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1. Introduction 
 

Wave propagation appears for multi-conceptualization 

physical phenomena, containing geophysics, blood flow, 

acoustics, hydrodynamics, non-destructive evaluation, and 

further applications in which waves are travelling in the 

demanding directions. For researchers who work on the 

ultrasonic inspection techniques and structural health 

monitoring, an adequate information on wave propagation 

response is one of the crucial necessities for varying 

material properties and geometries. 

As far as material properties is concerned, reinforced 

materials or structures have been widely considered by 

designers around the world (Jawaid, Thariq et al. 2018), 

because of the remarkable properties of the structure (i.e. 

high strength and stiffness). Hence, many structural analysis 

have performed effort to study on mechanical behavior of 

these structures so far (Mehar and Panda 2016, Bakhadda, 

Bouiadjra et al. 2018, Draoui, Zidour et al. 2019, Kar, 

Panda et al. 2019, Medani, Benahmed et al. 2019, Mehar 

and Panda 2019, Mehar and Panda 2019, Mehar, Panda et 

al. 2019). Generally speaking, a polymeric composite 

matrix can be reinforced with carbon nanotube, Graphene 

or Graphene Platelets (GPLs). However, as reported by 

(Rafiee, Rafiee et al. 2009), the strength and stiffness 

obtained by carbon nanotubes with 1% weight fraction can 
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be achieved for GPLs by adding only 0.1% weight fraction. 

Graphene as the thinnest two-dimensional material, 

which its thickness is only 0.34 nm, contains internal 

actions of atoms, known as the ‘‘size effect’’ which must be 

identified and estimated for exact analysis. In fact, 

experimental, molecular dynamics (MD) simulation and 

non-classical continuum theories are the main methods for 

estimating the role of size-dependent effects in which the 

third can be considered as the most efficient due to devoted 

time and effort. Classical continuum theories such as 

Kirchhoff plate theory, Three-Dimensional (3D) elasticity 

theory, various types of higher-order shear deformation 

theories (Dutta, Panda et al. 2017, Bourada, Amara et al. 

2018, Dash, Mehar et al. 2018, Fourn, Atmane et al. 2018, 

Boulefrakh, Hebali et al. 2019, Bourada, Bousahla et al. 

2019, Chaabane, Bourada et al. 2019, Dash, Mehar et al. 

2019, Meksi, Benyoucef et al. 2019, Ramteke, Panda et al. 

2019), and multiple quasi-3D shear deformation theories 

(Boukhlif, Bouremana et al. 2019, Mahmoudi, Benyoucef 

et al. 2019, Zaoui, Ouinas et al. 2019, Zarga, Tounsi et al. 

2019), are unable to predict the behavior of structures when 

the dimensions of the structure tend to the nanoscale. 

Therefore, there is a necessity to rewrite the classical 

relations by adding the small-scale parameters. To 

overcome this problem, some non-classical continuum 

theories have been developed and reported such as Eringen 

nonlocal model (Zemri, Houari et al. 2015, Bounouara, 

Benrahou et al. 2016, Bellifa, Benrahou et al. 2017, 

Kaghazian, Hajnayeb et al. 2017, Khetir, Bouiadjra et al. 

2017, Bensaid and Bekhadda 2018, Bensaid, Bekhadda et 
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al. 2018, Bouadi, Bousahla et al. 2018, Hosseini, Bahaadini 

et al. 2018, Mehar, Mahapatra et al. 2018, Mokhtar, 

Heireche et al. 2018, Rahmani, Deyhim et al. 2018, Yazid, 

Heireche et al. 2018, Youcef, Kaci et al. 2018, Berghouti, 

Adda Bedia et al. 2019, Boutaleb, Benrahou et al. 2019, 

Gao, Xiao et al. 2019), strain gradient model with one 

parameter (Papargyri-Beskou, Polyzos et al. 2009, 

Ghayesh, Amabili et al. 2013, Akgöz and Civalek 2014, 

Alimirzaei, Mohammadimehr et al. 2019), modified couple 

stress models (Ghayesh, Amabili et al. 2013, Kocaturk and 

Akbas 2013, Farokhi and Ghayesh 2015, Ghayesh, Farokhi 

et al. 2016, Ghayesh, Farokhi et al. 2017, Ghayesh and 

Farokhi 2018, Ghayesh, Farokhi et al. 2018, Wang and 

Zheng 2018), and nonlocal strain gradient model (Barati 

and Shahverdi 2017, Karami, Janghorban et al. 2017, 

Karami, Janghorban et al. 2018, Karami, Janghorban et al. 

