0 0

0 2 0

0 0 0 0

0 0 0

0

,

0

0

0
.

0

1

 

K K u

K K K D D u

uK K

uD K K D D

uK K

uD K K

etc

D

q

   
   

+ + −   
       
 − + −  
   
   
   − +   

 
 
 
  

=  
 
 
 
− −     

(39) 

It is noted that Eqs. (37)-(39) are exactly the same as the 

nonlocal multiple CPT system equations, which have thus 

been derived as first-order approximations of the nonlocal 

plane strain elasticity theory. The solutions for Eqs. (37)-

(39) must be supplemented with the edge boundary 

conditions given in Eq. (29) to constitute a well-posed 

boundary value problem. Once the variables of 
0 0

1 3andm mu u  (m=1-Nl) are determined, the leading-order 

displacement solutions through the thickness direction of 

each individual GS are given by Eqs. (30)
 
and (31), and the 

transverse shear and normal stresses are given by Eqs. (32) 

and (33). Then, the in-surface stresses are given by Eq. (27). 
 

2.4.2 Higher-order problems 

Proceeding to order 
k2  (k=1, 2, 3, …) and following 

a similar process as that performed in the 
0 -order 

problem, the authors readily obtain 

( ) ( )( ) ( )

3 3 1 3 1 3,k k k

m m mu u x x x= +
 

(40) 

( ) ( )( ) ( )

1 1 1 3 3 1 1 1 3, ,k k k k

m m m mu u x x u x x= − +
 

(41) 
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( ) ( )
3( ) ( )

1 11 13 11 1 11 3 111 1
1

1 , ,
x

k k k k

m m m mQ u u d f   
−

−  = − − −
 
(42) 

( ) ( )

( ) ( )
3

( )
( )

1 11 3 3

( )

3 11 1 11 3 111 1 3
1

1

, , ,

k
k

m m

x
k k k

m m m

q

x Q u u d f

 

  

−

−

 −  −
  

 = − − − − −
 

 

(43) 

where 

( ) ( )

( )

3 1( ) 1 ( 2)

3 13 1 1 33 1 11 3
0

1 ( 3)

33 2 33 3

, 1
x

kk k

m m m

k

m

c u c

c d

  

  

− − −

− −

= − + − 


− 




 

( ) ( )

( )

3 ( ) 1 ( 1)

1 3 1 55 1 11 13
0

1 ( 2)

55 2 33 13

, 1
x

k k k

m m m

k

m

c

c d

   

  

− −

− −

= − + − 

−  



 

( )
( ) ( ) 

3( ) ( ) ( 1)

1 11 1 11 13 1 11 3 1
1

( 2) ( 1)

13 2 33 3 1 2 333 13

, 1 ,

,

x
k k k

m m m

k k

m m

f Q c

c d

  

    

−

−

− −

 = + −  

 −  −  



 

( )
3( ) ( )

3 1 3 1 1
1

, ,
x

k k

m mf x x f d
−

= − . 

𝑢3𝑚
𝑘  and 𝑢1𝑚

0  represent the kth-order modifications to 

the variables of the mid-plane displacement components of 

the mth-GS. By imposing the associated lateral boundary 

conditions (Eq. (28b))
 
on Eqs. (42)

 
and (43), the authors 

again obtain the multiple CPT governing equations, and the 

nonhomogeneous terms can be calculated using the lower-

order solution. The resulting equations are obtained, as 

follows: 

( )( )

11 1 13 3 1 1k k k

m m mK u K u f+ =
 

(44) 

( ) ( ) ( )

( ) ( )

( ) ( )

31 1 33 3 1 11 3 3

( ) ( )

3 1 1

1

1 1 ,

k k
k k

m m m m

k k

m m

K u K u q q

f f

 + − + = −  −
  

+ +
 

(45) 

The edge conditions for the higher-order problems ar 

given, as follows: 

3 0 k

mu = ,  
( )

1 0 k

mN =   and  
( )

1 0 k

mM = , 

at 1 0 x =  and 1 /  xx L L=  

(46) 

where 
1

( ) ( )

1 1 3
1

k kN dx
−

=  , 
1

(k) ( )

1 3 1 3
1

kM x dx
−

=  . 

After an assembly process, the GEs of the single-, 

double-, and triple-GS systems are expressed in detail as 

follows: 

For a single GS system,  

( )
( )

( ) ( )

( )
11 13 1111

* ( ) ( )

13 33 33 31 11 131

1
.

