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1. Introduction 
 

Porous media in engineering applications are usually 
subjected to a coupled field of heat and moisture and the 
resulting stresses. For safe design or operation of the 
applications, the coupled hygrothermoelastic field in media 
needs to be elucidated. To elucidate the field, the 
hygrothermal problems and the subsequent elastic problems 
need to be analyzed. For the former problems, the linear 
system of governing equations with respect to temperature 
and moisture content (or vapor concentration) has been 
employed. In the derivation of that system, two-phase 
media composed of the substantial solid and voids were 
considered, the changes in temperature, dissolved moisture 
content, and vapor concentration were assumed to be linear 
with each other, and moisture was assumed to be carried 
through the voids, not through the substantial solid 
(Hartranft and Sih 1980). For the latter problems, the 
fundamental equations of elasticity that take into 
consideration the effects of eigen strains caused by 
temperature and moisture content have been employed (Sih 
et al. 1986). The thus-analyzed hygrothermal or resulting 
elastic fields were studied for various cases (Sih et al. 1980, 
Sih and Shih 1980, Sih and Ogawa 1982, Chang et al. 1991, 
Chang 1994, Chang and Weng 1997, Sugano and Chuuman 
1993, Dai and Dai 2016, Zhang and Li 2017, Dai et al. 
2017, 2019a, b). 
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As in the case of lumber, which is subjected to 

conditions ranging from dry air to saturated moist air, 

porous media are often subjected to a broad range of 

hygrothermal environmental conditions, and moisture can 

be carried through voids and substantial solids. In such 

cases, the assumption of linearity among temperature, 

dissolved moisture content, and vapor concentration and the 

assumption of the flow only through the voids are no longer 

valid, and the system of governing equations mentioned 

above would incorrectly estimate the hygrothermoelastic 

field. Because of these concerns, the system of governing 

equations that take into consideration the nonlinear 

relationship among temperature, dissolved moisture 

content, and vapor concentration and the diffusivities of 

both dissolved moisture and vapor was derived (Ishihara et 

al. 2014). Based on that system of equations, the transient-

field quantities, such as temperature, moisture content, and 

stresses, were investigated for an infinite strip subjected to a 

broad gap of hygrothermal environment, and thereby the 

nonlinear moisture content distribution at the steady stage 

and the residual stress at the steady stage, both of which 

would never be found by the linear hygrothermoelastic 

theory, were confirmed (Ishihara et al. 2016). 
The above mentioned investigation (Ishihara et al. 2016) 

was conducted within the framework of a one-dimensional 
problem in the Cartesian coordinate system to concentrate 
on investigating the effects of nonlinearity among 
hygrothermal quantities and binary diffusivity of moisture 
on the field by eliminating the geometrical complexity. In 
many engineering applications, however, the problems must 
be handled in terms of cylindrical coordinates. For example, 
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cylindrical columns of wood are common, material 
defects—such as cracks, voids, knots, and pith—are often 
cylindrical, and catalyst carriers of hollow cylinders are 
often found. 

In this study, therefore, on the basis of the above-

mentioned nonlinear coupled theory (Ishihara et al. 2014), 

the hygrothermoelastic problem described by a cylindrical 

coordinate system is treated as a first attempt. The 

analytical model is an infinite hollow cylinder that is 

exposed to broad gaps of temperature and dissolved 

moisture content on inner and outer surfaces and thereby 

experiences a planar axisymmetrical hygrothermal field, 

i.e., a one-dimensional hygrothermal field with respect to 

the radial direction. Also, the model is assumed to be free 

from mechanical traction and, therefore, in an 

axisymmetrical plane strain state. The system of 

hygrothermal governing equations (Ishihara et al. 2014) is 

described for the present case and is solved using the finite-

difference method to illustrate numerically the distributions 

of hygrothermal field quantities, such as temperature, 

dissolved moisture content, vapor concentration, and 

dissolution rate. Next, the effect of diffusive properties on 

the distributions is investigated. Then, the distribution of the 

resulting stresses is theoretically analyzed, based on the 

fundamental equations for hygrothermoelasticity. Finally, 

the effect of the curvature of the cylinder on that stress 

distribution is investigated. 

