
Structural Engineering and Mechanics, Vol. 74, No. 5 (2020) 679-698 

DOI: https://doi.org/10.12989/sem.2020.74.5.679                                                                 679 

Copyright © 2020 Techno-Press, Ltd. 
http://www.techno-press.com/journals/sem&subpage=7                                     ISSN: 1225-4568 (Print), 1598-6217 (Online) 

 

1. Introduction 
 

Nanocomposite materials are widely used in light 

weight structures also to reinforce the cylindrical shell, 

because these materials have some remarkable properties 

like as high strength, high stiffness, high aspect ratio and 

with very low density structures. From engineering 

perspective, one of the most important problems is dynamic 

analysis of cylindrical shell of carbon nanotubes reinforced 

composites.  

In the recent years, some researches have been 

investigated in structures made of nanocomposite materials. 

A review of carbon nanotubes (2011), Molecular dynamics 

study of the stress–strain behavior (2007)-(2011), Dynamic 

analysis of functionally graded nanocomposite (2012) and 

nonlinear analysis of functionally graded nanocomposite 

(2013) can be listed as some of previous works. Also some 

different numerical methods can be possible for the analysis 

of plates and shells such as DSC, HDQ, and DQ. New exact 

solutions for vibration of thin circular cylindrical shells with 

intermediate ring supports, based on the Goldenveizer– 
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Novozhilov shell theory was presented by Xiang et al. 

(2002). Civalek (2008) developed. Civalek (2006) 

developed the discrete singular convolution (DSC) 

algorithm for determining the frequencies of the free 

vibration of laminated conical shells by using a numerical 

solution of the governing differential equations of motion 

based on Loves first approximation thin shell theory. The 

discrete singular convolution (DSC) method was expanded 

by Civalek (2008) for static analysis of thick symmetric 

cross-ply laminated composite plates based on the first-

order shear deformation theory of Whitney and Pagano. 

Regularized Shannons delta (RSD) kernel and Lagrange 

delta sequence (LDS) kernel were selected as singular 

convolution to illustrate the present algorithm. Gürses et al. 

(2009) investigated free vibration of laminated skew plates. 

Discrete singular convolution (DSC) method was used for 

numerical solution of vibration problems. Large deflection 

analysis of laminated composite plates was perused by 

Baltacıoglu et al. (2010). Nonlinear governing equation for 

bending based on first-order shear deformation theory 

(FSDT) in the von Karman sense was presented. These 

equations had been solved by the method of discrete 

singular convolution (DSC). Regularized Shannons delta 

(RSD) kernel and Lagrange delta sequence (LDS) kernel 

were selected as singular convolution to illustrate the 

present algorithm. Civalek et al. (2010) presented buckling 

analysis of rectangular plates subjected to various in-plane 

compressive loads using Kirchhoff plate theory. The 

method of discrete singular convolution had adopted. 

Linearly varying, uniform and non-uniform distributed load 
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conditions were considered on two-opposite edges for 

buckling. Baltacıoglu et al. (2011) in a paper presented 

nonlinear static analysis of a rectangular laminated 

composite thick plate resting on nonlinear two-parameter 

elastic foundation with cubic nonlinearity. The plate 

formulation was based on first-order shear deformation 

theory (FSDT). The nonlinear static deflections of 

laminated plates on elastic foundation were investigated 

using the discrete singular convolution method. A unified 

analytical method based on the first-order shear 

deformation theory was developed for the vibration analysis 

of moderately thick composite laminated cylindrical shells 

subjected to general boundary conditions and arbitrary 

intermediate ring supports, and various lamination schemes 

by Jin et al. (2013). Talebitooti (2013) in one of his paper 

focused on the free vibration analysis of thick, rotating 

laminated composite conical shells with different boundary 

conditions based on the three-dimensional theory, using the 

layerwise differential quadrature method (LW-DQM). 

Xiang and Chen (2014) examined meshless local 

collocation method for natural frequencies and mode shapes 

of laminated composite shells. Shen (2012) studied thermal 

buckling and postbuckling behavior of functionally graded 

carbon nanotube-reinforced composite cylindrical shells. 

They considered two kinds of carbon nanotube-reinforced 

composite (CNTRC) shells, namely, uniformly distributed 

(UD) and functionally graded (FG) reinforcements. The 

material properties of FG-CNTRCs are assumed to be 

graded in the thickness direction, and are estimated through 

a micromechanical model. The governing equations are 

based on a higher order shear deformation theory with a von 

Kármán-type of kinematic nonlinearity. Elasticity solution 

of functionally graded carbon nanotube-reinforced 

composite cylindrical panel subjected to thermomechanical 

load was investigated by Alibeigloo (2016). Axisymmetrical 

bending of single and multi-span functionally graded 

hollow cylinders was studied by Bian and Wang (2013). Lei 

et al. (2013) carried out buckling analysis of functionally 

graded carbon nanotube-reinforced composite plates using 

the element-free kp-Ritz method. They applied the first-

order shear deformation plate theory and a set of mesh-free 

kernel particle functions used to approximate two-

dimensional displacement fields. Effective properties of 

materials of the plates reinforced by single-walled carbon 

nanotubes (SWCNTs) are estimated through a 

micromechanical model based on either the Eshelby–Mori–

Tanaka approach or the extended rule of mixture. Nonlinear 

forced vibration analysis of functionally graded carbon 

nanotube-reinforced composite Timoshenko beams was 

proposed by Ansari et al. (2014). Wu and Liu (2016) 

developed a state space meshless method for the 3D 

analysis of FGM axisymmetric circular plates. Free 

vibration analysis of rotating functionally graded carbon 

nanotube-reinforced composite truncated conical shells was 

studied by Heydarpour et al. (2014). Ghannad et al. (2012) 

performed Elastic analysis of pressurized thick truncated 

conical shells made of functionally graded materials. Zhang 

(2017) investigated an element-free based IMLS-Ritz 

method for buckling analysis of nanocomposite plates of 

polygonal planform. He examined the buckling behavior of 

nanocomposite plates of polygonal planform under in-plane 

loads. The plate under consideration is reinforced by single-

walled carbon nanotubes (CNTs). The governing eigenvalue 

equation to this problem is derived based on the first-order 

shear deformation plate theory (FSDT) with a set of 

element-free shape functions in approximating the two-

dimensional displacement fields. To solve this eigenvalue 

equation, the element-free IMLS-Ritz method is employed 

to furnish the buckling solution. Elastodynamic analysis of 

quadrilateral CNT-reinforced functionally graded composite 

plates using FSDT element-free method was carried out by 

Zhang et al. (2016). Liaw (2006) analysis of the surface 

plasmon resonance of a single core-shelled nanocomposite 

by surface integral equations. He investigates the 

interactions of an illuminating light with a single 

nanocomposite (a core-shelled nanoparticle) in the range of 

ultraviolet (UV) to near infrared (NIR), a set of new surface 

integral equations was derived from the Stratton–Chu 

formulation of Maxwells equations for a two-dimensional 

TM-mode problem. These integral equations belong to 

Fredholm equations of the second kind. Using the 

boundary-element method (BEM), these equations are 

solved to obtain the surface components (the tangential 

magnetic field, the normal displacement field and the 

tangential electric field) along the multi-connected 

interfaces (host/shell and shell/core) simultaneously.  