1 1 ,

kk

k kk

K K fu

K K K f fu

       
=     

+ +           

(47) 

For a double GS system, 

( )

( )

( )
( ) ( )

( )
( ) ( )

11 13
11

*

13 33 33 33 33 31

1211 13

3233 13 33 33

( )

11

( ) ( )

31 11 1

( )

12

( ) ( )

32 12 1

0 0

0

0 0

0

1

1 1 ,

1

1 1 ,

k

k

k

k

k

k k

k

k k

K K u

K K K D D u

uK K

uD K K D

f

f f

f

f f

   
   

+ + −   
  
  
  − +   

 
 

+ 
=  
 
 +   

(48) 

For a triple GS system, 

( )

( )

( )

( )
( ) ( )

( )
( )

11 13

*

13 33 33 33 33

11 13

33 13 33 33 33

11 13

33 13 33 33

( )

1111

( ) ( )

31 11 131

( )

1212

( ) (

32 1232

13

33

0 0 0 0

0 0 0

0 0 0 0

0 2 0

0 0 0 0

0 0 0

1

1 1 ,

1

1

kk

k kk

kk

kk

k

k

K K

K K K D D

K K

D K K D D

K K

D K K D

fu

f fu

fu

f fu

u

u

 
 

+ + − 
 
 
 − + −
 
 
 − + 

 
 

+ 
  

= 
+ 

 
 
  

( )
( )

( ) ( )

)

1

( )

13

( ) ( )

33 13 1

, .
1 ,

1

1 1 ,

k

k

k k

etc

f

f f

 
 
 
  
 
 
 
 

+    

(49) 

The higher-order modifications for the mid-plane 

displacement components of the mth-GS of the single-, 

double-, and triple-GS systems ( 1 2 3, andk k k

m m mu u u ) can 

be obtained by solving Eqs. (47), (48), and (49), 

respectively, combined with the edge conditions given in 

Eqs. (46). Once these are determined, the higher-order 

modifications of the displacement components of each 

individual GS are given by Eqs. (40)
 

and (41), the 

transverse stresses are given by Eqs. (42) and (43) and the 

in-surface stresses are given by Eq. (28). 

Equations (37)-(39) and (47)-(49) show that the 

differential operators among the various order problems 

remain identical, and the nonhomogeneous terms of higher-

order problems can be calculated from the lower-order 

solution. The solution process of the leading-order problem 

can be repeatedly applied to the higher-order problems. The 

present asymptotic solutions can thus be determined order-

by-order in a hierarchical and consistent manner. 
 

 

3. Applications 
 

3.1 Leading order solutions 
 

The bending problem of simply-supported, single-, 

double-, and triple-GS systems are studied by using the 

single Fourier series expansion method, in which the 

displacement and stress components are expanded as single 

Fourier series functions in the x direction. For the current 

issue, the governing equations of the leading-order problem 
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can thus be solved by letting 

( )0 0
ˆ1 1 11

ˆ 1

cosm mn

n

u x u nx


=

=
 

(50) 

( )0 0
ˆ3 1 13

ˆ 1

sinm mn

n

u x u nx


=

=
 

(51) 

where
 

ˆ / xn n L L= , and n̂  denotes the half-wave 

numbers and is a positive integer. 

According to Eqs. (30)-(33) and (27), the other field 

variables should be also the forms of single Fourier series 

functions, such that the simply-supported edge conditions 

are satisfied, and these are given as 

( ) ( )(0) (0) (0) (0)
ˆ ˆ1 13 3 3 11 13

ˆ 1

cosm m mn mn

n

u u x x nx 


=

   =   
 

(52) 

( ) ( ) ( )

(0) (0) (0)

3 1 3

(0) (0) (0)
ˆ ˆ ˆ3 3 3 13 1 3

ˆ 1

sin

m m m

mn mn mn

n

u

u x x x nx

 

 


=

 
 

 =  
 

(53) 

For brevity, the summation sign will not be shown in the 

following derivation. 