 

 

2. Hygrothermal field in a cylinder considering 
nonlinear coupling between heat and binary 
moisture 

 

2.1 Theoretical analysis 
 

The analytical model is an infinite cylinder with inner 

radius a  and outer radius b  that occupies the region 

( ) brazr |,,  in the cylindrical coordinate system 

( )zr ,, , as shown in Fig. 1. The cylinder is made of a 

uniform porous medium that consists of voids and 

substantial solid. 

Moisture is assumed to be in the dissolved and gaseous 

forms in the substantial solid and voids, respectively. The 

dissolved moisture content M and the vapor concentration C 

are defined, respectively, as the mass of dissolved moisture 

per unit mass of the substantial solid and as the mass of 

gaseous moisture—namely, vapor per unit volume of the 

voids. In the above-mentioned approach (Ishihara et al. 

2014), the (absolute) temperature T, dissolved moisture 

content M , and vapor concentration C are considered to be 

distributed continuously as functions of the location. This 

approach defines the mass densities of the dried substantial 

solid and the porous medium, ρs and ρ, respectively, and the 

volume fraction of the voids f, all of which are also defined 

in the macroscopic sense satisfying the relationship 

( )fs −= 1 . Then, the total mass of moisture per unit 

mass of the substantial solid, m , is obtained by the sum, 

 fCMm +=  . (1) 

 
Fig. 1 Analytical model 

 

 

The dissolved and gaseous moistures are considered, at all 

times, to be in an equilibrium state that depends on the 

absolute temperature, which gives the relationship 

( )TMCC ,= . The concrete example was presented 

previously (Ishihara et al. 2014), by considering the 

equilibrium between the dissolved and gaseous moistures, 

as 
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where 0T , ( )Tfd , ( )Tpst , gR , ndissolutioL , and s  

denote a reference absolute temperature that can be chosen 

arbitrarily, the activity coefficient, the saturated vapor 

pressure, the gas constant of the moisture, the heat 

generated by the dissolution of the unit mass of gaseous 

moisture into the substantial solid, and the constant 

dependent on the combination of the moisture and 

substantial solid. 

From the above-mentioned macroscopic viewpoint and 

equilibrium nature, the initial and boundary conditions are 

described in terms of M  and T  as functions of location 

( )zr ,,  and time variable t . In this study, to concentrate 

on the effects of nonlinear relation, as illustrated by Eq. (2) 

and the geometric configurations with curvature on the 

hygrothermoelastic field, the considerably simple 

conditions are assumed as follows. 
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where iT , iM , aT , bT , aM , and bM  are spatially 

uniform. In that case, the hygrothermal field is reduced to a 

planar-axisymmetrical one—in other words, the field is 

independent of the circumferential and axial coordinates   

and z . 

From Fourier’s law and Fick’s law, the heat flux hq  

and the mass flux of the dissolved moisture dq  and 

gaseous moisture gq  in the radial direction are related to 

the radial gradients of the field quantities as 
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In Eq. (4), k  denotes the thermal conductivity, and Dd 

and Dg denote the diffusivities of the dissolved and gaseous 

r
a b0
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moistures, respectively, which are referred to as the 

dissolved moisture diffusivity and gas diffusivity, 

respectively, for brevity. These diffusivities are considered 

isotropic to simplify the problem. 

The balance of heat and that of mass are described, 

respectively, as 
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In Eq. (5), ( ) hqrr 1+− , ( ) dqrr 1+− , and 

( ) gqrr 1+−  denote the influxes of heat, dissolved 

moisture, and gaseous moisture, respectively. Moreover, c  

denotes the specific heat, and (∂M/∂t)dissolution denotes the 

contribution by dissolution for the time rate of dissolved 

moisture content, which is referred to as the dissolution rate 

and related to ∂M/∂t as 
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By substituting Eq. (4) into Eq. (5) combined with Eqs. 
(1) and (6) and arranging the results, the system of 
nonlinear coupling diffusion equations is obtained for the 
present problem as follows. 