2018, Karami, Janghorban et al. 2018, Karami, Shahsavari 

et al. 2018, Karami, Janghorban et al. 2019, Karami, 

Shahsavari et al. 2019). 

Among the above theories, “the differential equation 

consequent (but not equivalent) to Eringen strain-driven 

nonlocal elasticity theory (Eringen and Edelen 1972, 

Eringen 1983) has been generally used as a constitutive law 

for modeling nanoscale devices and systems (Romano, 

Barretta et al. 2017)“. The strain-driven nonlocal integral 

theory assumes that the strain at a point depends on both 

stress and spatial derivatives of the stress at that point. Of 

course, it's worth noting that the strain-driven integral law is 

not continuously adapted to investigate the nano scale 

structures defined on bounded domains. (Romano and 

Barretta 2017) presented an effective model to study the 

basic mechanics of nanobeams. In order to simplify the 

relations, researchers have conducted multiple mechanical 

studies via Eringen strain-driven nonlocal differential 

model. Forced vibrations of the nanoplate including the 

moving load were presented by (Shahsavari and Janghorban 

2017) based on refined plate theory. In another work 

(Shahsavari, Karami et al. 2017) investigated the 

hygrothermal effects on the dynamic response of 

viscoelastic nanoplates considering moving load via 

Eringen's nonlocal model. Vibrational response of bi-

directional Functionally Graded (FG) nanosize tubes were 

reported by (Li and Hu 2017) via Eringen nonlocal model. 

Guided wave propagation behavior of porous materials for 

rectangular nanoplates were reported by (Karami, 

Janghorban et al. 2018) via Eringen nonlocal model. 

Thermo-mechanical vibration of FG nanobeam were 

investigated by (Ebrahimi, Barati et al. 2018) based upon a 

new Eringen nonlocal model. Buckling response of 

nanotubes made of silicon carbide including surface effect 

via Eringen nonlocal model were investigated by (Mercan 

and Civalek 2017). 

Static, dynamic, and stability analysis of GNPs 

reinforced polymer composite plates are plenty; however, 

there is no study on the wave propagation of GNPs 

reinforced polymer composite plates. A structural vibration 

analysis of GNPs reinforced composite plates was presented 

by (Song, Kitipornchai et al. 2017) via the First-Order 

Shear Deformation Plate Theory (FSDT) that solved by 

Navier solution based technique. Moreover, (Song, Yang et 

al. 2018) studied the statics as well as stability of GNPs 

reinforced composite plates using the FSDT. An study on 

nonlinear vibration of GNPs reinforced composite plates 

was conducted by (Gholami and Ansari 2018) based on a 

unified higher-order model. Recently, (Arefi, Bidgoli et al. 

2018) investigated the size-dependent free vibrations of 

GNPs reinforced composite nanoplates based on a two-

variable sinusoidal shear deformation theory and Eringen's 

nonlocal model. Small-scale effects on the nonlinear large-

amplitude vibrations of GNPs reinforced porous 

micro/nano-plates were studied by (Sahmani, Aghdam et al. 

2018) for the first time. And in another work (Sahmani, 

Aghdam et al. 2018) analyzed the nonlinear axial instability 

of the structure. 