Substituting Eqs. (50)-(53) into Eqs. (37)-(39) gives the 

GEs of the single-, double, and triple-GS systems, as 

follows: 

For a single GS system,  

( ) ( )

0
11 13

ˆ11

* 20
ˆ31 33 33 1 3ˆ31

0

1

n

nn

k k u

k k k n qu 

       
=     

+ − +           

(54) 

where 𝑘11 = 𝑛̃2𝐴11,̃  𝑘13 = 𝑘31 = −𝑛̃3𝐵11,̃  𝑘33 =

𝑛̃4𝐷11,̃  𝑘33
∗ = (1 + 𝑛̃2𝜇1)̃𝐾𝑤, and the applied external load 

on the top surface of the GS system is expressed as 

( ) ˆ3 1 13 sinnq x q nx+ = . 

For a double GS system, 

( )

( )

0
11 13

ˆ11
* 0

31 33 33 33 33 ˆ31

0
ˆ1211 13

0
ˆ3233 13 33 33

0 0

0

0 0

0

n

n

n

n

k k u

k k k d d u

uk k

ud k k d

   
   

+ + −   
  
  
  − +   

 

( )2
ˆ1 3

0

0

0

ˆ1 nn q

 
 
 

=  
 
 − +
 

 

(55) 

where ( )2

33 11 wd n C= + . 

For a triple GS system, 

( )

( )

( )

11 13

*

31 33 33 33 33

11 13

33 31 33 33 33

11 13

33 13 33 33

0 0 0 0

0 0 0

0 0 0 0

0 2 0

0 0 0 0

0 0 0

k k

k k k d d

k k

d k k d d

k k

d k k d

 
 

+ + − 
 
 
 − + −
 
 
 − + 

 (56) 

( )

0
ˆ11

0
ˆ31

0
ˆ12

0
ˆ32

0
ˆ13

20
ˆ1 3ˆ33

0

0

0
, etc.

0

0

1

n

n

n

n

n

nn

u

u

u

u

u

n qu 

  
  
  
     

=   
   
   
   

− +      

 

After the above GEs of a multiple GS system are solved, 

the through-thickness distributions of the various field 

variables of each individual GS for the leading-order 

problem can then be obtained, as follows: 

(0) 0
ˆ ˆ3 3mn mnu u=

 
(57) 

(0) 0 0
ˆ ˆ ˆ31 1 3mn mn mnu u x nu= −

 
(58) 

( ) ( )
32 (0) 2 0 3 0

ˆ ˆ ˆ1 1113 1 3
1

1 ,
x

mn mn mnn Q n u n u d   
−

 + = − − +
 

 
(59) 

( ) ( )

( )
3

(0)
2 (0)

ˆ ˆ1 3 3

3 0 4 0
ˆ ˆ3 11 1 3

1

1

( ) ,

mn mn

x

mn mn

n q

x Q n u n u d

 

  

−

−

 + −
  

 = − − − −
 

 

(60) 

( )2 (0) (0)
ˆ ˆ1 111 11 mn mnn n Q u + = −

 
(61) 

 

3.2 Higher-order modifications 
 

( ) ( )( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ3 3 11 1 1 1

ˆ 1

cos ,k k k k

mn mn mn mn

n

f f x x nx 


=

   =   
 

(62) 

( ) ( )( ) ( ) ( ) ( )
ˆ ˆ3 3 3 3 13 3

ˆ 1

sink k k k

m m mn mn

n

f f x x nx 


=

   =   
 

(63) 

where ( )( ) ( )
ˆ ˆand 1 and 3k k

imn imnf i =  are the relevant 

coefficients. 

The governing equations of the higher-order problems 

can be solved by letting 

( )ˆ ˆ1 11 1

ˆ 1

cosk k

mn mn

n

u x u nx


=

=
 

(64) 

( ) ˆ3 1 13

ˆ 1

sink k

m mn

n

u x u nx


=

=
 

(65) 

The other field variables of the kth-order problems are 

also expanded in the form of single Fourier series functions, 

such that the simply-supported edge conditions are satisfied, 

and these are given as 

( ) ( )( ) ( ) ( ) ( )
ˆ ˆ1 13 3 3 11 13

ˆ 1

cosk k k k

m m mn mn

n

u u x x nx 


=

   =   
 

(66) 
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( ) ( ) ( )

( ) ( ) ( )

3 1 3

( ) ( ) ( )
ˆ ˆ ˆ3 3 3 13 1 3

ˆ 1

sin

k k k

m m m

k k k

mn mn mn

n

u

u x x x nx

 

 


=

 
 

 =  
 

(67) 

The summation sign will not be shown in the following 

derivation for brevity. 

