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1. Introduction 
 

Base isolation has been one of the most effective and 

widely implemented seismic protection systems for the last 

25 years. This system is intended to simultaneously reduce 

interstory drifts and floor accelerations through a reduction 

of stiffness and an increase in damping (Kelly 1997). 

Therefore, base-isolated buildings are characterized by 

relatively large fundamental periods. 

In recent years the records from near-fault earthquakes 

(e.g. the 1995 Kobe Earthquake, the 1999 Chi-chi Taiwan 

Earthquake) have shown that the ground motions near the 

faults of major earthquakes may contain long period 

velocity pulses that can amplify the displacement demands 

of the isolation system. Although during the 1994 

Northridge and the 1995 Kobe Earthquakes several isolated 

buildings with Lead Rubber Bearing (LRB) performed well 

and base isolation was effective in reducing the response 

(Nagarajaia and Sun 2000, Nagarajaiah and Sun 2001, 

Buckle et al. 2002), several researchers have pointed out the 

vulnerability of base-isolated buildings to large velocity 

pulses contained in near-source ground motions (Buckle 

and Mayes 1990, Heaton et al. 1995, Hall et al. 1995, Yang 

and Agrawal 2002, Castaldo and Tubaldi 2018). Under 

these motions there may appear such large displacement 

demands that could result in the failure of the isolation 
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systems (Yang and Agrawal 2002, Nagarajaiah and Ferrell 

1999). This topic has been challenging and, consequently, 

various studies have been reported (Makris 1997, Makris 

and Chang 2000, Jangid and Kelly 2001, Liao et al. 2004, 

Jangid 2005, Panchal and Jangid 2008, Ariga et al. 2006, 

Alhan and Gavin 2004, Ramallo et al. 2002, Shen et al. 

2004, Rao and Jangid 2001, Kampas and Makris 2012, 

2013, Makris 2014, Konstantinidis and Nikfar 2015, Chen 

et al. 2017). Ariga et al. (2006) revealed that the long-

period ground motions recorded in Japan have the intensity 

to bring in resonance base-isolated high-rise buildings with 

long period components and that careful treatment is 

required in the structural design of these buildings. Shen et 

al. (2004) investigated the near-fault effects on the 

performance of a seismically isolated bridge. They revealed 

(i) an amplified seismic response when the pulse period was 

close to the effective period and (ii) a beneficial effect of 

bearing nonlinearity on the acceleration response. 

Several researchers have suggested the use of 

supplemental energy dissipative mechanisms (to protect 

structures from near-fault earthquakes) (Hall 1999, Hall and 

Ryan 2000, Zhang and Iwan 2002, Sahasrabudhe and 

Nagarajaiah 2005), while others have shown that the 

addition of damping may reduce the isolator displacement 

but it may also increase the floor accelerations and 

interstorey drifts (Alhan and Gavin 2004, Inaudi and Kelly 

1993, Sadek and Mohraz 1998). Jangid and Kelly (2001) 

reported the existence of a particular value of isolation 

damping that minimizes superstructure acceleration for a 

given structural system under near-fault motion. Some  
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researchers have investigated various passive isolation 

systems and dissipative mechanisms and showed the 

existence of optimum values of the parameters of the 

isolation system for near-fault earthquakes (Jangid 2005, 

Alhan and Gavin 2004, Jangid 2007), while others have 

proposed the use of semi-active dampers (Makris 1997, 

Ramallo et al. 2002) to effectively protect structures from 

near-fault ground motions. 

Many of the aforementioned studies made use of 

recorded ground motions (Jangid and Kelly 2001, Jangid 

2005, Ariga et al. 2006, Alhan and Gavin 2004, Ramallo et 

al. 2002, Jangid 2007), while others additionally used 

simple pulses along the recorded data (Makris 1997, 

Panchal and Jangid 2008, Makris and Chang 2000, Shen et 

al. 2004, Mazza and Vulcano 2009) since such an approach 

can lead to a better understanding of near-fault phenomena. 

Makris and Chang (2000) found that there is a resemblance 

between the structural response for near-fault ground 

motions and the one caused by a harmonic pulse only for 

buildings with moderate to large periods. Using the same 

harmonic pulses in conjunction with dimensional analysis, 

Makris and Black (2004) and Makris and Psychogios 

(2006) managed to specify dimensionless parameters which 

uncover the physics of the behavior of rigid-plastic, 

elastoplastic and bilinear SDOF systems (Makris and Black 

2004, Makris and Psychogios 2006) and the physics of the 

behavior of yielding structures with first-mode dominated 

responses (Makris and Psychogios 2006), respectively.  

In this study, the behavior of a base-isolated building 

with both linear and non-linear behavior of the isolation 

system, under idealized near-fault pulses, using dimensional 

analysis is investigated. A 2-DOF model is used, where for 

simplicity the superstructure will be assumed to remain in 

the elastic range during the earthquake excitation. The aim 

 

 

of this study is to specify dimensionless variables for the 2-

DOF, similar to the ones found in (Makris and Black 

2004)for the SDOF, that will allow to plot dimensionless 

graphs in order to shed light on the dynamic behavior of a 

base-isolated building subjected to pulse-type excitations 

resembling near-fault ground motions. 