 

( ) ( )

( )

( ) ( )

( ) 




















+




=

+













+








−




=

+













+





t

T
TM

t

M

TMNM
rrr

TMD

t

M
TM

t

T

TMNT
rrr

TMD

T

MM

M

TT

,

,
1

,

,,

,
1

,

2

2

2

2





, (7) 

where 
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In deriving Eqs. (7) and (8), all the material properties— ρs, 

ρ, f, ndissolutioL , k, Dd, Dg, and c —are spatially uniform, as 

stated in conjunction with Fig. 1, and are assumed to be 

independent of the field quantities M and T to simplify the 

problem. 

The solution to Eq. (7) subjected to Eq. (3) can be 

obtained by a finite-difference method. More specifically, 

the domain bra   is divided into fdmn  equal parts, and 

Eq. (7) is regarded as the time evolution equation for 

( )12 fdm +n -degree-of-freedom field quantities, namely, the 

temperature and dissolved moisture content at thus-

generated ( )1fdm +n  discrete points. The spatial derivatives 

required on the left-hand sides of Eq. (7) are evaluated by 

the corresponding finite differences with truncation errors 

on the order of the segment length squared. Time evolution 

is evaluated by the Adams method, in which the predictor–

corrector method by the Adams–Bashforth and Adams–

Moulton methods is employed (LeVeque 2007). 

If the relationship ( )TMCC ,=  is linear, a differential 

form TMC ddd  +=  obtained from Eq. (8) has constant 

coefficients   and  ; therefore, the terms ( )TMNT ,  

and ( )TMNM ,  are absent, as found in Eq. (8). In that case, 

Eq. (7) for a steady state is reduced to the system of 

harmonic equations as follows: 
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The solution to Eq. (9) subjected to the boundary conditions 

in Eq. (3) can then be obtained in a closed form as 
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  ... (10) 

which are harmonic with respect to r . In this respect, the 

terms ( )TMNT ,  and ( )TMNM ,  in Eq. (7), which 

manifest themselves because of the nonlinearity in 

( )TMCC ,= , are the sources that give rise to nonharmonic 

distributions of M  and T  in a steady state. The 

deviation from the harmonic distributions, as found in Eq. 

(10) due to the nonlinearity in ( )TMCC ,= , is one of the 

concerns in this study. 
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2.2 Numerical results 
 

The following nondimensional quantities were 

introduced to extract the governing parameters: 
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  ... (11) 

The reference absolute temperature is chosen to be 

   ( )C25K15.2980 ==T . Sitka spruce (a species of wood) 

is chosen as the porous medium and water to play the role 

of moisture. The required parameters are given as 

347.18ndissolutio =L


, 6

0 10834.35 −=stC


, 3333.3=s , 

( ) 1111.20 Tfd , and 7214.2=c


 (Ishihara et al. 2016). 

The value 210−=dD


 is chosen unless otherwise stated, 

because a typical value of the thermal diffusivity for wood 

is found to be on the order of ]/sm[10 27−  (Glass and 

Zelinka 2010), and a typical value of the dissolved moisture 

diffusivity for Sitka spruce is found to be on the order of 

]/sm[10 29−  (Nakao 1998). Because the gas is considered to 

be more diffusive than dissolved moisture, an example 

value of 1=gD


 is chosen unless otherwise stated. The 

initial and boundary values for the absolute temperature and 

dissolved moisture content are taken as 
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which are rewritten in non-dimensional forms as 
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Note that    ( )C63.84K78.357 ==bT  from Eq. (12), the 

value 0.12 for iM  and aM  is a representative value for 

the dissolved moisture content under the air-dried condition 

(Bergman 2010), and the value 0.2 for bM  is intended to 

represent a moderate value compared with the fiber 

saturation point, namely, approximately 0.3 (Glass and 

Zelinka 2010). As for the finite-difference method, the 

division number is taken as 100fdm =n . 

Figure 2 shows the variation of vapor concentration with 

dissolved moisture content and temperature, as illustrated 

by Eq. (2). If the relationship ( )TMCC ,=  is linear, a 

differential form TMC ddd  +=  obtained from Eq. (8) 

has constant coefficients   and  , as mentioned above, 

and therefore the curve in Fig. 2 is reduced to a flat plane. 