The resulting GEs of a multiple GS system are thus 

obtained by substituting Eqs. (64)-(67) into Eqs. (47)-(49), 

and they are given as: 

For a single GS system,  

( )
( )

( ) ( )

( )
11 13 ˆ11ˆ11

* ( ) ( )
13 33 33 ˆ31 ˆ ˆ31 11

1
.

1 1

kk
nn

k k k
n n n

k k fu

k k k u f n f

       
=     

+ −           

(68) 

For a double GS system, 

( )

( )

( )

( ) ( )

( )

( ) ( )

11 13
ˆ11

*

13 33 33 33 33 ˆ31
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For a triple GS system, 
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After the above GEs of a multiple GS system are solved, 

the through-thickness distributions of various field variables 

of the kth-order modifications can be obtained, as follows: 

( ) ( )
ˆ ˆˆ3 33

k k k

mn mnmnu u = +  (71) 

( ) ( )
ˆ ˆ ˆ ˆ ˆ31 1 3 1

k k k k
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In this work the contributions of the nonlocal parameter 

(  ) in the length and thickness directions were separated in 

this dimensionless formulation as 𝜇1̅̅ ̅ and 𝜇2̅̅ ̅, respectively, 

because the thickness dimension is much less than the 

length dimension for each individual GS. In the following 

numerical examples, the authors thus let 𝜇1̅̅ ̅ = 𝜇2̅̅ ̅ , the 

corresponding relations of which in a dimensional form are 

μ1 = μ  and μ2 = μ∈2, to reasonably equalize their 

contributions to the mechanical behaviors of these multiple 

GS systems.  

 

 

4. Illustrative examples 
 

4.1 Single-layered orthotropic macroplates 
 

A benchmark problem with regard to the static analysis 

of simply-supported, orthotropic macroplates under 

cylindrical bending-type sinusoidally distributed loads was 

investigated by Pagano (1969). For comparison purposes, 

Pagano’s solutions can be used to validate the accuracy and 

convergence of the asymptotic nonlocal plane strain theory 

in the case of μ=0.  

Table 1 shows the dimensionless displacement and 

stress components induced in single-layered orthotropic 

macroplates in cylindrical bending, in which the 

sinusoidally distributed loads are applied on the top surface 

of the macroplate with ˆ 1n = , i.e. ( ) ( )sin /z xq x x L= . 

The material properties used in the cases are EL/ET= 25 and 

50; GLT/ET=0.5; GTT/ET=0.2; 25.0== TTLT  , in which 

the subscripts L and T denote the directions parallel and 

perpendicular to the fiber direction, respectively. The 

geometric parameters of the plate are / xH L =0.15 and 0.25.  

For comparison purposes, a set of dimensionless forms 

of stress and displacement variables is defined as follows: 

( )0/x x Tu u E q H=
, 

( )3 4

0100 /z z T xu u H E q L=
,

0/x x q =
, 0/xz xz q =

, 0/z z q =
  

(76a-e) 

It can be seen in Table 1 that the asymptotic solutions 

converge rapidly. The convergent solutions are obtained at 

the 
6 -order level in the cases of thick plates (H/Lx=0.15), 
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and the 
8 -order level in the cases of very thick plates 

(H/Lx=0.25) as compared with the 3D exact solutions 

obtained by Pagano (1969). The convergent asymptotic 

solutions also closely agree with those obtained by Sayyad 

and Ghugal (2016) using the TSDT and by Reddy (1984) 

using the refined higher-order shear deformation theory 

(HSDT). The deviation between the current 
6 -order 

solutions and the 3D exact solutions decreases when the 

plate becomes thinner and also when the values of EL/ET 

become smaller. The solutions for the transverse stress 

components in the parentheses were obtained using the  

 

 

stress equilibrium equations, which were used to improve 

these solutions obtained using the constitutive equations for 

the PVD-based plate theories, such as the TSDT, HSDT, etc. 

Because the current formulation is based on the RMVT, in 

which the displacement and transverse stress variables are 

the primary variables, their accuracy is at the same level 

and much better than that obtained using the PVD-based 

theories, in which the transverse stress variables are the 

secondary variables and are usually obtained using the 

determined displacement variables and the corresponding 

constitutive equations. 