 

 
2. Analytical model for near-fault ground motions 

 

Base isolation has been one of the most effective and 

widely implemented seismic protection systems for the last 

25 years. This system is intended to simultaneously reduce 

interstory drifts and floor accelerations. Since the early 

study of Jacobsen and Ayre (1958) that examined the 

behavior of a SDOF under different types of acceleration 

pulses, several other researchers have used simple pulses in 

their studies (e.g. Hall et al., 1995, Makris & Chang, 2000, 

Mylonakis & Reinhorm, 2001, Mylonakis & Voyagaki, 

2006). In recent years, that near-fault seismic ground 

motions comprise an active research topic for seismologists 

and earthquake engineers, various analytical models for the 

representation of near-fault ground motions have been 

introduced (Makris and Chang 2000, Menun and Fu 2002, 

Mavroeidis and Papageorgiou 2003). These mathematical 

models can approximate the main kinematic characteristics 

of near-source ground motions and have the potential to 

facilitate the study of the response of structures subjected to 

these motions. The minimum number of parameters is 2, 

that is: the duration Tp and either the acceleration amplitude 

ap or the velocity amplitude vp. The present study employs 

both the simple harmonic pulses (used in Makris and Chang 

2000, Makris and Black 2004, Makris and Psychogios 2006 

among others] that employ only the 2 input parameters Tp  

 

Fig. 1 Ground motions time histories (displacement, velocity, acceleration) given by the mathematical model of Mavroeidis 

& Papageorgiou for Tp=2s, A=0.5m/s, v=0 and different values of γ 
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and ap (or vp), as well as the more sophisticated model of 

Mavroeidis and Papageorgiou (2003, 2004) that involves 4 

input parameters which are the pulse period Tp, the velocity 

pulse amplitude A, the number γ and the phase v of the half 

cycles. However, because of limited space only the graphs 

from the latter model are presented. This model is also 

selected because of the large set of related near-fault ground 

motions that were used for its calibration and verification. 

The models are described by Equations (1) and (2). It must 

also be clarified that the pulse velocity is represented with 

vp according to Makris and Black (2004) and with A 

according to Mavroeidis and Papageorgiou (2003, 2004). 

Figure 1 depicts the ground displacement, dg(t), velocity 

vg(t) velocity and acceleration time history ag(t) given by 

the model of Mavroeidis and Papageorgiou (2003, 2004) for 

A= 0,5 m/s, Tp= 2s, v=0 and γ=1, γ=2, γ=3. 

The Type A harmonic pulse is expressed by Makris and 

Black (2004): 

𝑎𝑔(𝑡) =
𝜔𝑝 ∙ 𝑣𝑝

2
sin(𝜔𝑝 ∙ 𝑡),          0 ≤ 𝑡 ≤ 𝑇𝑝 

𝑣𝑔(𝑡) =
𝑣𝑝

2
(1 − cos(𝜔𝑝 ∙ 𝑡)), 0 ≤ 𝑡 ≤ 𝑇𝑝 

𝑑𝑔(𝑡) =
𝑣𝑝

2
(𝑡 −

sin(𝜔𝑝 ∙ 𝑡)

𝜔𝑝

) , 0 ≤ 𝑡 ≤ 𝑇𝑝 

(1) 

The pulse suggested by Mavroeidis and Papageorgiou 

(2003, 2004) is given by: 

 

 

3. Structural model 
 

In order to study the behavior of a base isolated building  

and to examine the response of both the isolation system 

and the superstructure, a model with at least two degrees-of-

freedom (2-DOF) is suggested (Kelly, 1997). Therefore, the 

present study uses a 2-DOF isolated structure with a linear 

superstructure, a linear restoring force with stiffness kb and 

both linear and non-linear isolation systems. The mass of 

the building superstructure and the mass of the base floor 

above the isolation system are demoted by m and mb, 

respectively. In both cases, the system is characterized by 

the parameters: Ts, ξs, λ, Τb and additionally by b for the 

linear isolation system with viscous damping or by the 

yielding force Q and the yielding displacement uy for the 

non-linear isolation system, defined as: 

𝑇𝑠 =
2𝜋

𝜔𝑠

 (3) 

𝑎𝑛𝑑 𝜔𝑠 = √
𝐾𝑠

𝑚
 (4) 

2𝜉𝑠𝜔𝑠 =
𝑐𝑠

𝑚
 (5) 

𝑎𝑛𝑑 2𝜉𝑏𝜔𝑏 =
𝑐𝑏

𝑚 + 𝑚𝑏

 (6) 

 
Fig. 2 Base isolated system and corresponding displacements 

𝑣𝑔 (𝑡) = {
𝐴

1

2
∙ [1 − cos (

2𝜋 ∙ 𝑓𝑝

𝛾
∙ 𝑡)] ∙ cos[2𝜋 ∙ 𝑓𝑝 ∙ 𝑡 − 𝜋 ∙ 𝛾 + 𝑣] , 0 ≤ 𝑡 ≤

𝛾

𝑓𝑝

 𝑤𝑖𝑡ℎ 𝛾 > 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝛼𝑔 (𝑡) = {

𝛢 ∙ 𝜋 ∙ 𝑓𝑝

𝛾
∙ 𝑠𝑖𝑛 (

2𝜋 ∙ 𝑓𝑝

𝛾
∙ 𝑡) ∙ cos[2𝜋 ∙ 𝑓𝑝 ∙ 𝑡 − 𝜋 ∙ 𝛾 + 𝑣] , 0 ≤ 𝑡 ≤

𝛾

𝑓𝑝

 𝑤𝑖𝑡ℎ 𝛾 > 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(2) 
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𝜆 =
𝑚