In recent decade, Meshless Local Petrov-Galerkin 

(MLPG) method has become very useful and effective 

solving method in cylindrical shell for nanocomposite 

material because these materials have variable mechanical 

properties and this method doesnt require to the mesh 

generation on the domain. The MLPG concept was 

presented first by Atluri and Zhu (1998). They solved 

elasto-static problems in two dimensional domains. Liew et 

al. (2004) investigated the active control of laminated 

composite plates with piezoelectric sensor/actuator patches 

using an efficient mesh-free method, i.e. the element-free 

Galerkin (EFG) method. The formulation of the problem 

was based on the first-order shear deformation plate theory 

(FSDT) and the principle of virtual displacements. Hosseini 

et al. (2011) presented Meshless local Petrov–Galerkin 

method for coupled thermoelasticity analysis of a 

functionally graded thick hollow cylinder. In their work, 

coupled thermoelasticity (without energy dissipation) based 

on Green–Naghdi model is applied to functionally graded 

(FG) thick hollow cylinder. The meshless local Petrov–

Galerkin method is developed to solve the boundary value 

problem. The Newmark finite difference method is used to 

treat the time dependence of the variables for transient 

problems. The FG cylinder is considered to be under 

axisymmetric and plane strain conditions and bounding 

surfaces of cylinder to be under thermal shock loading. 

Three dimensional static and dynamic analysis of thick 

functionally graded plates by the Meshless Local Petrov–

Galerkin (MLPG) method can be found in Rezaei Mojdehi 

et al. (2011). It can be concluded from their work that the 

three dimensional (3D) static and dynamic analysis of thick 

functionally graded plates based on the Meshless Local 

Petrov–Galerkin (MLPG). Using the kinematics of a 

threedimensional continuum, the local weak form of the 
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equilibrium equations is derived. A weak formulation for 

the set of governing equations is transformed into local 

integral equations on local sub-domains using a Heaviside 

step function as test function. Also Hosseini (2012) 

employed Analysis of elastic wave propagation in a 

functionally graded thick hollow cylinder using a hybrid 

mesh-free method. They are presented a hybrid mesh-free 

method based on generalized finite difference (GFD) and 

Newmark finite difference (NFD) methods is presented to 

calculate the velocity of elastic wave propagation in 

functionally graded materials (FGMs). Elastic wave 

propagation in a functionally graded nanocomposite 

reinforced by carbon nanotubes employing meshless local 

integral equations (LIEs) was developed by 

Ghayoumizadeh et al. (2013). In their work, the transient 

dynamic analysis of displacement field and elastic wave 

propagation in finite length functionally graded 

nanocomposite reinforced by carbon nanotubes are carried 

out using local integral equations (LIEs) based on Meshless 

Local Petrov–Galerkin (MLPG) method. Ghadiri Rad et al. 

(2015) studied geometrically nonlinear dynamic behavior of 

FG thick hollow cylinder under axisymmetric mechanical 

shock loading using Meshless Local Petrov–Galerkin 

(MLPG) method. 2.5D elastic wave propagation in non-

homogeneous media coupling the BEM and MLPG 

methods was employed by Tadeu et al. (2015). 

The breakage of material is very difficult to simulate 

into some mesh based methods such as FEM is essentially 

based on continuum mechanics, in which the elements 

formulated cannot be broken. Serious error can occur 

because the nature of mechanical properties in 

nanocomposite is nonlinear, and therefore the results are 

highly path dependent. So, MLPG method can be 

successfully used for dynamic analysis of nanocomposite. 

In other words, MLPG method is a powerful numerical 

method and flexibility such as other methods like finite 

element method, generalized finite difference method fast 

accuracy of DQ or DSC method, etc. 

In the present paper, the authors have extended a 

meshless method based on the local Petrov-Galerkin for 

dynamic analyses of asymmetric nanocomposite cylindrical 

shell. In order to discretize the derived equations in time 

domains, the Meshless Local Petrov-Galerkin (MLPG) 

method is combined with Newmark time approximation 

scheme. The obtained results by the MLPG method 

compare with analytical method, Finite Element Method 

(FEM) and the element free Galerkin (EFG) method. 

Finally, the non-symmetric nanocomposite cylindrical shell 

is analyzed under shock loading. 
 

 

2. Governing equation 
 

 The governing equations for cylindrical shell with 

asymmetric geometry and boundary conditions in polar 

coordinates of elastic wave motion are given as follows: 

𝜎𝑟,𝑟 +
1

𝑟
𝜏𝑟𝜃,𝜃 +

1

𝑟
(𝜎𝑟 − 𝜎𝜃) = 𝜌(𝑟)𝑢𝑟,𝑡𝑡 (1) 

1

𝑟
𝜎𝜃,𝜃 + 𝜏𝑟𝜃,𝑟 +

2

𝑟
𝜏𝑟𝜃 = 𝜌(𝑟)𝑢𝜃,𝑡𝑡 

(2) 

where 𝜌(𝑟) is the mass density, 𝜎𝑟, 𝜎𝜃 and 𝜏𝑟𝜃 are radial, 

hoop and shear stresses, respectively. The terms 𝑢𝑟 and 𝑢𝜃 

denote the radial and hoop displacement, respectively.  

The boundary conditions corresponding to Eqs. (1)-(2) 

are 

Essential boundary 

condition: 
𝑢𝑖 = �̅�𝑖      𝑜𝑛 𝛤𝑢 (3) 

Natural boundary condition: 𝜎𝑖𝑗𝑛𝑗 = 𝑡�̅�    𝑜𝑛 𝛤𝑡 (4) 

where 𝑖, 𝑗 = 𝑟, 𝜃 and 𝑛𝑗 is the 𝑗th component of the unit 

outward normal vector on the boundary. 𝛤𝑢 is the essential 

boundary and 𝛤𝑡  is the natural boundary. 