 

Table 1 Dimensionless displacement and stress components induced in single-layer orthotropic macroplates under cylindrical 

bending-type sinusoidally distributed loads 

H/Lx EL/ET Theories ( )0,xu h  ,0
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Present 0  

Present 2  

Present 4  

Present 6  

Present 8  

Exact 3D (Pagano 1969) 

TSDT (Sayyad and Ghugal 2016) 

HSDT (Reddy 1984) 

FSDT (Mindlin 1951) 

CPT 

Present 0  

Present 2  

Present 4  

Present 6  

Present 8  

Exact 3D (Pagano 1969) 

TSDT (Sayyad and Ghugal 2016) 

HSDT (Reddy 1984) 

FSDT (Mindlin 1951) 

CPT 

Present 0  

Present 2  

Present 4  

Present 6  

Present 8  

Exact 3D (Pagano 1969) 

TSDT (Sayyad and Ghugal 2016) 

HSDT (Reddy 1984) 

FSDT (Mindlin 1951) 

CPT 

Present 0  

Present 2  

Present 4  

Present 6  

Present 8  

Exact 3D (Pagano 1969) 

TSDT (Sayyad and Ghugal 2016) 

HSDT (Reddy 1984) 

FSDT (Mindlin 1951) 

CPT 

2.2877 

2.6803 

2.6705 

2.6707 

2.6711 

NA 

2.7218 

2.7066 

2.2877 

2.2877 

1.1453 

1.5538 

1.5103 

1.5189 

1.5184 

NA 

1.5799 

1.5588 

1.1453 

1.1453 

0.4941 

0.7297 

0.7134 

0.7142 

0.7191 

NA 

0.7523 

0.7397 

0.4941 

0.4941 

0.2474 

0.4925 

0.4201 

0.4599 

0.4526 

NA 

0.4988 

0.4846 

0.2474 

0.2474 

0.4915 

1.0361 

1.0272 

1.0280 

1.0279 

1.0279 

1.0253 

1.0315 

0.9475 

0.4915 

0.2461 

0.7919 

0.7758 

0.7793 

0.7783 

0.7786 

0.7723 

0.7791 

0.7020 

0.2461 

0.4915 

2.0042 

1.9354 

1.9538 

1.9472 

1.9420 

1.9233 

1.9574 

1.7580 

0.4915 

0.2461 

1.7623 

1.6377 

1.7128 

1.6577 

1.6813 

1.6194 

1.6618 

1.5126 

0.2461 

27.0190 

31.9687 

31.8534 

31.8553 

31.8598 

31.8585 

32.2959 

31.9659 

27.0190 

27.0190 

27.0190 

36.9686 

35.9442 

36.1469 

36.1335 

36.1252 

37.4132 

36.7732 

27.0190 

27.0190 

9.7268 

14.6766 

14.3562 

14.3712 

14.4679 

14.4091 

14.9471 

14.5613 

9,7268 

9.7268 

9.7268 

19.6765 

16.8307 

18.3953 

18.1070 

17.9270 

19.7404 

19.0534 

9.7268 

9.7268 

3.1831 

3.0373 

3.0565 

3.0539 

3.0543 

3.0542 

3.2321 (3.0178) 

3.1415 (3.0374) 

2.1221 (3.1831) 

NA 

3.1831 

2.8900 

2.9713 

2.9488 

2.9549 

2.9536 

3.1806 (2.8575) 

3.1010 (2.8958) 

2.1221 (3.1831) 

NA 

1.9099 

1.6669 

1.7330 

1.7221 

1.7348 

1.7314 

1.8836 (1.6374) 

1.8420 (1.6725) 

1.2732 (1.9099) 

NA 

1.9099 

1.4214 

1.7979 

1.5075 

1.7283 

1.6332 

1.8033 (1.5388) 

1.7790 (1.5283) 

1.2732 (1.9099) 

NA 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

NA 

NA 

NA 

NA 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

NA 

NA 

NA 

NA 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

NA 

NA 

NA 

NA 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

NA 

NA 

NA 

NA 
 

The solutions in the parentheses are obtained using the stress equilibrium equations. 
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Figure 2 shows the current asymptotic solutions for 

various orders with regard to the through-thickness 

distributions of the stress and displacement components 

induced in an infinitely long, and thick macroplate under 

sinosoidal distributed loads, in which EL/ET =25, and 

H/Lx=0.25. It can be seen in Fig. 2 that the asymptotic 

solutions for the through-thickness distributions of stress 

and displacement components converge rapidly and that the 

convergent solutions were yielded at the 
4 − order level. 