𝑚 + 𝑚𝑏

 (7) 

𝑇𝑏 =
2𝜋

𝜔𝑏

 (8) 

𝑎𝑛𝑑 𝜔𝑏 = √
𝐾𝑏

𝑚 + 𝑚𝑏

 (9) 

The equations of motion for the 2-DOF shown in Figure 

2 is given: 

[
1 𝜆
1 1

] [
𝑢𝑏̈(𝑡)

𝑢𝑠̈(𝑡)
] + [

0 0
0 2𝜉𝑠𝜔𝑠

] [
𝑢̇𝑏(𝑡)

𝑢̇𝑠(𝑡)
] 

+ [
𝜔𝑏

2 0

0 𝜔𝑠
2] [

𝑢𝑏(𝑡)

𝑢𝑠(𝑡)
] + [

1
0

] 𝑎(𝑡) = − [
1
1

] 𝑢𝑔̈(𝑡) 

(10) 

where: 

us = relative displacement of the superstructure 

ub = relative displacement of the isolation system 

𝑎(𝑡) =
𝑃(𝑡)

𝑚 + 𝑚𝑏

 (11) 

and P(t) is the dissipation force (given by:) 

𝑃(𝑡) = 𝑐𝑏 ∙ 𝑢̇𝑏(𝑡) (12) 

for viscous of damping or 

𝑃(𝑡) = 𝑄 ∙ 𝑧(𝑡) (13) 

for hysteretic damping, where the hysteretic 

dimensionless quantity z(t) is given in 

𝑢𝑦 ∙ 𝑧̇ + 𝛾 ∙ 𝑢̇𝑏(𝑡) ∙ 𝑧 ∙ |𝑧|𝑛−1 

+𝛽 ∙ 𝑢̇𝑏(𝑡) ∙ |𝑧|𝑛 − 𝑢̇𝑏(𝑡) = 0 
(14) 

The Equations (13) and (14) describe the Bouc-Wen 

model (Wen 1976) for elastoplastic behavior with smooth 

transition by setting β = γ = 0.5 and n = 20 (Wen 1976). The 

response of the 2-DOF structure is computed numerically in 

MATLAB using standard ordinary differential equation 

solvers (MATLAB 2005). In this study it is assumed that 

ξs=2%. 
 

 

4. Dimensional Analysis of a 2-Dof Model with 
Linear Isolation System 

 

In this paper the dimensional analysis (Langhaar 1951, 

Barenblatt 1996) used also by Makris and Black (2004) for 

a linear, rigid-plastic, elastoplastic and bilinear SDOF 

oscillator is employed in order to investigate the response of 

a 2-DOF isolated model. By using the harmonic pulses 

expressed by Equation (1), adequately described by the 

parameters Tp (or ωp) and vp (or ap), one may specify the 

minimum number of parameters that describe the problem. 

Therefore, the maximum relative displacement of the 

superstructure, us, the maximum relative displacement of 

the isolation system, ub, and the maximum structural 

acceleration, as, as well, will be functions of the following 

seven variables: 

𝑢𝑠,𝑚𝑎𝑥 , 𝑢𝑏,𝑚𝑎𝑥 , 𝑎𝑠,𝑚𝑎𝑥 = 𝑓(𝑚, 𝑚𝑏 , 𝐾𝑠, 𝐾𝑏 , 𝜉𝑏 , 𝜔𝑝, 𝑣𝑝) (15) 

It is noted that the function f is different for us,max, ub,max, 

as,max but the variables are the same. 

The variables appearing in Equation (15), us,max, mi, Ki, 

ωp, vp involve all three reference quantities, that is, the mass 

[M], length [L] and time [T]. According to Buckingham’s 

Π-theorem (Langhaar 1951, Barenblatt 1996), the number 

of independent dimensionless Π-terms for the 2-DOF model 

with a linear isolation system will be 8 (variables)-

3(reference dimensions) = 5.  The Π-terms are: 

𝛱1 =
𝑢𝑠,𝑚𝑎𝑥 ∙ 𝜔𝑝

𝑣𝑝

,
𝑢𝑏,𝑚𝑎𝑥 ∙ 𝜔𝑝

𝑣𝑝

,
𝑎𝑠,𝑚𝑎𝑥

𝜔𝑝 ∙ 𝑣𝑝

 (16) 

𝛱1 = 𝛷(𝛱2, 𝛱3, 𝛱4, 𝛱5) (17) 

𝛱2 =
𝜔𝑏

𝜔𝑝

(=
𝑇𝑝

𝑇𝑏

) (18) 

𝛱3 = 𝜆 =
𝑚

𝑚 + 𝑚𝑏

 (19) 

𝛱4 =
𝐾𝑏

𝐾𝑠

 (20) 

𝛱5 = 𝜉𝑏  (21) 

At this point, it is worth mentioning that the Π-terms 

that describe the response of 2-DOF include the Π-terms 

used by Makris and Black (2004) for the response of the 

linear SDOF but additional dimensionless parameters Π3 

and Π4.  

As mentioned before, for the mathematical model 

proposed by Mavroeidis and Papageorgiou (2003) there 

exist two additional parameters v and γ which will be set as 

Π6 = v and Π7 =γ. In the next graphs use will be made of 

this model. Makris and Black (2004) showed that for the 

harmonic pulses the self-similar solutions of the SDOF 

oscillator scale better with the peak pulse acceleration ap 

rather than with the peak pulse velocity, indicating that peak 

pulse acceleration is a superior intensity measure of the 

pulse excitation. In this paper however, the peak velocity 

pulse (A=vp) for normalization will be used, as it was 

originally presented in (Mavroeidis et al. 2004).  