In this paper, the cylindrical shell is made of a 

functionally graded nanocomposite reinforced by carbon 

nanotube (FGNRCN). The inner radius is 𝑟𝑖𝑛  and outer 

radius is 𝑟𝑜𝑢𝑡. The carbon nanotubes (CNTs) are distributed 

with different angle through the thickness of the cylindrical 

shell of FGNRCN as some grading patterns. The effective 

mechanical properties of the FGNRCN cylinder can be 

obtained based on a micro-mechanical model as follows 

𝐸1 = 𝜂1𝑉𝐶𝑁𝑇𝐸1
𝐶𝑁𝑇 + 𝑉𝑚𝐸𝑚 (5) 

𝜂2

𝐸2

=
𝑉𝐶𝑁𝑇

𝐸2
𝐶𝑁𝑇 +

𝑉𝑚
𝐸𝑚

 (6) 

𝜂3

𝐺12

=
𝑉𝐶𝑁𝑇

𝐺12
𝐶𝑁𝑇 +

𝑉𝑚
𝐺𝑚

 (7) 

𝜈𝑖𝑗 = 𝑉𝐶𝑁𝑇𝜈𝑖𝑗
𝐶𝑁𝑇 + 𝑉𝑚𝜈𝑚          𝑖, 𝑗 = 1,2,3        𝑖 ≠ 𝑗 (8) 

𝜌 = 𝑉𝐶𝑁𝑇𝜌
𝐶𝑁𝑇 + 𝑉𝑚𝜌𝑚 (9) 

𝑉𝐶𝑁𝑇 + 𝑉𝑚 = 1 (10) 

where the terms 𝑉𝐶𝑁𝑇  and 𝑉𝑚  are volume fractions of 

carbon nanotube and matrix, respectively. The subscripts 

𝐶𝑁𝑇  and 𝑚  stand for carbon nanotube and matrix, 

respectively. 𝐸1
𝐶𝑁𝑇 , 𝐸2

𝐶𝑁𝑇 , 𝐺12
𝐶𝑁𝑇 , 𝜈𝐶𝑁𝑇 , and 𝜌𝐶𝑁𝑇  are 

elasticity modulus, shear modulus, Poissons ratio and 

density of the carbon nanotubes, respectively. 𝐸𝑚 , 𝐺𝑚 , 

𝜈𝑚  and 𝜌𝑚  are elasticity modulus, shear modulus, 

Poissons ratio and density of the matrix, respectively and 

𝜂𝑖  (𝑖 =  1, 2, 3) are the CNT efficiency parameters. Four 

kinds of grading patterns are assumed for the carbon 

nanotube (CNT) volume fraction as follows:  

Linear 

type 𝑈𝐷: 
𝑉𝐶𝑁𝑇 = 𝑉𝐶𝑁𝑇

∗  (11) 

Nonlinear 

type 𝑉: 
𝑉𝐶𝑁𝑇 = 2𝑉𝐶𝑁𝑇

∗ (
𝑟 − 𝑟𝑖𝑛

𝑟𝑜𝑢𝑡 − 𝑟𝑖𝑛
) (12) 

Nonlinear 

type Λ: 
𝑉𝐶𝑁𝑇 = 2𝑉𝐶𝑁𝑇

∗ (
𝑟𝑜𝑢𝑡 − 𝑟

𝑟𝑜𝑢𝑡 − 𝑟𝑖𝑛
) (13) 

Nonlinear 

type X: 
𝑉𝐶𝑁𝑇 = 4𝑉𝐶𝑁𝑇

∗ |
𝑟 − 𝑟𝑚

𝑟𝑜𝑢𝑡 − 𝑟𝑖𝑛
|,     𝑟𝑚 =

𝑟𝑖𝑛 + 𝑟𝑜𝑢𝑡

2
 (14) 
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Fig. 1 Variation of nanotube volume fraction (𝑉𝐶𝑁𝑇) 

along the radial direction for types of UD, V, 𝛬 and X 

 

 

where 

𝑉𝐶𝑁𝑇
∗ =

𝜌𝑚𝑚𝐶𝑁𝑇

𝑚𝐶𝑁𝑇
2 + 𝜌𝐶𝑁𝑇 − 𝜌𝐶𝑁𝑇𝑚𝐶𝑁𝑇

 (15) 

The term 𝑚𝐶𝑁𝑇 is the mass fraction of nanotube. Fig. 1 

shows the various grading patterns can be found for 𝑟𝑖𝑛 =
1 m and 𝑟𝑜𝑢𝑡 = 1.5 m. 

For functionally graded nanocomposite material, related 

stresses to strains can be written in contracted notation as 

[
 
 
 
 
 
𝜎𝑟

𝜎𝜃

𝜎𝑧

𝜏𝜃𝑧

𝜏𝑧𝑟

𝜏𝑟𝜃]
 
 
 
 
 

=

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13 𝐶14 𝐶15 𝐶16

𝐶12 𝐶22 𝐶23 𝐶24 𝐶25 𝐶26

𝐶13 𝐶23 𝐶33 𝐶34 𝐶35 𝐶36

𝐶14 𝐶24 𝐶34 𝐶44 𝐶45 𝐶46

𝐶15 𝐶25 𝐶35 𝐶45 𝐶55 𝐶56

𝐶16 𝐶26 𝐶36 𝐶46 𝐶56 𝐶66]
 
 
 
 
 

[
 
 
 
 
 
𝜀𝑟

𝜀𝜃

𝜀𝑧

𝛾𝜃𝑧

𝛾𝑧𝑟

𝛾𝑟𝜃]
 
 
 
 
 

 (16) 

Functionally graded nanocomposite material is an 

orthotropic material so the stiffness matrix, 𝐶𝑖𝑗 , for an 

orthotropic material in terms of the engineering constants 

are 

11

1

Δ

z z

z

C
E E

 



 −
=

                                 

22

1

Δ

rz zr

r z

C
E E

 −
=

 

12
Δ Δ

r zr z r z rz

z r z

C
E E E E

   



     + +
= =

         

23
Δ Δ

z r zr z r rz

r z r

C
E E E E

   



     + +
= =

 

13
Δ Δ

zr r z rz r z

z r

C
E E E E

   

 

     + +
= =

         

33

1

Δ

r r

r

C
E E

 



 −
=

 

44 zC G=
   55 zrC G=

           

66 rC G =
 

(17) 

where 

 

Fig. 2 The unidirectional reinforced lamina 

 

 

1 2
Δ r r z z zr rz r z rz

r zE E E

     



        − − − −
=

 

(18) 

           , , ,  
ij ji

i j

i j r z
E E

 
= =  (19) 

For a unidirectional reinforced lamina in the 𝑟 − 𝜃 

plane shown in Fig. 2, a plane strain state is defined by 

setting 

0?           0?          0 z z zr  = = =  (20) 

so that 

0?           0?          0 r r       (21) 

The stresses and strains were defined in the principal 

material coordinates for an orthotropic material. However, 

the principal directions of orthotropic materials often do not 

coincide with coordinate directions that they are 

geometrically natural to the solution of the problem. For 

example Fig. 3 can be seen. Thus, a relation is needed 

between the stresses and strains in the principal material 

coordinates and those are in the body coordinates. At this 

point, we recall from elementary mechanics of materials in 

the transformation equations for expressing stresses in a 

𝑟 − 𝜃  coordinate system. The transformation matrix is 

shown as follow. 

