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1. Introduction 
 

In design of engineering components such as pressure 

vessels, boilers and turbine blades undergoing severe cyclic 

thermo-mechanical loads, materials inelastic deformation 

promotes damage in different directions leading to failure. 

The continuum damage mechanics (CDM) theory was first 

introduced by Kachanov (1958) to describe how materials 

damage influenced mechanical properties. To simplify the 

CDM theory, he defined damage progress on the basis of 

materials isotropic response with consistent degradation of 

mechanical properties along different directions. Lemaitre 

and coworkers (Lemaitre and Desmorat 2005, Lemaitre et 

al. 2000) assessed damage initiation and growth of 

cylindrical pressure vessel samples undergoing monotonic 

loads through use of isotropic CDM theory and concluded 

that the theory is yet to assess damage in ductile materials 

with anisotropic response Nouailhas (1980) and Benzerga et 

al. (2004) performed uniaxial tests respectively on XC38 

and XC52 steel samples and reported anisotropic damage 

response in the material. Tests performed by Tests 

performed by Cordebois and Sidoroff (1982) and Chow and 

Wang (1987) demonstrated that damage progress along 

loading direction was twice in magnitude as compared to 

that of transverse direction in Al2024 samples. Pi et al. 

(2014) developed a dynamic plasticity model to account for 

nonlinear elasticity, coupled with deviatoric behavior and 

thermo-dynamical consistence. Based on the decomposition 

of the stress tensor, a framework for anisotropic materials 
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was employed. In their studies (Benzerga et al. 2004, 

Cordebois and Sidoroff 1982, Chow and Wang 1987) 

plastic strain was reported as the dominant parameter to 

induce anisotropic response in damaged samples. Over last 

half-century several research endeavors have been carried 

out to study inelastic response of cylindrical pressure 

vessels under thermo-mechanical cyclic loadings (Varvani-

Farahani and Nayebi 2018). Since earlier model of Hill 

(1950) developed on the basis of isotropic hardening 

description back in 1950 and inclusion of plastic response 

and demarcation of elastic/plastic boundaries through work 

of Bree in 1967, research on linear and non-linear response 

of materials through use of kinematic hardening rules were 

pursued to assess materials damage under mechanical 

and/or thermal cyclic loading conditions (Beesley et al. 

2017, Nayebi 2010, Nayebi 2010, Nayebi and El Abdi 

2002, Sirumbal-Zapata et al. 2018). Surmiri et al. (2018) 

lately coupled Chaboche’s nonlinear kinematic hardening 

rule with Lemaitre’s anisotropic CDM to assess shakedown-

ratcheting of Bree’s problem in a thin-walled sphere 

undergoing cyclic thermo-mechanical loading conditions. 

They discussed parameters influencing nonlinear damage 

progress as the magnitude of pressure stress and 

temperature distribution over wall thickness moved 

elastic/plastic boundaries within an anisotropic material 

response.  

The use of anisotropic damage theory has been a 

challenge to evaluate materials response of components 

undergoing cyclic thermo-mechanical loads due to its 

mathematical complexity and framework. The present study 

intends to attribute continuum damage to materials 

anisotropic response of cylindrical pressure vessel samples 

undergoing cyclic thermo-mechanical loading conditions. 
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Cylindrical samples consisted of constant internal pressure 

and cyclic thermal gradient across the wall thickness. The 

anisotropic response was encountered into the framework 

on the basis of plastic strain as the prime component to 

assess damage over thermo-mechanical cycles of thin-

walled cylinders. Incremental stress-strain relation was 

developed and the return mapping algorithm was used to 

obtain the response of the pressure vessel under cyclic 

loads. The magnitude and gradient of temperature 

influenced the induced damage over inner and outer 

surfaces over wall-thickness. Plastic zone evolution near the 

inner and outer surfaces was distinctly separated from 

elastic region as the magnitude of pressure stresses 

increased. 