Figure 3 shows the variation of the normalized response 

(ub,us,as) of the base-isolated 2-DOF structure with viscous 

damping as a function of Π2=Τp/Tb for various values of v 

and γ, as was initially done for the SDOF (Mavroeidis et al. 

2004). This figure shows that the parameter v has a 

significant effect only on the normalized ub and us when γ 

approaches the value of 1 and then only for small values of 

the term Π2 (<0.7).  In the other cases v has an 

insignificant effect and this influence diminishes as γ 

increases. In addition, the increase of γ, which means more 

half-cycles in the pulse, results in an increase of the peak 

normalized response characteristics of the 2-DOF attributed 

to resonance, a fact that is in agreement with the respective 

observations made for the SDOF (Mavroeidis et al. 2004, 

Chopra 2007). Finally, it  is o bserved that as γ  
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increases the peak value of the normalized acceleration, as 

occurs for smaller values of Π2. For example for γ≈1 the 

peak value of normalized displacement as is achieved for 

Π2 ≈1.8s, but for γ = 3 the peak value of the normalized as 

corresponds to Π2 ≈1.15s. It is worth mentioning that the 

graphs of the normalized ub and as of the 2-DOF plotted 

against Τp/Tb look similar to the ones of the linear SDOF 

plotted against Τp/Ts in the paper of Mavroeidis and 

Papageorgiou (2004). 

Figure 4 illustrates the influence of the dimensionless 

terms Π3, Π4, Π5 on the normalized response (ub,us,as) of the 

base-isolated 2-DOF structure with viscous damping 

presented as function of  Π2 for γ≈1 and v=0.  In 

particular, it is shown that the dimensionless term Π3 does 

not influence the normalized displacement of the isolation 

system (ub) and the total acceleration of the superstructure 

(as), but to a small degree it influences  the normalized 

displacement of the superstructure (us) for values of Π2 <2.5 

by reducing the normalized (us) when Π3 decreases . 

Similarly, the dimensionless term Π4 has a minor effect on 

the normalized response characteristics (ub, as), but a great 

effect on (us). For example, for  Π2=1an increase of Π4 

from 0.1 to 0.2 results in a 50% reduction of the normalized 

us. As for the dimensionless term Π5, it seems to have a 

more complex role since an increase of Π5 always decreases 

the normalized (ub), but it can both increase or decrease the 

normalized response characteristics (us,as) depending on the 

value of Π2. Specifically, in the case of γ≈1 for 

approximately 0.8<Π2 <4, the normalized response 

characteristics (us,as) seem to decrease as Π5 increases but 

for approximately Π2=<0.7 the opposite happens. 

 

 

From Figure 4 it can be concluded that the 

dimensionless parameters that play a key role on the 

dynamic behavior of the base-isolated 2-DOF structure with 

viscous damping under idealized near-fault pulses are the 

terms Π2 and Π5, while the normalized (us) is also greatly 

affected by Π4 and much less by Π3. In all these cases, 

however, the influence is significant only for values of Π2 

<3. These observations were made using the idealized pulse 

with γ≈1 but we have verified them also for greater values 

of γ (= 2 and 3) which, however, will not be presented here 

because of limited space. 

In Figure 5 the influence of the dimensionless term Π5 

on the normalized response (ub,us,as) of the base-isolated 2-

DOF structure with viscous damping presented as function 

of  Π2 for  v=0 and γ=1, 2, 3 is examined in detail. It is 

shown that the influence of the dimensionless term Π5 on 

the normalized response (ub,us,as) of the 2-DOF is greater as 

γ increases, a remark similar to the one for the SDOF 

(Jacobsen and Ayre 1958, Mavroeidis et al. 2004, Chopra 

2007). For example, an increase of Π5 from 5% to 30% 

leads to 40% reduction of the peak normalized as for γ≈1 

and 53% reduction for γ=3. In addition, it seems that the 

effect of the dimensionless term Π5 is similar for the 

different values of γ=1, 2, 3, since for all three cases there 

exists a range of values of Π2 where an increase of Π5 will 

decrease the normalized response characteristics (us,as) and 

another range of values of Π2 where Π5 will have the 

opposite effect on (us,as). This behavior implies the 

existence of an optimum value of the dimensionless term 

Π5, namely, the viscous damping ξb, depending on the value 

of Π2, that will minimize the normalized response  

 
Fig. 3 Variation of the normalized response (ub, us, as) of the base-isolated 2-DOF structure with viscous damping as a 

function of Π2=Τp/Tb for various values of v and γ 
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Fig. 4 Influence of the dimensionless terms Π3, Π4, Π5 on the normalized response (ub, us, as) of the base-isolated 2-DOF 

structure with viscous damping presented as functions of Π2=Τp/Tb for γ=1 and v=0 

 
Fig. 5 Influence of the dimensionless terms Π5=ξb on the normalized response (ub, us, as) of the base-isolated 2-DOF 

structure with viscous damping presented as functions of Π2=Τp/Tb for v=0 and γ=1,2,3. 
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characteristics of the 2-DOF. The existence of the optimum 

ξb has also been observed by other researchers (Jangid and 

Kelly 2001, Alhan and Gavin 2004). In this study the 

influence of the dimensionless Π-terms on the optimum ξb 

is further investigated.  