 

2 2

2 2

2 2

2?  

2?    

   

cos sin sin cos

T sin cos sin cos

sin cos sin cos cos sin

   

   

     

 
 

= − 
 − − 

 (22) 

however, if the simple matrix 

[𝜚] = [
1 0 0
0 1 0
0 0 2

] (23) 

then the engineering strain vectors can be used instead of 

the tensor strain vectors in the strain transformation as well 

as in stress-strain low transformation. 

[

𝜀𝑟

𝜀𝜃

𝛾𝑟𝜃

] = [𝜚] [

𝜀𝑟

𝜀𝜃
𝛾𝑟𝜃

2

] (24) 
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Fig. 3 Helically wound fiber reinforced circular 

cylindrical shell 

 

 

However, [𝜚][𝑇][𝜚]−1  can be shown to be [𝑇]−𝑇 

where the superscript 𝑇 denotes the matrix transpose. Then, 

if we use the abbreviation 

[𝜚][𝑇][𝜚]−1 = [𝑇]−𝑇 (25) 

[�̅�] = [𝑇]−1[𝑄][𝑇]−𝑇  (26) 

The stress-strain relations in 𝑟 − 𝜃  coordinates for 

functionally graded nanocomposite material with different 

angle are 

11 12 16

12 22 26

16 26 66

r r r

r r r

Q Q Q

Q Q Q Q

Q Q Q

  

  

  

  

  

      
       = =        
              

(27) 

in which 

( )

4

11 11

2 2 4

12 66 222 2 ?

Q Q cos

Q Q sin cos Q sin



  

=

+ + +
 

( )

( )

2 2

12 11 22 66

4 4

12

4 ?Q Q Q Q sin cos

Q sin cos

 

 

= + −

+ +
 

( )

4

22 11

2 2 4

12 66 222 2 ?

Q Q sin

Q Q sin cos Q cos



  

=

+ + +
 

( )

( )

3

16 11 12 66

3

12 22 66

2 ?

2 ?

Q Q Q Q sin cos

Q Q Q sin cos

 

 

= − −

+ − +
 

( )

( )

3

26 11 12 66

3

12 22 66

2 ?

2 ?

Q Q Q Q sin cos

Q Q Q sin cos

 

 

= − −

+ − +
 

( )

( )

2 2

66 11 22 12 66

4 4

66

2 2 ?Q Q Q Q Q sin cos

Q sin cos

 

 

= + − −

+ +
 

(28) 

in Eq. (28) 𝑄11, 𝑄22, 𝑄12 and 𝑄66 define as follows 

( ) ( )
( )( )11

1 1

1 1

r r r

r r r r

E
Q

 

   

 

   

− −
=

− − −
        

(29) 

( ) ( )
( ) ( )22

1 1

1 1

r r

r r r r

E
Q

  

   

 

   

− −
=

− − −
 

( )

( )( )

( )

( )( )

12

1

1 1

1

1 1

r r r

r r r r

r r

r r r r

E
Q

E

 

   

  

   

 

   

 

   

−
=

− − −

−
=

− − −

 

66 rQ G =
 

The strain–displacement relations are given by  

,r r ru =
 

(30) 

( ),

1
ru u

r
   = +

 

(31) 

, ,

1 1
r r ru u u

r r
    = + −

 

(32) 

where 𝜀𝑟, 𝜀𝜃  and 𝛾𝑟𝜃  are radial, hoop and shear strain, 

respectively. 
 

 

3. Meshfree local integral equations 
 

Based on the local weighted residual method, the weak-

form for Eqs. (1)-(2) over a local subdomains 𝛺𝑄 

(integration) instead of constructing the global weak-form 

for whole domain of dynamic problem can be stated as 

( )
( ), , ,

1
0

Q

r

I r r r r ttrW r u d
r r



 

 
  



 −
+ + −  = 

 


 

(33) 

( ), , ,

21
0

Q

r
I r r ttrW r u d

r r


   


  



 
+ + −  =  

 

(34) 

where 𝑊𝐼  is the weight function and we use the same 

weight function for all the equations involved. Using the 

divergence theory for Eqs. (33)-(34) as follows 

( )

( )

, ,

,
0

Q Q

Q

I r r I I r I r r r

I r tt

n
rW W W d rW n d

r

rW r u d



   
    



 



+ +  − + 

+  =

 
 
 

 



 
(35) 

( )

( )

, ,

, 0

Q Q

Q

I I r r I r I r r

I tt

n
W rW W d rW n d

r

rW r u d


     



    



 



 
+ −  − +  

 

+  =

 



 
(36) 

where 𝛺𝑄 and 𝛤𝑄  are quadrature domain and boundary of 

quadrature domain, respectively. 𝑛𝑟 and 𝑛𝜃  
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Fig. 4 The domain and the boundary of cylindrical 

structure in MLPG method 
 
 

are the unit outward normal vectors on the boundary for 𝑟 

and 𝜃 direction, respectively. The boundary of quadrature 

domain is divided to some parts as 𝛤𝑄 = 𝛤𝑄𝑖
∪ 𝛤𝑄𝑢

∪ 𝛤𝑄𝑡
. 

The term 𝛤𝑄𝑖
 is the internal boundary of the quadrature 

domain, 𝛤𝑄𝑢
 is the part of the essential boundary that 

intersects with the quadrature domain and 𝛤𝑄𝑡
 is the part of 

the natural boundary that intersects with the quadrature 

domain (see Fig. 4). 

Then we can change the expression of Eqs. (35)-(36) to 

( ), ,

Q

Qi

I r r I I r

I r r r

rW W W d

n
rW n d

r

  




  

 





+ + 

 
− +  

 





 

 

( ) ,

Qu

Q Qt

I r r r

I r tt I r

n
rW n d

r

rW r u d rW t d


 





 

 
− +  

 

+  = 



 

 

(37) 

( ), ,

Q

Qi

I I r r I r

I r r

W rW W d

n
rW n d

r

   


 

  

 





+ − 

 
− +  

 





 

 

( ) ,

Qu

Q Qt

I r r

I tt I

n
rW n d

r

rW r u d rW t d


 

 

 





 

 
− +  

 

+  = 



 

 

(38) 

where 𝑡𝑟  and 𝑡𝜃  are the radial and hoop tractions, 

respectively and they are defined as follows: 