 

Fig. 2 Variation of vapor concentration with dissolved 

moisture content and temperature 

 

 

Figures 3 (a)–(d) show the distributions of the 

temperature, dissolved moisture content, vapor 

concentration, and dissolution rate for 5.0=a


. In the 

following figures, including Figs. 3 (b)–(d), the solid lines 

indicate the numerical results based on the nonlinear 

relationship illustrated by Eq. (2), and the dotted lines 

indicate the numerical results based on the assumption that 

the relationship ( )TMCC ,=  is linear, with   and   

in Eq. (8) specified for iMM =  and iTT = . In Fig. 3 (a), 

only the numerical result based on the nonlinear 

relationship in ( )TMCC ,= , however, is shown, because 

the distributions by the linear relationship in ( )TMCC ,=  

happen to fall into those by the nonlinear relationship. 

Figure 3 (b) shows that the dissolved moisture content 

increases from the humid side, 1=r


, but reaches a steady 

state at 10=t


, even slower than the temperature does, 

owing to the difference between the order of the thermal 

conductivity and that of the dissolved moisture diffusivity 

( )210−=dD


. Moreover, in Fig. 3 (b), it is remarkable that 

the magnitude of dissolved moisture content based on the 

nonlinear relationship reaches approximately a 9% higher 

value than that based on the linear relationship, as found for 

10=t


 and 715.0=r


. According to this result, it is 

surmised that the stress derived from the nonlinear 

relationship in ( )TMCC ,=  also shows higher values than 

that derived from the linear relationship. 

The steady distribution shown in Fig. 3 (c) is found to 

exhibit positive curvature, i.e., 022  rC , and positive 

gradient, i.e., ∂C/∂r>0; therefore, ∂2C/∂r2+1/r∙∂C/∂r >0 is 

satisfied. From Eq. (4), the masses of dissolved moisture 

and vapor flowing into the unit volume of the porous 

medium per unit time are expressed, respectively, by 
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Therefore, the profile of 0/122 + rCrrC , shown 

in Fig. 3 (c), signifies that a local portion of the body is 

subjected to the inflow of vapor. Meanwhile, because the 

mass of total moisture flowing into a local portion must be 

kept zero for the steady state, the relation 

( ) ( ) gd qrrqrr 11 +−=+  must hold from Eq. (5). 

From Eq. (14) and 0/122 + rCrrC , this relation 

leads to ( ) 01 + dqrr , which signifies that a local 

portion of the body is subjected to the outflow of dissolved 

moisture. Therefore, the dissolved moisture must be 

supplied by the dissolution of gaseous moisture into the 

substantial solid. From Eq. (6) and the relation 

( ) 01 + dqrr  for the steady state, the relation 

 0
1

ndissolutio









+




=












dq

rrt

M
  (15) 

holds, which is compatible with ( ) 0/ ndissolutio  tM , 

shown in Fig. 3 (d). Figure 3 (d) shows that the magnitude 

of the dissolution rate based on the nonlinear relationship in 

( )TMCC ,=  reaches far higher values than those based on 

the linear relationship. 

The structure of the hygrothermal field for the steady 

state is integrated into Fig. 4. In Fig. 4, the r


 axis lies 

radially, and the arc lengths of the upper and lower annular 

sectors appear in a ratio of 0.3 to 0.7, reflecting the volume 

fraction of voids 7.0=f  that was used in a previous work 

(Ishihara et al. 2014) to construct the parameters in 

Subsection 2.2. Moreover, the depths of blue and red denote 

the values of M  and C


 shown in Figs. 3 (b) and (c), 

respectively; the radial arrows in the upper and lower 

annular sectors correspond to the mass flux vectors of 

dissolved moisture qd and gaseous moisture qg, respectively, 

given by Eq. (4). The lengths of the tangential arrows at the 

interface of the annular sectors are proportional to the value 

of ndissolutioM

  shown in Fig. 3 (d). Figure 4 shows 

approximately that the moisture supplied at the humid 

surface ( )1=r


 diffuses toward the air-dried surface 

( )5.0=r


 in the gaseous form at first, transforms into the 

dissolved form, and diffuses in the dissolved form. 

The effect of diffusive properties on the moisture 

distribution is studied next. At first, CMm


+=  is 

obtained from Eqs. (1) and (11), which denotes that the total 

mass of moisture per unit mass of the substantial solid is the 

sum of the dissolved moisture content and the 

nondimensional vapor concentration. Meanwhile, by 

comparing Figs. 3 (b) and (c), M  is found to be much 

greater than C


. Hence, the total mass of moisture can be 

evaluated substantially by the mass of dissolved moisture. 