Based on the aforementioned remarks, it is considered 

very useful to plot the variation of the optimum ξb as a 

function of Π2 for γ=1, 2, 3 and also examine how the other 

parameters of the system, Π3 and Π4 influence the value of 

optimum ξb. This is depicted in Figures 6 and 7. In these 

figures a minimum value of Π5, minξb=1% and a maximum 

value max ξb=70% is considered for each value of Π2 in 

the range of 0.25 and 2 (which is of most practical interest), 

and all the damping values between minξb and maxξb are 

applied in order to find the optimum ξb for each one of the 

normalized response (ub,us,as) separately, of the base-

isolated 2-DOF. Thus, Figure 6 illustrates that the optimum 

ξb for minimizing the normalized (ub) is always the maxξb 

(except some few small values of Π2 <0.4 for γ=3) such a 

trend is in agreement with the previous conclusions, that is, 

the normalized (ub) decreases as the damping ξb increases. 

On the other hand, the optimum ξb for minimizing the 

normalized (us and as) is different from the maxξb for a 

certain range of values of Π2. For instance, in the case of the 

pulse with γ≈1, for approximately 1.1< Π2<2 the optimum 

ξb is equal to the maxξb (=70% in these study), while ξb for 

Π2<0.4 is equal to the minξb (=1%). For 0.4< Π2<1.1 the 

optimum ξb is somewhere between the minξb and the maxξb, 

increasing monotonically from the minξb to the maxξb as 

the normalized frequency Π2 increases from 0.4 to 1.1.  

 

 

Moreover, as γ increases, the range of values of Π2 where 

the optimum ξb is somewhere between the minξb and the 

maxξb is reduced; thus, being approximately 0.4< Π2<1.1 

for γ≈1 and 0.4<Π2<0.8 for γ=3.  In addition, the increase 

of γ also leads to an increase of the value of optimum ξb. 

For example, for Π2=0.75 in the case of γ≈1 and γ=3 the 

optimum ξb is approximately 18% and 52%, respectively. 

Thus, for a certain value of Π2 a value of ξb may be 

optimum for reducing (us,as), when for example γ≈1, but it 

is not the optimum for a different γ, a fact that makes even 

more complex the selection of a suitable viscous damping 

for the isolation system in a building near a fault. Also, 

from Figure 6 and 7, respectively, it can be concluded that 

the dimensionless parameter Π3 has an immaterial effect on 

the optimum ξb, but the dimensionless parameter Π4 has a 

greater effect than Π3 in the range of values of Π2 where the 

optimum ξb is between the minξb and the maxξb. In all cases 

it is obvious that the optimum ξb and the variation of the 

optimum ξb, as a function of the normalized frequency Π2, 

is the same for the normalized displacement and the 

acceleration of the superstructure (us and as). These 

examples have demonstrated that the optimum ξb is highly 

dependent on Π2 and, also, on the number of half-cycles γ 

in a certain range of the Π2 variation. 
 

 

5. Dimensional Analysis of a 2-Dof Model with 
Non-Linear Isolation System 

 

It is known that when damping emanates from non-

linear mechanisms, such as friction or yielding, the response 

 

Fig. 6 Variation of optimum ξb as a function of Π2=Τp/Tb for Π4=0.1, v=0, γ=1,2,3 and various values of Π3 
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depends on the amplitude of the excitation (Alhan and 

Gavin 2004) which implies that different normalized 

response curves of the base-isolated 2DOF structure would 

be obtained for different values of the peak ground velocity 

A of the pulse. Therefore, it would not be easy to deduct 

general conclusions for a nonlinear isolation system. 

Nevertheless, Makris and Black (2004), showed that the use 

of dimensionless Π-terms defined from dimensional 

analysis have the great advantage to provide self-similar 

solutions independent of the peak ground velocity A (or 

acceleration) of the pulse, even in the case of non-linear 

damping. Therefore, using dimensional analysis, as 

presented for the linear isolation system, it is found that the 

dimensionless Π-terms that describe the 2DOF with the 

bilinear isolation system (where we set ξb=0) for the simple 

harmonic pulses are: 

𝛱′1 =
𝑢𝑠,𝑚𝑎𝑥 ∙ 𝜔𝑝

𝑣𝑝

,
𝑢𝑏,𝑚𝑎𝑥 ∙ 𝜔𝑝

𝑣𝑝

,
𝑎𝑠,𝑚𝑎𝑥

𝜔𝑝 ∙ 𝑣𝑝

 (22) 

𝛱′1 = 𝛷(𝛱2, 𝛱3, 𝛱4, 𝛱5) (23) 

𝛱′5 =
𝑄

(𝑚 + 𝑚𝑏) ∙ 𝜔𝑝 ∙ 𝑉𝑝

 (24) 

𝛱6 =
𝑢𝑦 ∙ 𝜔𝑝

𝑣𝑝

 (25) 

Ιt should be mentioned that for the case of the 

mathematical model of Mavroeidis and Papageorgiou 

(2003), the dimensionless terms Π7 = v and Π8 = γ should 

be added. Notice that in Equations (22), (23) and (24) prime 

has been used to differentiate the Πi(i=1,5) terms from the 

ones expressed by Equations (16), (17) and (21). 