Table 1 Typical conventional from of radial basis function 

Item Name Expression 
Shape 

Parameters 

1 Multi quadrics (MQ) 
𝑅𝑖(�̅�)
= (�̅�2 + 𝐶2)𝑞 

𝐶, 𝑞 

2 Gaussian (EXP) 
𝑅𝑖(�̅�)
= 𝑒𝑥𝑝(−𝑐�̅�2) 

𝑐 

3 
Thin plate spline 

(TPS) 
𝑅𝑖(�̅�) = �̅�𝜍 𝜍 

4 Logarithmic RBF 𝑅𝑖(�̅�) = �̅�𝜍 log �̅� 𝜍 

 

 

r r r r

n
t n

r


 = +

 

(39) 

r r

n
t n

r


   = +

 

(40) 

The displacements can be approximated using the shape 

function. The shape function is defined for each point using 

the nodes in support domain 𝛺𝑠 of a point (see Fig. 4). The 

creation of MLPG shape functions is the central and most 

important issue in the MLPG methods. With development 

of more effective methods for constructing shape functions 

but yet one of the best methods is Radial Point Interpolation 

Method (RPIM) shape function. In this paper, we used 

RPIM shape function, the advantages of using this shape 

function are, the nodal distribution can be arbitrary within 

reason, the algorithm is stable, it possesses the Kronecker 

delta function property and the field approximation using 

the shape function is compatible throughout the problem 

domain. We choose radial functions as the basis in equation 

( ) ( ) ( ) ( ) ( )
1

, Θ
n

h T

Q i i Q Q

i

u r r R r r r r
=

= = ΘR

 

(41) 

where vector 𝜣 is defined in Eq. (42), and 𝑅𝑖 is a radial 

basis function with �̅� the distance between point 𝑥 and 𝑥𝐼 , 

so we have 

( )  1 2 3Θ ,Θ ,Θ , ,ΘT

Q nr = Θ
 

(42) 

( )
1/2

2 2 2 쟠 osI I Ir r r r r   = + − −   
(43) 

The vector 𝑹 has the form: 

( ) ( ) ( ) ( ) ( ) 1 2 3, , , ,T

nr R r R r R r R r= R
 

(44) 

There are a number of forms of Radial Basis Functions 

(RBF) used by the mathematics community. Table 1 lists 

the four most often used forms of radial functions with 

some shape parameters that can be tuned for better 

performance. 

In this paper we used the type of a classical form is 

called multiquadric (MQ) basis. The MQ basis function is 

following  
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( ) ( )2 2
q

iR r r C= +
 

(45) 

where 𝐶 and 𝑞 are constant coefficient. The matrix 𝑹𝑄 

can be written: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 2 1 1

1 2 2 2 2

1 2

n

n

Q

n n n n

R r R r R r

R r R r R r

R r R r R r

 
 

 =
 
 

  

R

 

(46) 

where 

( )
1/2

2 2 2 ? cos k k I k I k Ir r r r r   = + − −   
(47) 

Because the distance is directionless, we should have 

( ) ( )i j j iR r R r=
 

(48) 

Therefore, the moment matrix 𝑹𝑄 is symmetric. 

The vectors of coefficients 𝜣  in Eq. (41) are 

determined by enforcing that the interpolation passes 

through all the 𝑛 nodes within the support domain. The 

interpolation at the 𝑘th point has the form: 

( ) ( )
1

, Θ , ?    1,2, ,
n

k k k i i k k

i

u u r R r k n 
=

= = = 
 
(49) 

or in matrix form: 

s Q=U R Θ
 

(50) 

where 𝑼𝑠  is the vector that collects all the field nodal 

variables at the 𝑛 nodes in the support domain. A unique 

solution for vectors of coefficients 𝜣 is obtained if the 

inverse of 𝑹𝑄 exists: 

1

Q s

−=Θ R U
 

(51) 

Furthermore, shape function 𝜑(�̅�) is defined as follow: 

( ) ( ) 1    T

Qr r −= R R  (52) 

so the Eq. (41) can be written   

( ) ( ), ?h

Qu r r r u=
 

(53) 

Substitution of the Eq. (27) into Eqs. (37)-(38) gives 

∫ [𝑟𝑊𝐼,𝑟(�̅�11𝜀𝑟 + �̅�12𝜀𝜃 + �̅�16𝛾𝑟𝜃) + 𝑊𝐼(�̅�12𝜀𝑟 +
𝛺𝑄

�̅�22𝜀𝜃 + �̅�26𝛾𝑟𝜃) + 𝑊𝐼,𝜃(�̅�16𝜀𝑟 + �̅�26𝜀𝜃 +

�̅�66𝛾𝑟𝜃)] 𝑑𝛺 − ∫ 𝑟𝑊𝐼 [𝑛𝑟(�̅�11𝜀𝑟 + �̅�12𝜀𝜃 +
𝛤𝑄𝑖

�̅�16𝛾𝑟𝜃) +
𝑛𝜃

𝑟
(�̅�16𝜀𝑟 + �̅�26𝜀𝜃 + �̅�66𝛾𝑟𝜃)] 𝑑𝛤 −

∫ 𝑟𝑊𝐼 [𝑛𝑟(�̅�11𝜀𝑟 + �̅�12𝜀𝜃 + �̅�16𝛾𝑟𝜃) +
𝑛𝜃

𝑟
(�̅�16𝜀𝑟 +

𝛤𝑄𝑢

�̅�26𝜀𝜃 + �̅�66𝛾𝑟𝜃)] 𝑑𝛤 + ∫ 𝑟𝑊𝐼𝜌(𝑟)𝑢𝑟,𝑡𝑡𝛺𝑄
𝑑𝛺 =

(54) 

∫ 𝑟𝑊𝐼𝑡𝑟𝛤𝑄𝑡
𝑑𝛤  

∫ [𝑊𝐼,𝜃(�̅�12𝜀𝑟 + �̅�22𝜀𝜃 + �̅�26𝛾𝑟𝜃) + 𝑟𝑊𝐼,𝑟(�̅�16𝜀𝑟 +
𝛺𝑄

�̅�26𝜀𝜃 + �̅�66𝛾𝑟𝜃) − 𝑊𝐼(�̅�16𝜀𝑟 + �̅�26𝜀𝜃 +

�̅�66𝛾𝑟𝜃)] 𝑑𝛺 − ∫ 𝑟𝑊𝐼 [
𝑛𝜃

𝑟
(�̅�12𝜀𝑟 + �̅�22𝜀𝜃 +

𝛤𝑄𝑖

�̅�26𝛾𝑟𝜃) + 𝑛𝑟(�̅�16𝜀𝑟 + �̅�26𝜀𝜃 + �̅�66𝛾𝑟𝜃)] 𝑑𝛤 −

∫ 𝑟𝑊𝐼 [
𝑛𝜃

𝑟
(�̅�12𝜀𝑟 + �̅�22𝜀𝜃 + �̅�26𝛾𝑟𝜃) + 𝑛𝑟(�̅�16𝜀𝑟 +

𝛤𝑄𝑢

�̅�26𝜀𝜃 + �̅�66𝛾𝑟𝜃)] 𝑑𝛤 + ∫ 𝑟𝑊𝐼𝜌(𝑟)𝑢𝜃,𝑡𝑡𝛺𝑄
𝑑𝛺 =

∫ 𝑟𝑊𝐼𝑡𝜃𝛤𝑄𝑡
𝑑𝛤  

(55) 

using Eqs. (30)-(32) and (53) and substitution into the Eqs. 