Considering this viewpoint, a measure of the total mass of 

moisture (per unit axial length of the hollow cylinder) is 

introduced, and it is defined in a nondimensional form by 

 =
1

d2
a

rMrW 


 . (16) 

The measure W  for the linear and steady case given by 

Eq. (10), denoted by linearW , is calculated as 

( )( ) ( ) aaMMaMMW abab


ln21 22

linear −−−−= . 

Therefore, the ratio of the difference linearWW −  to linearW , 

namely, 

 
linear

linear
nonlinear

W

WW
R

−
=  (17) 

can be regarded as one of the measures for the deviation in 

moisture distribution from the distribution given by Eq. 

(10). Figure 5 shows the variation of that measure with the 

dissolved moisture diffusivity 𝐷̂𝑑 and gas diffusivity 𝐷̂𝑔. 

Figure 5 shows that the deviation increases with the 

increase in gas diffusivity and the decrease in dissolved 

moisture diffusivity. Moreover, the contours in Fig. 5 

exhibit a relation log10𝐷̂𝑔  ≅ log10𝐷̂𝑑 +(constant) i.e., 

𝐷̂𝑔/𝐷̂𝑑 ≅(constant), which signifies that the magnitude of 

the deviation is roughly determined by the ratio of the gas 

diffusivity to the dissolved moisture diffusivity. 
 

 

3. Transient hygrothermoelastic field 
 
In this section, the resulting stress in the cylinder shown 

in Fig. 1 that is subjected to the hygrothermal field treated 
in Section 2 is investigated. The elastic properties are 
assumed to be isotropic. 

 

3.1 Theoretical analysis 
 

To investigate the stress that occurs only because of the 
hygrothermal field and excludes the effects of mechanical 
constraints, the cylinder is considered free from stresses on 
the inner and outer surfaces and at the infinite ends. As 
stated in Section 2, the hygrothermal field is planar-
axisymmetrical. In that case, the hygrothermoelastic field in 
the cylinder is considered to be in a generalized plane strain 
and axisymmetrical state. The governing equations of the 
field (Sih et al. 1986, Noda et al. 2003) are the equilibrium 
equations of stresses 
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−

+



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rrrr 
, (18) 

the strain-displacement equations 
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and the generalized Hooke’s law 
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where rr ,  , and zz  denote the radial, hoop, and 

axial stresses, respectively; rr  and   denote the radial 

and hoop strains, respectively; ru  denotses the radial 

displacement; E  and   denote the Young’s modulus and 

Poisson’s ratio, respectively; α and β denote the coefficients 

of thermal and moisture expansion, respectively; ε0 

 

 

 

denotes the axial strain that occurs because of the 

unconstraint at the infinite ends; 

 freefree, MMMTTT −− ; (21) 

and freeT  and freeM  denote the absolute temperature and 

dissolved moisture content, respectively, that give a natural 

state, i.e., 0=ij  and 0=ij . 

  
(a) Temperature (b) Dissolved moisture content 

  
(c) Vapor concentration (d) Dissolution rate 

Fig. 3 Distributions of hygrothermal quantities ( )5.0=a


 

 

 
Fig. 4 Structure of hygrothermal field for steady state 

( )5.0;10 == at


 

Fig. 5 Effects of diffusive properties on deviation 

( )5.0; =→ at


 

0

0.04

0.08

0.12

0.16

0.2

0.5 0.6 0.7 0.8 0.9 1

  = 0.02

  = 0.05     

  = 0.1

  = 0.2   .t


)(

t

t


t


r


T


Nonlinear

0.12

0.14

0.16

0.18

0.2

0.5 0.6 0.7 0.8 0.9 1

  =0.5

  =1

  =2

  =5

  =10 (∞)

  =0.5

  =1

  =2

  =5

  =10 (∞)

M Linear

Nonlinear
t


t


t


t


t


t


t

t


t


t


r


0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.5 0.6 0.7 0.8 0.9 1

  =0.5

  =1

  =2

  =5

  =10 (∞)