 

 
2. Formulation of anisotropic continuum damage 
and cyclic loads 
 

2.1. Anisotropic continuum damage model 
 

Damage progresses as materials deforms inelastically 

resulting in a drop in the real effective surface, 𝐴̃, with 

respect to the area of section element, A, over the formation 

of cracks and voids. This makes the effective stress different 

from Cauchy stress and is defined as:  
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Where σD, σH, DH and η respectively represent deviatoric 

stress tensor, hydrostatic stress, mean damage parameter, a 

constant η=3. The effective damage tensor H in Eq. 1 is 

defined based on damage tensor D. Lemaitre’s anisotropic 

damage model is yielded as (Surmiri et al. 2018):  
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where Y is the effective elastic strain energy density 

given by 𝑌 = 𝜎̃𝑒𝑞𝑅𝑣/(2𝐸) . Terms Rv and 𝜎̃𝑒𝑞  are 

respectively effective triaxiality function and equivalent 

effective stress and are defined as: 
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(3) 

The yield surface for ductile materials is defined 

through the von-Mises criterion as: 
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The yield surface center evolves according to the 

Chaboche’s nonlinear kinematic hardening rule as: 
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The flow rule is expressed as: 
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where dλ is plastic multiplier and n is normal vector to 

the yield surface. The plastic strain rate is defined as: 
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and the normal vector n is defined as: 
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To determine plastic coefficients, the consistency 

condition should be satisfied as: 

( )( ) 0~~2 =−−= DDDD dddf XσXσ
 

(9) 

Through substituting terms 𝑑𝜎̃𝐷 and dXD respectively 

from Eq. 1 and Eq. 5 into Eq. 9, the consistency condition is 

developed as: 
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In Eq. 10, A is defined as: 
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The special tensor product 
BA

 is presented as: 

jlikijkl BABA = )(
 

(12) 

If dXD = A′dλ and dD = (𝑌̅/𝑆)𝑠|𝐧|𝑑𝜆 = 𝐁𝑑𝜆, the plastic 

multiplier is obtained as: 
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Developed Eqs. (1-13) are employed to assess 

anisotropic damage response in thin-walled pressure vessels 

under cyclic thermo-mechanical loading conditions. 
 

2.2 Cylindrical pressure vessel modeling 
 

Thin-walled cylindrical pressure vessel samples were 

tested under constant internal pressure and cyclic  
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(a) 

 
(b) 

Fig. 1 a) Geometry and the temperature gradient across 

the wall thickness of a thin cylinder and (b) constant 

internal pressure and cyclic loads 

 

 

temperature gradient across the thickness (Shahani and 

Momeni Bashusqeh 2012) to construct Bree diagram (Bree 

1967). The radius and wall thickness of hollow cylinder are 

r and t, respectively. The temperature variation in the wall 

thickness was assumed linear as shown in Fig. 1. 

The equilibrium of forces in cylinder leaded to set Eq. 

(14) as: 
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Based on the Hooke’s law, the total strain is defined 

through summation of εe, elastic strain, εT, thermal strain 

and εp and plastic strains as: 
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where 𝜎̃𝑟, 𝜎̃𝜃 and 𝜎̃𝑧 are the effective radial, hoop and 

axial stresses in the cylindrical pressure vessel. Effective 

stresses in terms of strains can be determined through Eq. 

(14). Both hoop and axial strains across the wall thickness 

are taken constant (Bree 1967), but the radial strain varies 

across the wall thickness. For given radial strain εr=K1(z), 

hoop strain εθ =K2 and axial strain εz =K3, effective stress is 

expressed in general as: 
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Small value of radial stress is neglected, reducing the 

state of stress to plane stress condition. Radial stress 

component is expanded based on Eq. (1) as: 
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The hoop stress and axial stress components are 

expanded in a similar manner. Eq. 18 shows the other 

components of stress tensor. 
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(18) 

To further express stress components in Eq. (17) and Eq. 

(18) as function of strain components in different directions, 

effective stresses from Eq. (16) are substituted into Eq. (17) 

and Eq. (18). In the thin-walled cylinders, the radial stress is 

neglected and the radial strain is expressed in terms of hoop 

and axial strain components. Axial and hoop strain 

components are then determined through equilibrium Eq. 

(14) and Eq. (17) to relate stress and strain components. 

Increment of plastic strain tensor is obtained through Eq. 

(7). For axisymmetric loading and problem geometry, Eq. 

(7) is rewritten as: 
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2.3 Numerical relations based on the return 
mapping algorithm 

 

The framework was developed on the basis of 

anisotropic continuum mechanics and the Chaboche 

kinematic hardening rule to assess nonlinear damage in 

steel samples. Return Mapping Algorithm (RAM) was 

employed to numerically solve damage problem. 