(54)-(55), we receive 

∫ {𝑟𝑊𝐼,𝑟 [�̅�11 ((∑
𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝑟) +

𝛺𝑄

�̅�12 (
1

𝑟
((∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝜃 + (∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝑟)) +

�̅�16 (
1

𝑟
(∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝑟 + (∑

𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝜃 −

1

𝑟
(∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝜃)] + 𝑊𝐼 [�̅�12 ((∑

𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝑟) +

�̅�22 (
1

𝑟
((∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝜃 + (∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝑟)) +

�̅�26 (
1

𝑟
(∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝑟 + (∑

𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝜃 −

1

𝑟
(∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝜃)] + 𝑊𝐼,𝜃 [�̅�16 ((∑

𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝑟) +

�̅�26 (
1

𝑟
((∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝜃 + (∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝑟)) +

�̅�66 (
1

𝑟
(∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝑟 + (∑

𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝜃 −

1

𝑟
(∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝜃)]} 𝑑𝛺 −

∫ 𝑟𝑊𝐼 {𝑛𝑟 [�̅�11 ((∑
𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝑟) +

𝛤𝑄𝑖

�̅�12 (
1

𝑟
((∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝜃 + (∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝑟)) +

�̅�16 (
1

𝑟
(∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝑟 + (∑

𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝜃 −

1

𝑟
(∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝜃)] +

𝑛𝜃

𝑟
[�̅�16 ((∑

𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝑟) +

�̅�26 (
1

𝑟
((∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝜃 + (∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝑟)) +

�̅�66 (
1

𝑟
(∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝑟 + (∑

𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝜃 −

1

𝑟
(∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝜃)]} 𝑑𝛤 −

∫ 𝑟𝑊𝐼 {𝑛𝑟 [�̅�11 ((∑
𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝑟) +

𝛤𝑄𝑢

�̅�12 (
1

𝑟
((∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝜃 + (∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝑟)) +

�̅�16 (
1

𝑟
(∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝑟 + (∑

𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝜃 −

(56) 
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1

𝑟
(∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝜃)] +

𝑛𝜃

𝑟
[�̅�16 ((∑

𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝑟) +

�̅�26 (
1

𝑟
((∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝜃 + (∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝑟)) +

�̅�66 (
1

𝑟
(∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝑟 + (∑

𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝜃 −

1

𝑟
(∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝜃)]} 𝑑𝛤 + ∫ 𝑟𝑊𝐼𝜌(𝑟)𝑢𝑟,𝑡𝑡𝛺𝑄

𝑑𝛺 =

∫ 𝑟𝑊𝐼𝑡𝑟𝛤𝑄𝑡
𝑑𝛤  

∫ {𝑊𝐼,𝜃 [�̅�12 ((∑
𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝑟) +

𝛺𝑄

�̅�22 (
1

𝑟
((∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝜃 + (∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝑟)) +

�̅�26 (
1

𝑟
(∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝑟 + (∑

𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝜃 −

1

𝑟
(∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝜃)] + 𝑟𝑊𝐼,𝑟 [�̅�16 ((∑

𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝑟) +

�̅�26 (
1

𝑟
((∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝜃 + (∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝑟)) +

�̅�66 (
1

𝑟
(∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝑟 + (∑

𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝜃 −

1

𝑟
(∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝜃)] − 𝑊𝐼 [�̅�16 ((∑

𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝑟) +

�̅�26 (
1

𝑟
((∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝜃 + (∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝑟)) +

�̅�66 (
1

𝑟
(∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝑟 + (∑

𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝜃 −

1

𝑟
(∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝜃)]} 𝑑𝛺 −

∫ 𝑟𝑊𝐼 {
𝑛𝜃

𝑟
[�̅�12 ((∑

𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝑟) +

𝛤𝑄𝑖

�̅�22 (
1

𝑟
((∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝜃 + (∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝑟)) +

�̅�26 (
1

𝑟
(∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝑟 + (∑

𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝜃 −

1

𝑟
(∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝜃)] + 𝑛𝑟 [�̅�16 ((∑

𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝑟) +

�̅�26 (
1

𝑟
((∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝜃 + (∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝑟)) +

�̅�66 (
1

𝑟
(∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝑟 + (∑

𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝜃 −

1

𝑟
(∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝜃)]} 𝑑𝛤 −

∫ 𝑟𝑊𝐼 {
𝑛𝜃

𝑟
[�̅�12 ((∑

𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝑟) +

𝛤𝑄𝑢

�̅�22 (
1

𝑟
((∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝜃 + (∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝑟)) +

�̅�26 (
1

𝑟
(∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝑟 + (∑

𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝜃 −

1

𝑟
(∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝜃)] + 𝑛𝑟 [�̅�16 ((∑

𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝑟) +

�̅�26 (
1

𝑟
((∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝜃 + (∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝑟)) +

�̅�66 (
1

𝑟
(∑

𝜕𝜑𝑗

𝜕𝜃

𝑘
𝑗=1 ) �̅�𝑟 + (∑

𝜕𝜑𝑗

𝜕𝑟

𝑘
𝑗=1 ) �̅�𝜃 −

(57) 

1

𝑟
(∑ 𝜑𝑗

𝑘
𝑗=1 )�̅�𝜃)]} 𝑑𝛤 + ∫ 𝑟𝑊𝐼𝜌(𝑟)𝑢𝜃,𝑡𝑡𝛺𝑄

𝑑𝛺 =

∫ 𝑟𝑊𝐼𝑡𝜃𝛤𝑄𝑡
𝑑𝛤  

 

4. Time domain analysis 
 

In order to discretize Eqs. (56)-(57) in time domains, in 

this article, the Newmark time approximation scheme with 

suitable time step is used. Consider the governing equation 

of non-dimensional time 𝑡̅ = 𝑡𝑝 of system takes the form 

[𝑀]{�̈�𝑡𝑝} + [𝐾]{𝑢𝑡𝑝} = {𝐹𝑡𝑝} (58) 

𝐹0 and 𝑢0,  are the initial conditions so the following 

equation can be obtained 

[𝑀]{�̈�0} = {𝐹0} − [𝐾]{𝑢0} (59) 

The matrix [𝐾𝑚] and the vector {𝐹𝑚

𝑡𝑝} are defined as 

follows 

[𝐾𝑚] = [𝐾] +
1

𝜆1Δ𝑡2
[𝑀] (60) 