  =0.5

  =1

  =2

  =5

  =10 (∞)

r


C


Linear

Nonlinear
t


t


t


t


t


t


t


t


t


t


-0.005

0

0.005

0.01

0.015

0.5 0.6 0.7 0.8 0.9 1

  =0.5

  =1

  =2

  =5

  =10 (∞)

  =0.5

  =1

  =2

  =5

  =10 (∞)

r


ndissolutioM



Linear

Nonlinear
t


t


t


t


t


t


t

t


t


t


=M =C


r


0.05

0.05

0.1

0.1

0.15

0.2
0.25

0.3

0.5

1

5

0.005 0.01 0.05

gD


dD


=nonlinearR

64



 

Hygrothermoelasticity in a porous cylinder under nonlinear coupling between heat and moisture 

 

By substituting Eq. (19) into Eq. (20), solving that result 

with respect to the stresses, and then substituting the 

stresses into Eq. (18), Navier’s equation is obtained as 

 
( )

( )MT
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1

11
. (22) 

The general solutions of the displacement, strains and 

stresses are obtained by integrating Eq. (22) successively, 

and substituting that result into Eqs. (19) and (20). The 

integral constants involved are determined by the boundary 

conditions 

 0:, == rrbar  , (23) 

the axial strain 0  is determined by the unconstraint 

condition at the infinite ends 

 0d2 =
b

a
zz rr , (24) 

and thereby the solutions of the field quantities are obtained 

finally as 

 

( )

( )

( )

( )
( )

( )

( )
( )

( )

( ) ( )










































+−+

−−
=

























+−

+
−

+
+

+

−
=



















+
−

−
+

+−

−
=

























+
−
















+

+

−
+

+

−

+
=















MTrrMT
ab

E

MT

rrMT
abr

ar

rrMT
r

E

rrMT
abr

ar

rrMT
rE

rrMT
ab

r

a
r

rrMT
r

u

b

a
zz

b

a

r

a

b

a

r

a

rr

b

a

r

a

r




































d
2

1

,d

d
1

1

,

d

d
1

1

,

d
1

1

31

d
1

1

1

22

222

22

2

222

22

2

22

2

. 

  ... (25) 

If the relationship ( )TMCC ,=  is linear, the 

temperature and dissolved moisture content for a steady 

state is obtained as Eq. (10). In that case, by substituting Eq. 

(10) into Eq. (25), the in-plane stresses, i.e., the radial and 

hoop stresses for a steady state, are reduced to 
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Because the nonlinearity in ( )TMCC ,=  gives rise to the 

deviation in hygrothermal distributions from those in Eq. 

(10), as mentioned above, it gives rise to the deviation also 

in the resulting stress distributions from those in Eq. (26). 

The consequences resulting from the deviation, more 

specifically, the undesirable stresses adverse to safe design 

or operation of the related applications, are the primary 

concerns here and are discussed in the following subsection. 

In addition, the consequences of the model’s having 

curvature are also concerns. The infinite strip, as shown in 

Fig. 6, that was subjected to the conditions given by Eq. (3) 

with bar ,=  replaced with Lx ,0=  and was free from 

mechanical constraint on the surfaces Lx ,0=  and at the 

infinite ends was previously treated (Ishihara et al. 2016). 

To compare the cylinder shown in Fig. 1 with the strip 

shown in Fig. 6, the relations 

 
b

L
LarxabL −−


,,  (27) 

are applied to the cylinder shown in Fig. 1. The quantity 

b1  represents the curvature of the cylinder, and, therefore, 

the parameter 𝐿̂  denotes the nondimensional curvature 

with reference to the thickness L . Then, the temperature, 

dissolved moisture content, and stresses given by Eqs. (10) 

and (25) are rewritten as 
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When the outer radius b  tends to sufficiently larger 

compared with the thickness L  in the cylinder, i.e.,  
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Fig. 6 Infinite strip 

 

 

0→L


, the hygrothermoelastic circumstances in the 

cylinder is supposedly regarded as approaching those in the 

infinite strip shown in Fig. 6. When 0→L


, the 

expressions in Eq. (28) are reduced to 
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Thus-obtained linear distributions in T  and M  and null 

distribution in the stress in the thickness direction rr , all 

of which are for a steady state under the linear relation in 

( )TMCC ,= , are similar to those obtained for the strip 

shown in Fig. 6 (Ishihara et al. 2016). However, the in-

plane stress   given by Eq. (29) exhibits a significant 

distribution, which is linear with respect to the thickness 

direction, whereas the in-plane stress in the strip exhibited a 

null distribution (Ishihara et al. 2016). Thus, even for the 

limited case of the steady field under the linear relation in 

( )TMCC ,= , the field in the cylinder with an infinitesimal 

curvature 0→L


 is qualitatively different from the field in 

the strip, unlike the supposition that both circumstances are 

similar to each other. 