Increments of stress-strain and their hysteresis loops were 

formulated based on the anisotropic continuum damage 

model of Lemaitre and the return mapping algorithm was 

utilized to achieve consistency condition. The algorithm 

103



 

Azam Surmiri, Ali Nayebi, Hojjatollah Rokhgireh and Ahmad Varvani-Farahani 

 

Fig. 2 Numerical algorithm and flowchart developed 

based on the return mapping algorithm 

 

 

consisted of two steps (i) elastic prediction and (ii) plastic 

correction. Loads were applied in small increments. Stress 

increments were determined through trail procedure 

assuming that plastic strain increment and related damage 

parameter stayed consistent. Onset of yielding in each layer 

of the thin-walled cylinder was continuously monitored to 

determine plastic multiplier increment. Solution procedure 

was then carried out by Kuhn-Tucker condition (Simo and 

Hughes 2006). The trial parameters were updated based on 

the plastic multiplier solution. The plastic multiplier 

increment was obtained by the consistency condition given 

in equation (8). The developed numerical algorithm and its 

flowchart are presented in Fig. 2. 

 

 

3. Results and discussions 
 

3.1 Material properties 
 

To model the cyclic response of thin-walled steel 

cylinders, the Chaboche nonlinear kinematic hardening 

model is coupled to the anisotropic continuum damage 

model of Lemaitre. Materials properties, Chaboche and 

Lemaitre coefficients (Surmiri et al. 2018) are given in 

Table 1. 

Thin-walled steel cylinders are subjected to a constant 

internal pressure and cyclic temperature gradient to develop 

Table 1 Constants for the Chaboche kinematic hardening 

rule and Lemaitre’s anisotropic continuum damage 

 

 
(a) 

 
(b) 

Fig. 3 a) Growth of plastic zone in the inner and outer 

radius versus temperature difference at p=0.2. b) Growth 

of plastic zone in the inner and outer radius versus 

temperature difference at p=0.8 

 

 

3.2 Stress-strain analysis 
 

Bree’s diagram. Cylinders were tested with a constant 

internal pressure between zero to a pressure at yielding. The 

plastic flow occurred in the inner radius and then as 

temperature difference increased the plastic zone expanded 

towards the outer radius. As T increased the magnitude of 

plastic zone over the outer radius became more noticeable 

as shown in Fig. 3. The difference between the onset of 

yielding in the inner and outer radii depends on the 

magnitude of internal pressure and T.  

Young’s modulus E (GPa) 200 2  
1 

Yield Strength (MPa) 85 S 0.6 

Chaboche’s Constant C1 44.14 s 1 

Chaboche’s Constant C2 31.6   3 

Chaboche’s Constant C3 1.9 
Poisson’s ratio 

  
0.3 

1  
616 C− /)10( 6

 
13 

2  
20   
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(a) 

 
(b) 

 
(c) 

Fig. 4 Equivalent plastic strain versus temperature 

difference for various normalized pressure stresses (a) 

σp=0.2 (b) σp=0.4 and (c) σp=0.6 

 

 

Fig. 3 shows yielding in the inner and outer surfaces at 

various T and p. Plastic strain evolution over the inner 

and outer radii for various normalized pressure stresses 

σp=pr/tσy of σp=0.2, σp=0.4 and σp=0.6 is also mapped in 

figure 4. Points on curves presented in Fig. 3 represent 

onset of yielding at any given T and p. At the given 

σp=0.4, inner surface to yield has to experience T=30°C 

while outer surface requires T=65°C. The inner surface of 

cylinders experienced larger plastic deformation as 

compared with the outer surface at constant T. As 

normalized pressure stress increased the difference between 

plastic deformation on the inner and outer surfaces became 

more pronounced. 

 
(a) 

 
(b) 

Fig. 5 Variation of (a) Dr and (b) D across the wall 

thickness for σp=0.6 and different temperature difference 

in the first cycle 

 

 

Based on Lemaitre’s anisotropic damage model the 

damage increment in each direction is proportional to the 

plastic strain increment in the same direction. Figure 5 

presents damage variation across the wall thickness with 

temperature change over radial and hoop directions (Dr and 

D ) as normalized pressure stress stayed constant σp=0.6. 

Since the plastic strain is more critical in the radial 

direction, damage is also more pronounced in that direction 

as compared with other directions. Over the first cycle, the 

onset of yielding occurred from the inner surface of 

cylindrical samples.  