 

 

Figure 8 shows the variation of the normalized response 

(ub,us,as) of the base-isolated 2-DOF structure with 

nonlinear damping as a function of Π2 for various values of 

v and γ. Also, Figure 10 demonstrates that the parameter v 

has a minor effect on the normalized response (ub,us,as) of 

the base-isolated  2-DOF structure for small values of the 

dimensionless term Π΄5(=0.1), except for some small values 

of the dimensionless term Π2<0.7, where the normalized 

(ub) is affected by the variation of v. However, for larger 

values of Π΄5(=0.5) the parameter v seems to have a greater 

influence on the normalized response characteristics (ub,as). 

This influence is diminished as the parameter γ increases. In 

addition, it is observed that for small values of the 

dimensionless term Π΄5=0,1 as γ increases, there appear 

larger peak normalized response characteristics (ub,us,as),  

as in the case of the linear isolation system. It should be 

noted this is not the case for larger value of Π΄5=0.5, which 

implies that, as the dimensionless term Π΄5 increases, the 

effect of γ diminishes. 

Figure 9 demonstrates the influence of the 

dimensionless terms Π3, Π4, Π΄5, Π6 on the normalized 

response (ub, us, as) of the base-isolated 2-DOF structure 

with nonlinear damping presented as functions of Π2 for 

γ≈1 and v=0.  In particular, it is shown that for both small 

and large values of the dimensionless term Π΄5(=0.1 and 

0.5, respectively) the dimensionless term Π3 does not 

influence the normalized displacement of the isolation 

system (ub) and the total acceleration of the superstructure 

(as), but it affects the normalized displacement of the 

superstructure (us) to a small degree and only for values of 

Π2 <2.5, by reducing the normalized (us) when Π3 

decreases. Similarly, the second column of the same figure 

shows the negligible effect of the dimensionless term Π4 on  

 

Fig. 7 Variation of optimum ξb as a function of Π2=Τp/Tb for Π3=0.5, v=0, γ=1,2,3 and various values of Π4 
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Fig. 8 Variation on the normalized response (ub, us, as) of the base-isolated 2-DOF structure with non-linear damping as a 

function of Π2=Τp/Tb for various values of v and γ 

 

 

Fig. 9 Influence of the dimensionless terms Π3, Π4, Π’5, Π6 on the normalized response (ub, us, as) of the base-isolated 2-

DOF structure with non-linear damping presented as functions of Π2=Τp/Tb for γ=1 and v=0 
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the normalized response characteristics ub and as for small 

values of the dimensionless term Π΄5≤0,1 and again only for 

values of Π2<2.5 . However, for Π΄5=0.5 one can observe 

that Π4 has a noticeable influence on the normalized 

superstructure acceleration as for Π2 2.5 which implies that 

the greater the value of Π΄5 is, the greater the  

influence of Π4 on as. Irrespective of the value of Π5, 

though, for values of Π2<2.5 the dimensionless term Π4 has 

a decisive effect on the normalized us by causing a 

significant increase of (us) when it increases. As for the 

dimensionless term Π΄5 it seems to be the dominant factor 

in influencing the normalized response of the 2-DOF. It is 

quite interesting the fact that the dimensionless term Π5 can 

either increase or decrease the normalized response (us, as) 

depending on the value of Π2.  

It is interesting to note that there exists a range of values 

of the dimensionless term Π2 around the value of Π2=0.5 

where an increase in the normalized strength Π΄5 for certain 

values of Π΄5,  increases the normalized isolation 

displacement ub, a bahavior that could be regarded as 

‘counterintuitive’.  In the third column of Figure 10 

particularly, in the range of Π΄2=0.5 greater values of ub are 

observed for Π΄5=0.7 and 0.9 than those for Π΄5=0.5. 

Finally, the fourth column of Figure 10 illustrates the 

insignificant effect of the normalized yielding displacement 

Π6 of the nonlinear isolation system on the normalized 

maximum response of the 2-DOF (ub,us,as) for small values 

 

 

of Π5≤0.1. This observation shows that the conclusion made 

by Makris and Black (2004) using a bilinear SDOF that 

‘under a strong earthquake an isolated bridge will exhibit 

the same maximum displacement, regardless if it is 

supported on lead-rubber bearings or friction pendulum 

bearings that exhibit the same strength and offer the same 

isolation period’, can be also extended to a base-isolated 

building when Π΄5≤0.1. For Π΄5=0.5. Although the effect of 

Π6 on us is still insignificant, its effect on ub and as becomes 

noticeable. In particular, it is worth noting that for Π2 2 the 

normalized response (ub, as) increases as Π6 increases but 

for Π2 2 the opposite occurs. This trend reveals that for 

large values of Π΄5 the dimensionless term Π6 can increase 

or decrease the normalized response (ub,as) depending on 

the value of Π2. 

From Figure 9 it can be concluded that the 

dimensionless parameters that primarily affect the dynamic 

behavior of the base-isolated 2-DOF structure with 

nonlinear damping under idealized near-fault pulses are the 

terms Π2 and Π΄5 while the normalized (us) is also greatly 

affected by Π4 and less by Π3. However, as Π΄5 increases, 

Π6 also begins also to have a noticeable effect on ub and as. 

Even though these observations were made using the 

idealized pulse with γ≈1 the authors have verified them also 

for greater values of γ (= 2 and 3). 