The numerical results presented in the following 

subsection include the effects of various factors. 

Specifically, with reference to the strip in the steady field 

under the linear relation in ( )TMCC ,= , the sequential 

effects of the nonlinearity in ( )TMCC ,= , the model’s 

having infinitesimal curvature 0→L


, the finiteness of 

curvature, and the transient nature of the field participate in 

the results in the following subsection. 

 

3.2 Numerical results 
 

In this subsection, the distributions of 

hygrothermoelastic stresses given by Eq. (25) are 

numerically illustrated. In addition to Eq. (11), the 

nondimensional quantities are introduced as 
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By applying Eqs. (11) and (30) to Eq. (25) with Eq. (21) 

substituted, the nondimensional in-plane stresses are 

formulated as 
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  ... (31) 

where freeTTT


− . As derived in previous work (Ishihara 

et al. 2016), the nondimensional coefficient of moisture 

expansion is given as 

 572.24=


. (32) 

Equations (31) and (32) show that the effect of moisture 

expansion on the stress is considerably predominant over 

that of thermal expansion, for unit changes in 

nondimensional temperature and dissolved moisture 

content. The absolute temperature and dissolved moisture 

content for a natural state are chosen as iTT =free  and 

iMM =free , respectively. 
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 (b) Radial stress 

 
 (c) Tangential stress 

 
 (d) Axial stress 

Fig. 7 Distributions of hygrothermoelastic field            

quantities in cylinder (𝑎̂ = 0.5)  

 

 

At first, the effect of the nonlinear relation in 

( )TMCC ,=  on the hygrothermoelastic field is 

investigated. Figure 7 shows the distributions of the 

hygrothermoelastic field quantities in the cylinder. Because 

of the predominant effect of the aforementioned moisture 

expansion, the distributions at the same stages as in Fig. 3 

(b) are chosen in Fig. 7. The qualitative and quantitative 

difference in the field is found in Fig. 7. For instance, 

Figures 3 (b) and 7 (b) show that the peaks in the 

distributions of radial stress shift toward the dry surface as 

the dissolved moisture diffuses toward that surface. 

Moreover, the magnitudes of the maximum radial stress 

based on the nonlinear relation in ( )TMCC ,=  are found 

to be greater than those based on the linear relation (up to 

approximately a 6% higher value at 5.0=t


). This result 

indicates that the investigation based on the linear relation 

in ( )TMCC ,=  underestimates the risk of failure. Similar 

underestimation is also found in the tangential and axial 

stresses at the inner surface as found in Figs. 7 (c) and (d). 

It should be noted that these hazards can never be found by 

the linear assumption in ( )TMCC ,=  as performed in 

previous studies (Sih et al. 1980, Sih and Shih 1980, Sih 

and Ogawa 1982, Chang et al. 1991, Chang 1994, Chang 

and Weng 1997, Sugano and Chuuman 1993, Dai and Dai 

2016, Zhang and Li 2017, Dai et al. 2017, 2019a, b). 

Therefore, it is significant to consider the nonlinear relation 

in ( )TMCC ,=  when investigating the 

hygrothermoelastic stress in terms of safe design and 

operation of the related applications. 

Then, to investigate the effect of the model’s having 

infinitesimal curvature 0→L


, attention is paid to the 

tangential stress, because that stress is significantly affected 

by that effect, as mentioned in the previous subsection. To 

perform numerical calculations, a certain curvature 

001.0=L


 is regarded as an infinitesimal curvature 0→L


. 