{𝐹𝑚

𝑡𝑝} = {𝐹𝑡𝑝} +
1

𝜆1Δ𝑡2
[𝑀]({𝑢𝑡𝑝−1} + Δ𝑡{�̇�𝑡𝑝−1}

+ (0.5 − 𝜆1)Δ𝑡2{�̈�𝑡𝑝−1}) 
(61) 

Using following equations the matrices of [𝑢𝑡𝑝], [�̇�𝑡𝑝], 
and [�̈�𝑡𝑝] can be computed 

{𝑢𝑡𝑝} = [𝐾𝑚]−1 {𝑓𝑚
𝑡𝑝} (62) 

{�̈�𝑡𝑝} =
1

𝜆1Δ𝑡2
({𝑢𝑡𝑝} − {𝑢𝑡𝑝−1} − Δ𝑡{�̇�𝑡𝑝−1}

− Δ𝑡2(0.5 − 𝜆1){�̈�
𝑡𝑝−1}) 

(63) 

{�̇�𝑡𝑝} = {�̇�𝑡𝑝−1} + Δ𝑡[(1 − 𝜆2){�̈�
𝑡𝑝−1} + 𝜆2{�̈�

𝑡𝑝}] (64) 

Using aforementioned equations, the matrices of {𝑢𝑡𝑝}, 
{�̇�𝑡𝑝}, and {�̈�𝑡𝑝} can be obtained for an arbitrary time. The 

best convergence rate can be achieved in this method by 

choosing 𝜆1 = 1 4⁄  and 𝜆2 = 1 2⁄ . 
 

 

5. Verification 
 

In this section, to demonstrate the capability and 

accuracy of the present method for dynamic analysis of the 

nanocomposite cylindrical shell, in the following, at first a 

problem is verified with analytical solution (Ugural and 

Fenster 2003) and then a cylindrical shell with the same 

geometry and boundary conditions (Shakeri et al. 2006) is 

solved using the present method and the results obtained for 

this analysis are compared. Shakeri et al. (2006) studied 

dynamic analysis of cylindrical shell using the FEM. Finally, 

the present method verified the results with those reported 

in the analysis done by Moradi-Dastjerdi et al. (2013) that 

in this analysis governing equations of nanocomposite 

cylindrical were solved using the element free Galerkin 

(EFG) method. 
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Fig. 5 The geometry and the boundary conditions 

 

 

5.1 Verification with analytical solution 
  

In this section, a cylindrical shell is considered with 

𝑟𝑖 = 0.25 𝑚, 𝑟𝑜 = 0.5 𝑚, and, 𝜃 = 𝜋
2⁄  𝑟𝑎𝑑, as the inner, 

outer radius, and angle of cylinder, respectively. The 

geometry and boundary conditions of this cylinder are 

showed in Fig. 5. The following boundary conditions are 

assumed for the problem to continue the study 

( ) ( ), ,r ir t P t  =
 

( ), , 0r or t  =
 

(65) 

( ), , 0ir t  =
 

( ), , 0or t  =
 

( ), , 0r ir t  =
 

( ), , 0r or t  =
 

( )0, , 0r minu r t =
 

( )0, , 0r maxu r t =
 

( ), , 0minu r t  =
 

( ), , 0maxu r t  =
 

( ) ( )0

0 1
c t

P t P e
−

= −
 

(66) 

where 𝑃0 = 20 𝑀𝑃𝑎 and 𝑐0 = 102  
1

𝑠𝑒𝑐
 are assumed. 

The results obtained for the cylindrical shell using 

analytical solution (Ugural and Fenster 2003) are as follow: 

( )2 2 2 2

2 2 2 2 2

1in out out in in in out out
rr

out in out in

r r P P r P r P

r r r r r


− −
= +

− −
 

(67) 

( )2 2 2 2

2 2 2 2 2

1in out out in in in out out

out in out in

r r P P r P r P

r r r r r


− −
= − +

− −
 

(68) 

( )

( )

2 2

2 2

2 2

2 2

1

1

1 2

in out out in

out in

rr

in in out out

out in

r r P P

r r r
u

E r P r P
r

r r





 −
 

−+  =
 −
 + −

−  

 
(69) 

also the terms 𝐸𝑟 = 𝐸𝜃 = 70 GPa  and 𝜈𝑟𝜃 = 𝜈𝜃𝑟 = 0.3 
are selected for the problem. It is possible the obtained 
results with those gotten from Eqs. (67)-(69) are compared. 
Fig. 6, shows the radial displacement through the thickness 
of the cylindrical shell. From this Figure can be seen a good 
agreement between results obtained from the present 
method with analytical solution. Figs. 7 and 8 depict the 
radial and hoop stress, respectively. From these Figures can 
be concluded the present method has high accuracy and 
capability to dynamic analysis of the cylindrical shell. 

In Table 2 percentage errors for local Petrov–Galerkin 
method and the analytical solution in middle point of 
thickness of the cylinder (r=0.375 m) are shown. Table 2 
indicates the relation done with local Petrov–Galerkin 
method has very high accuracy, thus this method can be 
used as a practical approach for dynamic analysis of 
cylindrical shell. 

 

5.2 Verification with the finite element method 
(FEM) 

 

Using the present work, we assume the nanocomposite 

cylindrical shell under shock loading with the same 

geometry and boundary conditions as the study of Shakeri 

et al. (2006), also boundary conditions can be found in Eq. 

(65). The cylinder is under shock loading as follows: 

( ) 0 0

0

                       
 

                      

P t t t
P t

t t


= 

 
 (70) 

where 𝑃0 = 4 𝐺𝑃𝑎 𝑠𝑒𝑐⁄  and 𝑡0 = 0.005 𝑠𝑒𝑐. Figs. 9-
11 show a good agreement in comparison with results 
obtained by presented method and those reported in the 
study by Shakeri et al. (2006). This example proves the 
high capability and accuracy of this method to dynamic 
analysis of cylindrical shell. 

In Table 3 the achieved results of local Petrov–Galerkin 
method with those got the finite element method (FEM) 
(Shakeri, Akhlaghi and Hosseini 2006) in middle point of 
thickness of the cylinder (r=0.375 m) are compared. 