Figure 10 presents the influence of the dimensionless 

term on the normalized response (ub,us,as) for the different 

 
Fig. 10 Influence of the dimensionless terms Π’5 on the normalized response (ub, us, as) of the base-isolated 2-DOF 

structure with non-linear damping presented as functions of Π2=Τp/Tb for characteristic values of Π3, Π4, Π6 and v=0,  

γ=1,2,3 
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number of half-cycles of the idealized pulses (γ=1, 2, 3). 

The significant role of Π΄5 is verified, irrespective of the 

number of half-cycles. For all values of γ there exists a 

range of values of Π2, where an increase of Π΄5 will 

increase the normalized response (us,as)  and another range 

of values of Π2 where Π’5 will have the opposite effect on 

(us,as). Figure 10 also reveals the existence of an optimum 

value of the normalized strength Π΄5, depending on the 

value of Π2, that will minimize the normalized response 

characteristics of the 2-DOF. The last conclusion is in 

agreement with the findings of other researchers that used 

recorded ground motions and the dimensionless term 

(Alhan and Gavin 2004, Jangid 2007) or other 

parameterization for the nonlinear isolation system (Jangid 

2005) in their studies.  

In Figure 11 the influence of the dimensionless term on 

the normalized response (ub,us,as) for different numbers of 

half-cycles of the idealized pulses (γ=1, 2, 3) is presented. 

The role of Π6 described previously is verified here, 

irrespective of the number of half-cycles. In addition, this 

figure clearly shows that the range of values of Π2 , where 

an increase of Π6 results in the increase of ub and as, 

becomes smaller as γ increases, thus, being approximately 

Π2<1.8 for γ≈1 and Π2<1.2 for γ=3. This means that there 

exists an optimum value οf Π6 depending again on the value 

of Π2=Τp/Tb that can minimize the normalized response of 

the 2-DOF, especially in the case of large values of Π5. 

Use of Figures 10 and 11 can help one choose the  

 

 

appropriate combination of values of Π΄5 and Π6. Therefore, 

the appropriate yield strength and yield displacement of the 

isolation system that will most effectively minimize the 

response of the 2-DOF under an idealized near-fault pulse 

characterized by ωp and A. 
 
 

6. Comparison of the Fixed SDOF Model with the 
Isolated 2-Dof Model 

 

The last part of this study examines that response of a 

fixed base building (SDOF) as well as the same building 

that is base isolated with linear or non-linear damping, both 

subjected to idealized pulses.  As it is known, the 

dimensionless parameter Tp/Ts plays a key role on the 

dynamic behavior of the SDOF (Mavroeidis et al. 2004), 

and respectively, the dimensionless parameter Tp/Tb plays a 

key role on the dynamic behavior of the isolated 2-DOF. 

However, using the parameter Tp/Ts allows plotting the 

response of both structures on the same graph. Thus, Figure 

12 presents the normalized response characteristics (us,as) of 

the fixed SDOF and the isolated 2-DOF as a function of the 

dimensionless parameter Tp/Ts ,where Ts is the period of the 

fixed SDOF.  Inspection of this figure shows the 

vulnerability of the isolated building compared to the fixed 

one, as first revealed by other researchers, e.g., 7, 8. In 

particular, it is observed that, depending on the value of the 

parameter Tp/Ts and the values of the dimensionless terms 

Π3, Π4, Π5, Π6 that define the characteristics of the isolation  

 
Fig. 11 Influence of the dimensionless terms Π6 on the normalized response (ub, us, as) of the base-isolated 2-DOF 

structure with non-linear damping presented as functions of Π2=Τp/Tb for characteristic values of Π3, Π4, Π’5 and v=0,  

γ=1,2,3 
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system, for the same superstructure and idealized pulse, 

base isolation can have a beneficial or a detrimental effect 

on the response of the structure. For instance, for γ=2, and 

Tp/Ts<2 the isolation system reduces significantly the 

normalized acceleration as, but for Tp/Ts>3 the opposite 

occurs and, even for highly damped systems with 30% 

viscous damping, the normalized acceleration of the 

structure as is amplified compared to the fixed structure. In 

addition, it is noted the fact that even the normalized 

displacement of the isolated superstructure us for certain 

values of Tp/Ts and for certain values of the characteristics 

of the isolation system can be greater than the respective 

one of the fixed-base building. This is clearly seen, for 

example for γ=3, where for Tp/Ts>2.5 the 2-DOF with 

viscous damping Π5=5% and the one with nonlinear 

damping with Π΄5=0.1 and Π6=0.1 that give greater 

normalized displacement us than the fixed base SDOF. 
 

 

7. Conclusions 
 

In this study the dynamic behavior of a 2-DOF base-

isolated structure under idealized near-fault pulses is 

investigated. Both the linear and non-linear behavior of the 

isolation system is considered and the suitable 

dimensionless parameters of the isolation system are 

defined. Using the dimensional analysis in conjunction with 

closed form mathematical idealized pulses, self-similar 

curves are plotted on dimensionless graphs and various 

conclusions are drawn: 

 

 

Respectively to the case of SDOF (Mavroeidis et al. 

2004), it is also observed that for the base-isolated 2-DOF 

structure the parameter v has a minor effect on the peak 

normalized response of the structure for both the linear and 

the non-linear system, except for the case where γ 

approaches unity and then only for small values of the term 

Π2<0.7. The effect of v diminishes as the parameter γ 

increases. In addition, an increase of γ results in larger peak 

normalized response for both the linear and non-linear 

isolation systems with small normalized yield strength 

Π΄5≤0.1; however, the effect of γ diminishes as increases. 