Figure 8 shows the distributions of the tangential stress in 

the cylinder based on the nonlinear relation in 

( )TMCC ,=  for a steady state and its counterpart in the 

strip, i.e., the in-plane stress 


. The in-plane stress based 

on the linear relation in ( )TMCC ,=  vanishes, as 

described in previous work (Ishihara et al. 2016). Figure 8 

shows that the tangential stress in the cylinder exhibits a 

significant distribution compared with the in-plane stress in 

the strip. Therefore, it is significant to consider the 

existence of curvature, even if the curvature is 

infinitesimally small, when investigating the 

hygrothermoelastic stress in terms of safe design and 

operation of the related applications. The difference of the 

stress distributions in the cylinder and the strip is explained 

by considering the tangential force and bending moment 

(per unit axial length) defined, respectively, by 

  







−==

LL

x
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xKxN
00

d
2

,d   . (33) 

By considering the axisymmetricity of field and the 

equilibrium of forces in the free body sectioned as, for 

example, ( )   0,|,, brazr  or by inspecting 

Fig. 8, the tangential force in the cylinder is found to be 

absent as found in the strip (Ishihara et al. 2016). However, 

by inspecting Fig. 8, the bending moment in the cylinder is 
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found to be present ( ) ( )187.010

2 − ETLK  unlike 

the strip (Ishihara et al. 2016). That bending moment and, 

consequently, the distribution of tangential stress occurs, 

because the bending deformation is restrained in the 

cylinder with the infinitesimal curvature. 
 

 

       
Fig. 8 Distributions of tangential stress in cylinder and in-

plane stress in strip ( )001.0=L


 

 

 

(a) 5.0=L


 

 

(b) 001.0=L


 

Fig. 9 Distributions of tangential stress in cylinder 

 

Fig. 10 Variations of bending moment with time 

 

 

Finally, the effect of the finiteness of curvature is 

investigated. In Fig. 8, the infinitesimal curvature 0→L


 

was assumed. A cylinder, however, has a finite curvature in 

general. Therefore, it is necessary to investigate the cylinder 

with a finite curvature. The certain curvature 5.0=L


 is 

chosen as an example. Figures 9 (a) and (b) show the 

distributions of the tangential stress in the cylinder with a 

finite and an infinitesimal curvature, respectively, in which 

the nondimensional time variable here is defined with 

reference to the thickness as 2* Ltt  . From Figs. 9 (a) 

and (b), both of the distributions appear similar. To 

investigate their difference quantitatively, the bending 

moment defined by Eq. (33) is evaluated. Figure 10 shows 

the variations of the (negative) bending moment with time, 

in which the nondimensional moment here is defined with 

reference to the thickness as ( )  − 10

2* ETLKK . 

Figure 10 shows that the bending moment in the cylinder 

with the finite curvature is greater than that with the 

infinitesimal curvature in a certain early stage. This finding 

demonstrates the necessity to consider a concrete value of 

curvature when evaluating the hygrothermoelastic field in 

cylinders. Moreover, the maximum bending moment in the 

cylinder with a finite curvature occurs before the field 

reaches a steady state, which demonstrates the necessity of 

the transient analysis as performed in this study. 

 

 

4. Concluding remarks 
 

Based on the nonlinear coupling between heat and 

binary moisture, a first attempt was made to address the 

hygrothermoelastic problem described by a cylindrical 

coordinate system. The analytical model was an infinite 

hollow cylinder exposed to a broad gap of hygrothermal 

environment and free from mechanical constraint. The 

system of hygrothermal governing equations that was 

derived for the Cartesian coordinate system was extended to 

describe the present case and was solved using the finite-

difference method in order to numerically illustrate the 

distributions of hygrothermal field quantities, such as 
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temperature, dissolved moisture content, vapor 

concentration, and dissolution rate and the effect of 

diffusive properties on the distributions. Then, the 

distribution of the resulting stresses was theoretically 

analyzed based on the fundamental equations for 

hygrothermoelasticity. As a result, the hazard that the 

analysis disregarding the nonlinear coupling underestimates 

the stress was illustrated. Then, by comparing the cylinder 

with an infinitesimal curvature with the infinite strip, the 

significance of considering the existence of curvature, even 

if it is infinitesimally small, was illustrated qualitatively and 

quantitatively. Moreover, by investigating the bending 

moment, the necessities to consider an actual curvature and 

to perform the transient analysis were illustrated. 
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