Owing to the lack of an investigations on the wave 

propagation analysis of GNPs reinforced composite 

nanoplates, the objective of the current work is to model the 

wave propagation behavior of the structure under in-plane 

magnetic field considering three-parameter elastic 

foundation (as known Kerr foundation). Different GNPs 

reinforcement distributions scheme are also studied. Halpin-

Tsai model and a rule of mixture are utilized to estimate the 

material properties of the structure. In order to examine the 

size-dependent wave behavior of nanostructure systems, 

Eringen nonlocal differential model is adopted. Equations 

of wave motion are obtained via a refined plate theory and 

solved analytically for wave propagation phenomenon. 

Then, the impact of significant parameters on the wave 

characteristics of the nanoplates, such as the nonlocality, 

GNPs components, wave number and elastic foundation are 

analyzed using parametric examples. 
 

 

2. Eringen nonlocal differential model 
 

The stress tensor for strain-driven nonlocal elasticity is 

given by (Eringen 1983), 

( ), ) ( ) ( )ij ij
V

x x x d V     = −  
(1) 

where σij and τij are respectively the local and nonlocal 

stress tensors. 

In current study, the following differential model is 

utilized to consider the small-scale effects,  

( )2 2

01 ( ) ij ijkl kle a C −  =
 

(2) 

herein 2 is the Laplacian operator. 

 

 

3. Basic formulation 
 

3.1 Functionally graded polymer composite 
nanoplate reinforced with GNPs 

 

Suppose configuration of a nanoplate made of polymeric 

composite materials with the length of a, width b, and 

thickness h which is made of NL layers with the thickness 

δh=h/NL as Fig. 1. To consider the filler inside each layer, 

the Graphene Nano-Platelets (GNPs) are used due to the 
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Fig. 1 The geometry of GNPs reinforced polymer 

composite nanoplate resting on Kerr foundation 

 

 

Fig. 2 Patterns of FG materials 

 

 

two different distribution schemes as uniformaly and non-

uniformly distribution (UD and FG) see in Fig. 2. 

The nanoplate’s Young modulus is as follows (Affdl and 

Kardos 1976) 

( ) ( )
( )

( ) ( )

31 51

8 1 8 1

k k
k L L GNP W W GNP

c M Mk k

L GNP W GNP

V V
E E E

V V

   

 

+ +
=  + 

− −
 

(3) 

herein the GNP and polymer matrix Young moduli are 

respectively represent by EM and EGNP; 𝑉𝐺𝑁𝑃
(𝑘)

 is GNP's 

volume fraction and defined as follows 

( )
( )

( ) ( )( )(1 )

k
k GNP

GNP k k

GNP GNP M GNP

g
V

g g 
=

+ −
 

(4) 

in which 𝑔𝐺𝑁𝑃
(𝑘)

 is the weight fraction; ρGNP and ρM denote 

the density of GNPs and polymer, respectively. Density and 

Poisson ratio for the k-layer GNPs reinforced composite 

nanoplates are defined as follow 

( ) ( ) ( )k k k

c GNP GNP M MV V  = +
 (5) 

( ) ( ) ( )k k k

c GNP GNP M MV V  = +
 (6) 

where νM and νGNP refer to the Poisson ratio of polymer 

matrix and GNPs, respectively and two additional 

parameters (ηL, ηW) are defined as 

( ) 1

( )

GNP M
L

GNP M L

E E

E E




−
=

+
 

(7) 

( ) 1

( )

GNP M
L

GNP M W

E E

E E




−
=

+
 

(8) 

in which ξL and ξW depend on the geometry as well as size 

of the GNP nanofillers as below 

2( )L GNP GNPl h =
 (9) 

2( )W GNP GNPw h =
 (10) 

where lGNP, wGNP, and hGNP are the average length, width, 

and thickness of the GNPs, respectively. The weight 

fraction of GNPs for two different distribution schemes are 

computed as follows (Song, Yang et al. 2018) 

*

( )

*

UD

2 ( 1) FG

GNPk

GNP

GNP L

g
g

kg N


= 

+  

(11) 

 

3.2 Kinematic relations 
 

To investigate the wave propagation of the nanoplate, 

following displacement field are considered (Ebrahimi, 

Barati et al. 2016): 

0

0

( , , , ) ( , , ) ( )

( , , , ) ( , , ) ( )