The current asymptotic solutions for the transverse stress 

components exactly satisfied the traction stress conditions 

on the top and bottom surfaces of the plate. The results also 

show that the through-thickness distributions of the in-plane 

displecement and in-plane stress components appear to be 

higher-order polynomial function distributions, rather than 

the linear function distributions assumed in the CST and 

FSDT, a priori. The CPT and FSDT thus might not be 

suitable for the analysis of thick macroplates due to the 

obvious discrepancies between the true through-thickness 

distributions of the in-plane displacements and their 

corresponding kinematic assumptions in CST and FSDT, 

which are planes that remain planes after deformation. 

 

 
 
4.2 Multiple GS systems 
 

In this section, we examine the static behavior of 

simply-supported, single-, double-, and triple-GS systems 

subjected to cylindrical bending-type sinosoidally-

distributed mechanical loads, i.e., 𝑞̅𝑧(𝑥) = sin (𝜋𝑥/𝐿𝑥) . 

The material properties and geometric parameters of each 

individual GS are given as E=1.02 TPa, 16.0= , Cw=100, 

Lx=10 nm, and H=0.34 nm. Table 2 shows the convergent 

solutions (i.e. 8 -order ones) for the nonlocal displacement 

and stress components at the crucial positions of these GSs 

with different values of the nonlocal parameters (μ) and the 

foundation parameter (Kw). It can be seen in Table 2 that the 

nonlocal displacement and stress components increase when 

the nonlocal parameter becomes greater, while these 

components decrease when either the number of GSs in the 

multiple-GS system or the foundation stiffness increase. 

Figure 3 shows the through-thickness distributions of 

various nonlocal field variables induced in the triple-GS 

systems, in which Cw=Kw=50 and μ =0, 1 and 2 nm2. It can 

be seen in Fig. 3 that the nonlocal displacement components 

are always larger than their corresponding local components,  

 

Table 2 The convergent ( ) solutions for the stress and displacement components of simply-supported, single-, 

double-, and triple-GS systems in cylindrical bending under sinusoidal distributed loads 

No. 

layers 

(Nl) 

Variables 
Kw = 50 Kw = 100 Kw = 200 

 

    

 

   

Nl=1 ( )1 0,xu h  2737.6 2885.5 3021.8 1915 1986.1 2049.7 1195.7 1223.0 1246.8 

 ( )1 / 2,0z xu L  -6.8692 -7.2404 -7.5827 -4.8063 -4.9852 -5.1451 -3.0028 -3.0717 -3.1316 

 ( )1 0,0xz  -8.0149 -7.6892 -7.3889 -5.6080 -5.2941 -5.0136 -3.5036 -3.2620 -3.0516 

 ( )1 / 2,z xL h  -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 

Nl=2 ( )1 0,xu h  1223.7 1339.5 1450.9 927.0 1001.2 1071.1 624.1 665.0 702.8 

 ( )1 / 2,0z xu L  -3.0705 -3.3612 -3.6407 -2.3266 -2.5131 -2.6885 -1.5672 -1.6703 -1.7652 

 ( )1 0,0xz  -3.5826 -3.5695 -3.5476 -2.7146 -2.6689 -2.6198 -1.8286 -1.7738 -1.7201 

 ( )1 / 2,z xL h  -0.4470 -0.4642 -0.4801 -0.4841 -0.5041 -0.5225 -0.5219 -0.5438 -0.5637 

 ( )2 0,xu h  2649.8 2820.6 2982.7 2471.4 2609.7 2738.3 2289.3 2400.1 2501.4 

 ( )2 / 2,0z xu L  -6.6468 -7.0754 -7.4822 -6.1997 -6.5468 -6.8697 -5.7433 -6.0214 -6.2757 

 ( )2 0,0xz  -7.7507 -7.5093 -7.2865 -7.2294 -6.9483 -6.6901 -6.6972 -6.3908 -6.1117 

 ( )2 / 2,z xL h  -0.9986 -0.9986 -0.9987 -0.9985 -0.9986 -0.9986 -0.9986 -0.9986 -0.9987 