As stress cycles proceeded, plastic strain expanded over 

inner and outer surfaces as presented in Fig. 6. This figure 

presents evolution of the damage along hoop and radial 

directions for normalized pressure stresses of p=0.4 and 

0.6 at 100th cycle. 

Fig. 7 shows the variation of Dr over the wall thickness 

for σp=0.4 at T=120°C at cycles 10, 20, 50 and 100. As the 

number of cycles in this figure increases the magnitude of 

damage along radial direction increased from 10th cycle to 

100th cycle as high as ten times. In Figs. 6-8, the middle of 

wall-thickness showed no-damage zone where elastic 

deformation was dominant. 

The magnitude of applied stress cycles noticeably 

influenced elastic, elastic shakedown, plastic shakedown 

and ratcheting zones in Bree diagram. The boundaries 

demarking these zones highly depended on material, rate 

and type of loading (Varvani-Farahani and Nayebi 2018). 
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Fig. 7 Damage along radial direction Dr versus wall 

thickness for various cycles at given p=0.4 and 

T=120°C 
 

 

Damage and its progress was described as a function of 

plastic strain over stress cycles enabling to assess 

ratcheting. For normalized pressure σp=0.3 and temperature 

difference T=80°C, Fig. 8a represents stress-strain 

hysteresis loops over loading cycles. The progressive hoop 

(tangential) plastic strain over hysteresis loops represents 

ratcheting along this direction. Fig. 8b presents ratcheting 

curve as plastic strain accumulated over stress cycles.  

Fig. 9 presents concurrent ratcheting and stress 

relaxation for thin-walled cylinder tested under σp=0. and 

T=120°C. Stress-strain hysteresis loops are formed and 

mean stress relaxation occurred as a result of combined 

stress- and strain-controlled conditions. An increase in 

constant pressure and cyclic stress level led to an increase in 

plastic strain increment over each cycle resulting in less 

number of cycles to failure. 

 

 
(a) 

 

 
(b) 

Fig. 8 Thin-walled cylinder subjected to p=0.3 and 

T=80°C (a) hysteresis loops and progressive plastic 

strain along tangential direction and (b) plastic strain 

accumulation versus number of stress cycles 

 

 
(a) 

 
(b) 

Fig. 6 Damage along hoop and radial directions after 100 cycles across the wall thickness for p=0.6 (a) D and (b) Dr. 
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(a) 

 
(b) 

Fig. 9 Thin-walled cylinder subjected to sp=0.3 and 

DT=120°C (a) hysteresis loops and progressive plastic 

strain along tangential direction and (b) plastic strain 

accumulation versus number of stress cycles 

 

 

5. Conclusions 
 

Thin-walled steel cylinders were subjected to 

mechanical and thermal cyclic loading conditions to 

evaluate damage and its influence on mechanical response 

of materials. Although the 4th order damage tensor 

definition is more accurate (Krajcinovic and Mastilovic 

1995), 2nd order damage tensor was used to reduce the 

complexities of the equations. Anisotropic continuum 

damage mechanics of Lemaitre was hinged on the inelastic 

hardening rule of Chaboche to assess materials damage at 

different directions and the return mapping algorithm was 

used to preserve the consistency condition. The normalized 

internal pressure was varied from 0,2 to 0.6 and the 

temperature difference from 70 to 120°C. The inelastic 

analysis was carried out till 250 cycles to obtain the stable 

response. Plastic zone grew from the inner radius and 

expanded as thermal loads increased in magnitude. At a 

constant internal pressure, the outer radius of the cylinder 

also entered into the plastic zone over loading cycles. The 

growth in damage along radial direction was found larger 

than that along hoop direction as plastic strain was more 

pronounced along the radial direction. Increase of 

temperature difference of about 50°C, the maximum 

damage is approximately multiplied by 3. The plastic strain 

rate decreases till 150 cycles, then it becomes constant. 
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PL 

 

 

Nomenclature  
 
 

α Coefficient of thermal expansion 

Ciγi Materials constant in Chaboche’s model 

ΔT Temperature difference 

η Hydrostatic damage parameter 

dλ Plastic multiplier 

σH Hydrostatic stress 

σ~  Effective stress tensor 

D
σ  

Deviatoric stress tensor 

y Yield stress 

D Damage tensor 

E Elastic modulus 

n Normal vector 

p Internal pressure 

Rv Effective triaxiality function 

s Unified damage law exponent 

S Energetic damage law parameter 

X Back stress tensor 

Y̅ Effective strain energy 
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