( , , , ) ( , , ) ( , , )

b s

b s

b s

w w
u x y z t u x y t z f z

x x

w w
v x y z t v x y t z f z

y y

w x y z t w x y t w x y t

 
= − −

 

 
= − −

 

= +
 

(12) 

where f(z) is the shape function and presented as follows 

( ) 25
( )

4 3
z zf z z

h
= − +

 
(13) 

The linear constitutive stress-strain relations for a k-

layer polymer composite nanoplate can be written as: 

( ) ( )

11 12

( ) ( )

12 22

2 2 ( )

44

( )

55

( )

66

(1

0 0 0

0 0 0

0 0 0 0

0 0 0 0
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)

k k
x x
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y y

k
yz yz
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k

xy xy
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C
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 −  =
 
 
 
  

  
  
  
  
  
  
  

      

(14) 

where  

( )

( ) ( )

11 22 ( ) 2

( ) ( ) ( ) ( )

12 21 11

( )

( ) ( ) ( )

44 55 66 ( )

1 ( )

( )
2(1 )

k

k k c

k

c

k k k k

c

k

k k k c

k

c

E
C = C =

C C C

E
C C C G z







−

= =

= = = =
+

 

(15) 

and μ=e0a. 

Non-zero strain-displacement relations are defined as 

follows: 
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where 
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(17) 

Owing to Hamilton's principle, the equations of motion 

can be defined as follows: 

0
( ) 0

t

U K V dt − + =  
(18) 

where U and K refer, respectively, to the strain and kinetic 

energies and δV denotes the applied forces. The variation of 

strain energy is defined as 

2

2

0 0 0

0 0 0

h

x x y y yz yz xz xz xy xy
h A

b b b b b b

x x y y xy xy x x y y xy xy
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−
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= + + + + +

+ + + + + =

 



 

(19) 

herein the variables at the last expression are defined by: 

2

2

1
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x y z
h

b b b
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(20) 

and  

2

2
( , ) ( , )

h
s s

xz yz xz yz
h

Q Q g dz 
−

 
(21) 

The kinetic energy variations can be written as 

following form: 

0 0 0 0
0
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(22) 

where (I0, I1, J1, I2, J2, K2) are mass inertias introduced as 

below: 

   
( )

2 2 ( )

0 1 1 2 2 2

1 ( )

, , , , , 1, , , , ,
L

z k zN
k

c

k z k
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=

= 
 

(23) 

 

3.3 Kerr elastic foundation model 
 

The relation of a three-parameter elastic foundation 

including a shear layer and two linear layer which is known 

as Kerr model, is expressed as (Rad 2015), 

2 2

Kerr Kerr( ) ( ) ( )s l u s u

l u l u l u

k k k k k
q q w w

k k k k k k
−  = − 

+ + +
 

(24) 

The first variation of work done can be obtained as: 

2
2 2

Kerr
2

h

x
h A

V hH w q w dAdz   
−

 =  +  
 

(25) 

where   represents the magnetic permeability, and Hx is 

the magnetic potential. By inserting Eqs. (19), (22), and 

(25) into Eq. (18), and setting the coefficients of 

0 0, , , andb su v w w     to zero, the following equations 

can be found 
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(29) 

According to the stress-strain relations (Eq. (14)) and 

governing equations (Eqs. (26-29)), the stress resultants are 

obtained as: 
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herein the cross-sectional rigidities are defined as follows: 
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( )

( ) 2

44 55 55

1 ( )

L
z k zN

s s k

k z k

A A C g dz

+

=

= = 
 

(35) 

According to ENDM, and inserting Eqs. (30)-(33) into 

Eqs. (26)-(29), the following equations of wave motion in 

which size-dependent behavior are considered can be 

obtained in terms of displacements according to the 

following forms: 
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(39) 

in which di, dij, dijl, and dijlm are the following differential 

operators: 

2 3

4

, ,

, ( , , , 1,2)

i ij ijl

i i j i j l

ijlm

i j l m

d d d
x x x x x x

d i j l m
x x x x

  
= = =
     


= =
   

 

(40) 

and 
2

11 22(1 ( ))d d = − + . 
 