Nl=3 ( )1 0,xu h  551.4 625.3 698.8 424.8 476.3 526.7 291.0 322.5 352.7 

 ( )1 / 2,0z xu L  -1.3836 -1.5691 -1.7536 -1.0662 -1.1955 -1.3220 -0.7309 -0.8098 -0.8859 

 ( )1 0,0xz  -1.6144 -1.6664 -1.7087 -1.2441 -1.2696 -1.2882 -0.8528 -0.8600 -0.8633 

 ( )1 / 2,z xL h  -0.2014 -0.2167 -0.2313 -0.2218 -0.2398 -0.2569 -0.2434 -0.2637 -0.2829 

 ( )2 0,xu h  1194.1 1316.8 1436.6 1132.6 1241.4 1346.5 1067.7 1163.7 1255.4 

 ( )2 / 2,0z xu L  -2.9952 -3.3031 -3.6039 -2.8412 -3.1144 -3.3779 -2.6785 -2.9195 -3.1496 

 ( )2 0,0xz  -3.4927 -3.5057 -3.5096 -3.3131 -3.3054 -3.2896 -3.1235 -3.0986 -3.0673 

 ( )2 / 2,z xL h  -0.4499 -0.4661 -0.4809 -0.4575 -0.4749 -0.4909 -0.4656 -0.4841 -0.5011 

 ( )3 0,xu h  2631.6 2806.0 2973.1 2594.5 2759.0 2915.0 2555.4 2710.4 2856.3 

 ( )3 / 2,0z xu L  -6.6002 -7.0378 -7.4571 -6.5075 -6.9200 -7.3116 -6.4096 -6.7984 -7.1645 

 ( )3 0,0xz  -7.6942 -7.4673 -7.2599 -7.5863 -7.3424 -7.1183 -7.4722 -7.2135 -6.9753 

 ( )3 / 2,z xL h  -0.9983 -0.9983 -0.9984 -0.9982 -0.9983 -0.9983 -0.9982 -0.9983 -0.9983 

8 order −

20 nm =
21nm = 22 nm = 20 nm = 21nm = 22 nm = 20 nm =

21nm = 22 nm =
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and that these will increase when the value of the nonlocal 

parameter becomes greater, which indicates that the small 

length scale effect will soften the triple-GS system. The 

influence with regard to the variations in the through-

thickness distributions of out-of-plane displacement 

components with an increasing nonlocal parameter is much 

more significant than those of other variables, such as the 

in-plane displacement and transverse stress components. In 

this formulation, Winkler models with Cw are introduced to 

simulate the interaction effect between adjacent GSs, such 

that the in- and out-of-plane displacement components are 

discontinuous at the interfaces between adjacent GSs, while 

the transverse shear and normal stress components are 

continuous in these locations.  

Figure 4 shows the variations in the through-thickness 

distributions of various nonlocal field variables induced in 

the triple GS systems with the stiffness parameters of the 

foundation, in which Cw=100, μ =1 nm2. and Kw=50 , 100 

and 200. It can be seen in Figs. 4(a) and 4(b) that the 

current solutions of displacement components of the triple-

GS system at the interfaces between adjacent GSs are 

discontinuous, which is different from those induced at the 

interfaces between adjacent layers for the macroscale 

laminated composite structures, in which the perfect 

bonding assumptions were assumed in priori. The results 

also show that variations in the through-thickness 

distributions of various nonlocal field variables induced in 

each individual GS with the stiffness parameters of the 

foundation are in the following order: the topmost GS (m=3) 

< the middle GS (m=2) < the bottommost GS (m=1), in 

which the symbol “<” meams less significant. Because the 

external loads are applied on the top surface of the topmost 

GS, the maximum values of various field variables induced 

in the triple-GS system occur at the topmost GS. In this case 

(Lx/H=29.4 and μ =1 nm2), (ux3)max:(uz3)max = 9.354x10-19  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3 Variations in the through-thickness distributions of 

assorted primary variables induced in a triple-GS system 

with different values of the nonlocal parameter 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4 Variations in the through-thickness distributions of 

assorted primary variables induced in a triple-GS system 

with different values of Kw 

 

 

q0:1.755x10-17q0, which means the maximum value of the 

out-of-plane displacement component is about 18.76 times 

that of the in-plane displacement component, and 

(τxz3)max:(σz3)max =7.467q0:q0, which means the maximum 

value of the transver shear component is about 7.47 times 

that of the transverse normal stress component.  