For the linear isolation system, it is revealed that: (a) the 

dimensionless parameters that play a significant role on the 

dynamic behavior of the base-isolated 2-DOF structure 

under idealized near-fault pulses are the pulse-to- base 

isolation period ratio Π2 and the viscous damping Π5, while 

(b) the peak normalized relative displacement of the 

superstructure is also greatly affected by the isolation-to-

structure stiffness ratio Π4 and much less by the mass ratio 

Π3. However, the influence of Π4 and Π5=ξb on the 

superstructure displacement is significant only for Π2=Τp/Tb 

<3. Regarding the peak normalized isolation displacement 

and superstructure acceleration; they are both insensitive to 

the stiffness and mass ratios. Furthermore, it is shown that 

the viscous damping ξb can have either a beneficial or a 

detrimental effect on the peak normalized displacement us 

and the acceleration as of the superstructure, depending on 

the value of Π2. In addition, the existence of an optimum 

value of the viscous damping ξb that was first revealed by 

 
Fig. 12 Comparison of the response of (i) the fixed base structure; (ii) the base isolated structure with viscous damping and 

(iii) the base isolated structure with nonlinear damping 
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Jangid and Kelly (2001) is verified. It is also shown that the 

optimum ξb is highly dependent on both the period ratio Π2 

and the number of half-cycles γ which implies that for a 

certain value of Π2 a value of ξb may be optimum. 

For the nonlinear isolation system, the dimensionless 

parameters that play a major role on the dynamic behavior 

of the base-isolated 2-DOF structure under idealized near-

fault pulses are: (a) the pulse-to-base isolation period ratio 

Π2 and (b) the normalized yield strength Π΄5, while the 

normalized superstructure relative displacement is also 

primarily affected by the stiffness ratio Π4 and much less by 

the mass ratio Π3. The normalized yield displacement Π6 

has a very small effect on the response of the 2-DOF for 

small values of Π5≤0.1, and only for greater values of Π5 

the term Π6 begins to have a noticeable effect on the peak 

normalized isolation displacement and on the superstructure 

acceleration. This effect can be either detrimental or 

beneficial to the normalized isolation displacement and 

superstructure acceleration, depending on the value of Π2. 

Respectively, to the effect of damping on linear isolation 

systems, on non-linear systems the increase of the 

normalized strength Π5 can also either increase or decrease 

the normalized superstructure displacement and 

acceleration depending on the value of Π2, a fact that 

implies the existence of an optimum normalized strength Π5 

for each value of Π2. In addition, for the isolated 2-DOF, 

there exists a range of values of the dimensionless term Π2 

around the value of Π2=0.5 and a certain range of values of 

the normalized strength Π5, where an increase in the 

normalized strength Π5 increases the normalized isolation 

displacement ub. Knowing the influence of the normalized 

yield strength and yield displacement Π5 and Π6 on a 

response of the base-isolated building, as a function of the 

normalized period Π2 and the number of half-cycles γ, can 

help one to choose the optimum combination of values of 

Π5 and Π6 for specific values of Τp/Tb and γ, as well as the 

appropriate yield strength and yield displacement of the 

isolation system that will most effectively minimize the 

response characteristics of the 2-DOF under a certain 

velocity pulse. 

Finally, a comparison of the responses between a linear 

fixed-base SDOF and an isolated 2-DOF with both linear 

and non-linear damping has shown that, under certain 

values of the superstructure and isolation system 

characteristics, the use of an isolation system can amplify 

both the normalized acceleration as and the displacement of 

the superstructure us. This fact points out the need for 

careful design of base-isolated buildings that can be 

potentially subjected to strong velocity pulses. 

In this study a simple 2-DOF model has been used for 

the base-isolated building. The simpler case of a non 

isolated 2-dof system as well as  more complex and 

detailed models accounting for torsional response, for 

example models with more stories that could also account 

for more physical phenomena should be developed and 

studied to thoroughly investigate the response of real 

structural systems. Definitely, more research is required in 

this field. 
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CC 

 

 

Nomenclature 
 

The following symbols and abbreviations are used in 

this paper: 

 

Greek Letters 

γ Number characterizing the shape of the pulse 

λ Dimensionless parameter defined in eq. 19 


𝑏
 Damping parameter defined in eq. 6 


𝑠
 Damping parameter defined in eq. 5 

π Archimedes' constant 

𝜔𝑏 Circular frequency defiend in eq. 9 
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Dimensional analysis of base-isolated buildings to near-fault pulses 

 

𝜔𝑠 Circular frequency defiend in eq. 4 

 

Latin Letters 

A Velocity pulse amplitude  

a Function of time defined in eq. 11 

𝑎𝑔 Ground acceleration 

𝑐𝑠 Damping parameter defined in eq. 5 

DOF Degree of freedom 

𝑑𝑔 Ground displacement 

𝛫𝑏 Lateral stiffness of isolators 

𝛫𝑠 Lateral stiffness of superstructure 

m Mass of superstructure 

𝑚𝑏 Mass of foundation 

SDOF Single degree of freedom 

𝑇𝑏  Period defined in eq.8  

𝑇𝑠 Period defined in eq.3 

ub relative displacement of the isolation system 

us relative displacement of the superstructure 

vg Ground velocity 

vp Velocity amplitude 
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