 

4. Solution procedure 
 

Here an analytical technique using harmonic series is 

performed to solve the wave propagation problem. 

Following relations are considered based on Taylor series as 

follows 

( )

( )

( )

( )

0 1

0 2

3

4

exp

exp

exp

exp

x y

x y

b x y

s x y

u A i xk yk t

v A i xk yk t

w A i xk yk t

w A i xk yk t









= + −

= + −

= + −

= + −
 

(41) 

where A1-A4 represent the wave amplitude; kx and ky denote 
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the wave numbers; ω is wave frequency. By inserting Eq. 

(41) into Eqs. (36)-(39) gives 

   ( ) 2 0K M−  =
 

(42) 

where [K] and [M] are respectively the stiffness matrix and 

the mass matrix. 

The wave frequency can be calculated by setting the 

following determinant to zero,  

   2 0K M− =
 

(43) 

Note that: the phase velocity can be defined as 

C=ω/k (44) 

herein it is assumed that k =kx=ky. 

 
 
5. Numerical results and discussions 

 

In the current work, based on a higher-order shear 

deformation refined plate theory and ENDM, size-

dependent wave characteristics of the GNPs reinforced 

nanoplates resting on Kerr foundation is investigated 

considering in-plane magnetic field effects.  

Initially, the accuracy of the present solution is shown 

by comparing the obtained phase velocity with those 

reported by (Karami, Shahsavari et al. 2018) where the 

second-order plate theory was used and the results are 

illustrated in Fig. 3. At first sight, a good agreement can be 

seen for two different distance modes of wave propagation. 

It is interesting to note that (Fourn, Atmane et al. 2018) 

previously showed that the refined plate model prepare an 

excellent achievement for analysis of wave propagation.  

Herein we use an epoxy-matrix with following material 

properties: Young modulus EM=3GPa, Poisson’s ratio 

νM=0.34, and density ρM=1200kg/m3. Further, material 

properties of reinforcements are considered as a GNPs with 

EGNP=1.01TPa, νGNP=0.186, ρ=1060kg/m3. The thickness of 

the  nanoplate is h=20 nm, and is created of GNPs against 

length lGNP=3 nm, thickness hGNP=0.7 nm, width wGNP=1.8 

nm (Liu, Ming et al. 2007). 

Moreover, to show the accuracy of the present model to 

study the GNPs reinforced composite plates, non-

dimensional natural frequencies of the plate is compared 

with those reported by (Song, Kitipornchai et al. 2017) and 

(Arefi, Bidgoli et al. 2018), and then the results are 

tabulated in Table 1. It is easily observed that there is a 

closeness between the two different mathematical models. 

To investigate the size-dependent behavior of 

nanostructure systems, Fig. 4 is plotted. Fig. 4 demonstrates 

the nonlocality effect on the GNPs reinforced composite 

nanoplates with UD and FG distributions patterns. It is 

concluded that the nonlocality has the same effects on the 

wave characteristics such that by increasing the nonlocal 

parameter, phase velocity will decrease. What is more 

important would be that this trend is highlighted for the 

bigger value of wave number. All of mentioned results are 

the same for both methods of reinforcements. 

 

 
Fig. 3 The dispersion curves for isotropic rectangular 

nanoplates. 

 

Table 1 Comparative assessment of the non-dimensional 

natural frequencies based on different patterns 

Model Pure Epoxy UD FG 

*a 0.0584 0.1216 0.1118 

*b 0.0584 0.1216 0.1118 

Present 0.05843 0.12158 0.11178 
*a: Ref. (Song, Kitipornchai et al. 2017); *b: Ref. (Arefi, 

Bidgoli et al. 2018) 

 

 