Figure 5 shows the variations in the through-thickness 

distributions of various nonlocal field variables induced in 

the triple-GS systems with the Winkler’s parameter 

between adjacent GSs, in which Kw =200, μ =1nm2, and 

Cw=50,100 and 200. It can be seen in Figs. 5(c) and 5(d) 

that the current solutions of the transverse shear stresses at 

the top and bottom surfaces of each individual GS are zeros 

due to the fact that the traction shear forces at those places  

 
(a) 

 
(b) 

 

(c) 

 

(d) 

Fig. 2 Through-thickness distributions of assorted primary 

variables induced in a single-layered orthotropic 

macroplate under sinusoidally-distributed loads 

119



 

Chih-Ping Wu and Chih-Chen Lin 

(a) 

 

(b) 

 
(c)

 

(d)

 
Fig. 5 Variations in the through-thickness distributions of 

assorted primary variables induced in a triple-GS system 

with different values of Cw 

 

 

are free. The solutions of the transverse normal stresses at 

the top surface of the topmost GS and at the bottom surface 

of the bottommost GS are identical to the applied external 

load and the spring force of the foundation, respectively. 

The solutions of the transverse normal stresses at the 

interfaces between adjacent GSs are continuous and are 

identical to the spring forces of the Winkler model 

considered. The results also show variations in the through-

thickness distributions of various nonlocal field variables 

induced in the each individual GS with the Winkler 

parameters between adjacent GSs are in the following order: 

the topmost GS (m=3) > the middle GS (m=2) > the 

bottommost GS (m=1), in which the symbol “>” meams 

more significant, the trend of which is exactly the opposite 

of that shown in Fig. 4. In this case, (ux3)max:(uz3)max = 

1.128x10-18q0: 2.117x10-17q0, which means the 

maximumvalue of the out-of-plane displacement 

component is about 18.77 times that of the in-plane 

displacement component, and (τxz3)max:(σz3)max=9.01q0:q0, 

which means the maximum value of the transverse shear 

component is about 9.01 times that of transverse normal 

stress component. 
 

 

5. Concluding remarks 
 

In this article, the authors first reformulate the local 

plane strain elasticity theory in order to conduct cylindrical 

bending analysis of simply-supported, infinitely long, 

single-, double-, and multiple-GS systems using the 

perturbation method, in which the ENCR is used to account 

for the small length scale effect. After applying the 

perturbation approach, the nonlocal multiple CPT is derived 

as the leading-order approximation of the nonlocal plane 

strain elasticity theory, and the governing equations for the 

higher-order problems remain the same as those of the 

nonlocal multiple CPT, although with different 

nonhomogeneous terms, which can be determined by the 

lower-order solutions. The current nonlocal asymptotic 

theory can also be reduced to its local counterpart by letting 

the nonlocal parameter (i.e., μ =0) be zero.  

The current 3D asymptotic theory for multiple-GS 

systems is superior to 2D nonlocal advanced and refined 

plate theories available in the literature. In the former no 

kinematic and kinetic assumptions must be made in advance 

and the accuracy of lower-order solutions can be improved 

in a hierarchical and consistent manner, while in the latter a 

specific kinematic or kinetic assumption needs to be made 

in priori and the accuracy of their solutions cannot be 

enhanced without reformulation. 

The validity of the current 3D asymptotic theory 

depends upon the selection of the nonlocal parameter μ, 

which can be determined from experiments or by matching 

dispersion curves of plane waves with those of atomic 

lattice dynamics. 
In the numerical examples, the convergent asymptotic 

solutions are obtained at the 
6 - and 

8 -order levels for the 
cases of H/Lx=0.15 and 0.25, respectively, and these 
convergent solutions closely agree with Pagano’s 3D 
solutions available in the literature. It is noted that the 
nonlocal displacement and stress components increase when 
the nonlocal parameter becomes greater, while these 
components decrease when either the number of GSs in the 
multiple-GS system or the foundation stiffness increase. 
Moreover, some benchmark solutions for simply-supported, 
single-, double-, and triple-GS systems subjected to the 
cylindrical bending-type loads are presented. These 
solutions can serve as a standard for assessing the 
performance of various 2D nonlocal advanced and refined 
multiple plate theories. 
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