Weight fraction effect (g*
GNP) on the phase velocity of 

two different distance modes of wave propagation with 

respect to wave number is demonstrated in Fig. 5. The 

results are obtained for UD as well as FG-A patterns of 

reinforcements. It is easily observable that increasing 

weight fraction leads to an increment on the value of phase 

velocity for both of distance modes of propagation. Hence, 

the lowest phase velocity in the both modes of propagation 

is for the pure epoxy. This parameter plays more important 

role on the results of longitudinal waves. Also, it is 

observed that the impact of weight fraction on the results 

depends considerably on the wave number. 
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Fig. 4 The effects of nonlocal parameter on the dispersion 

curve of GNPs reinforced composite nanoplates (h=20 

nm, g*
GNP=1%, Nl=10) 

 

 

 
Fig. 5 The effects of weight fraction (g*

GNP) on the 

dispersion curve of GNPs reinforced composite 

nanoplates, with a fixed FG pattern (h=20 nm, µ=1 nm, 

Nl=10) 

 

Fig. 6 The effects of magnetic potential on the dispersion 

curve of GNPs reinforced composite nanoplates, with a 

fixed FG pattern (h=20 nm, µ=1 nm, Nl=10). 

 

 

 
a: k=1 1/nm 
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b: k=2 1/nm 

Fig. 7 The effects of number of layers (NL) on the 

dispersion curve of GNPs reinforced composite 

nanoplates, with a fixed FG pattern according to different 

fixed wave numbers (h=20 nm, g*
GNP=2%). 

 

 

In-plane magnetic field effect (as an external physical 

force) on the wave propagation of composite nanoplates 

with a fixed FG pattern is demonstrated in Fig. 6. The 

results are obtained with respect to the wave number as well 

as magnetic field intensity and show by a 3D graphical 

form. By closer examination could be seen that the 

magnetic field has more effect on the results when the wave 

number is very small (k<0.1 1/nm). 

One of the important parameters in the investigation of 

reinforced structures with GPNs is the number of layers 

(NL). Fig. 7 shows the effect of the layer number. In this 

way, the impact of the layer number with respect to 

nonlocal parameters as well as two fixed wave number is 

investigated. It is interesting to note that the number of 

layers is in relation with wave number because for both two 

different distance modes by changing wave number the 

effect of the layer number is changed. If we want to express 

it differently, it means that in the wave number 1 1/nm, with 

increasing number of layers in both of the different modes, 

phase velocity will be increased, but in the wave number 2 

1/nm, increasing the number of layers, leads a decrement in 

the phase velocity for the longitudinal mode, while in the 

flexural mode the phase velocity is reduced (it can be said 

to be almost unchanged). 

As the last step of the present investigation, the impact 

of Kerr foundation on the phase velocity variations of the 

GNPs reinforced nanoplates is illustrated in Fig. 8 when 

k=0.1 1/nm. The FG reinforcements distribution pattern is 

utilized. It can be seen that the effect of upper linear layer 

stiffness on the phase velocity of the nanoplate is more than 

lower linear layer once. Further, it is concluded that the 

shear layer of foundation plays prominent role on the results 

of the structure in comparison with linear layers. 

 

 

6. Conclusions 
 

This article studies wave propagation behavior of a 

GNPs reinforced composite nanoplates resting on Kerr 

foundation under in-plane magnetic field by developing a 

 
Fig. 8 The effects of Kerr foundation on the flexural 

dispersion curves of GNPs reinforced composite 

nanoplates with a fixed FG pattern (h=20 nm, g*
GNP=1%, 

µ=1 nm). 

 

 

higher-order refined plate model and ENDM. Using 

observation, it can be concluded that nonlocal effects cause 

to smaller phase velocities for each pattern and the impact 

of nonlocality depends on the wave number. The phase 

velocities may decrease with the reduction in weight 

fraction percentage. Moreover, an increase in the number of 

the layers leads to a reduction in the nanoplate rigidity and 

magnitude of phase velocity for a specific wave number 

(k=1 1/nm). Furthermore, the longitudinal wave mode 

always has bigger phase velocity than flexural wave mode. 

Another interesting point would be that increasing the 

magnetic field intensity leads an increase in the results of 

composite nanoplates reinforced with GNPs. Moreover, the 

influences of the Kerr foundation mostly affected by the 

shear layer of the foundation. 
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