 

5.3 Verification with the element free Galerkin 
(EFG) method 

 

In the following simulations a CNTRC cylinder made of 

Polymethyl-methacrylate (PMMA) as matrix, with CNT as 

fibers aligned in the axial direction is considered. PMMA is 

an isotropic material with 𝐸𝑚 = 2.5 𝐺𝑃𝑎 , 𝜌𝑚 =
1150 𝑘𝑔/𝑚3 and 𝜈𝑚 = 0.34. The (10,10) single-walled 

carbon nanotubes (SWCNTs) are selected as reinforcements. 
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Fig. 6 The comparison of obtained results through the MLPG method with those gotten using analytical method for radial 

displacement 

 

Fig. 7 The comparison of obtained results through the MLPG method with those gotten using analytical method for radial 

stress 

  

 

Fig. 8 The comparison of obtained results through the MLPG method with those gotten using analytical method for hoop 

stress 
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Table 2 The comparison of obtained results from the meshless local Petrov-Galerkin method with those gotten the analytical 

method for middle point of thickness of the cylinder 

Variable 
Analytical method (Ugural and 

Fenster 2003) 
Local Petrov-Galerkin method Percentage error 

Displacement (𝑚) 1.0111 × 10−4 1.0112 × 10−4 9.89 × 10−3 

Radial stress (𝑃𝑎) −5.185 × 106 −5.139 × 106 0.8872 

Hoop stress (𝑃𝑎) 1.852 × 107 1.842 × 107 0.5399 

 

Fig. 9 The comparison of obtained results through the MLPG method with those gotten using FEM for radial displacement 

 

Fig. 10 The comparison of obtained results through the MLPG method with those gotten using FEM for radial stress 

 

Fig. 11 The comparison of obtained results through the MLPG method with those gotten using FEM for hoop stress 
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The material properties adopted for SWCNT are: 𝐸1
𝐶𝑁𝑇 =

5.6466 𝑇𝑃𝑎 , 𝐸2
𝐶𝑁𝑇 = 7.0800 𝑇𝑃𝑎 , 𝐺12

𝐶𝑁𝑇 = 1.9445 𝑇𝑃𝑎 , 

𝜌𝐶𝑁𝑇 = 1400 𝑘𝑔/𝑚3  and 𝜈12
𝐶𝑁𝑇 = 0.175  (Shen and 

Postbuckling 2011). Consider carbon nanotube-reinforced 

composite (CNTRC) cylinder with internal radius,  𝑟𝑖 =
0.5 𝑚 and external radius, 𝑟𝑜 = 1 𝑚 and use FG-X type of 

CNTRC cylinder with 𝑉𝐶𝑁𝑇
∗ = 0.17 . This cylinder is 

subjected to an internal pressure expressed by 

( )

( )

0              0.00015  
0.00015

0

 

                                    0.00015

 

 

 

 

t
P t P sin for t s

P t for t s

 
=  

 

= 

 (71) 

where 𝑃0 = 10 𝑀𝑃𝑎. Fig. 12 shows a good agreement 

in comparison to results obtained by the presented method 

and those reported in the scholarism of Shen and 

Postbuckling (2011). From these Figures can be concluded 

the present method has high accuracy and capability to 

dynamic analysis of the cylindrical shell. 
 
 

6. Numerical example 
 

In this section, we analyze the cylindrical shell made of 

nanocomposite material with four kinds of grading patterns 

and angle of nanocomposite reinforcements under shock 

loading with the meshless method. A non-symmetric 

nanocomposite cylinder is assumed, in which 𝑟𝑖 = 0.5 𝑚, 

𝑟𝑜 = 0.75 𝑚 , 𝜃𝑚𝑖𝑛 = 0 𝑟𝑎𝑑  and 𝜃𝑚𝑎𝑥 = 𝜋
2⁄  𝑟𝑎𝑑   are 

considered as the inner and outer radius, minimum and 

maximum angle of cylinder, respectively (see Fig. 5). The 

boundary conditions are as follow: 

 

 

 

( ) ( ), ,r ir t P t  =
 

( ), , 0r or t  =
 

(72) 

( ), , 0ir t  =
 

( ), , 0or t  =
 

( ), , 0r ir t  =
 

( ), , 0r or t  =
 

( ), , 0r minu r t =
 

( ), , 0r maxu r t =
 

( ), , 0minu r t  =
 

( ), , 0maxu r t  =
 

 

(73) 

where 𝑃0 = 5 MPa is presumed. The mechanical features 

of this cylinder are shown in Table 4. Figs. 13-18 show the 

radial and hoop displacement for the various kinds of 

grading patterns and angle of nanocomposite 

reinforcements in the middle point of thickness of the 

cylinder (𝑟 = 0.625 𝑚). Tables 5-6 show percentage of 

difference between displacements obtained from type UD 

of grading pattern with those gotten from other type of 

grading pattern. From Table 5 can be concluded the most 

percent difference occurs for type X of grading pattern and 

the lowest percentage difference is related to type V of 

grading pattern. Accordingly, Table 6 results the most 

percent difference is related to type X of grading pattern 

and the lowest percentage difference occurs for type 𝛬 of 

grading pattern. 

Table 3 The comparison of obtained results from the meshless local Petrov-Galerkin method with those gotten the FEM for 

middle point of thickness of the cylinder 

Variable 
FEM (Shakeri, Akhlaghi and 

Hosseini 2006) 
Local Petrov-Galerkin method Percentage difference 

Displacement (𝑚) −3.465 × 10−5 −3.466 × 10−5 0.011 

Radial stress (𝑃𝑎) −9.885 × 106 −9.779 × 106 1.072 

Hoop stress (𝑃𝑎) −2.441 × 107 −2.421 × 107 0.819 

 

Fig. 12 The comparison of obtained results through the MLPG method with those gotten using EFG method for radial 

displacement 
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Fig. 13 The radial displacements for the various kinds of grading patterns in the middle point of thickness of the cylinder 
(𝑟 = 0.625 𝑚) and angle of nanocomposite reinforcements =0 Deg 

  

 

Fig. 14 The radial displacements for the various kinds of grading patterns in the middle point of thickness of the cylinder 
(𝑟 = 0.625 𝑚) and angle of nanocomposite reinforcements =5 Deg 

  

 

Fig. 15 The radial displacements for the various kinds of grading patterns in the middle point of thickness of the cylinder 
(𝑟 = 0.625 𝑚) and angle of nanocomposite reinforcements =7 Deg 
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Fig. 16 The hoop displacements for the various kinds of grading patterns in the middle point of thickness of the cylinder 
(𝑟 = 0.625 𝑚) and angle of nanocomposite reinforcements =0 Deg 

  

 

Fig. 17 The hoop displacements for the various kinds of grading patterns in the middle point of thickness of the cylinder 
(𝑟 = 0.625 𝑚) and angle of nanocomposite reinforcements =5 Deg 

  

 

Fig. 18 The hoop displacements for the various kinds of grading patterns in the middle point of thickness of the cylinder 
(𝑟 = 0.625 𝑚) and angle of nanocomposite reinforcements =7 Deg  
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Table 4 Comparisons of Youngs moduli for polymer/CNT composites reinforced by (10, 10) SWCNT at 𝑇0  =  300 𝐾 (Shen 

and Zhang 2010) 

𝑽𝑪𝑵𝑻
∗  

MD (Han and Elliott 2007) Extended rule of mixture 

𝐸11(𝐺𝑃𝑎) 𝐸22(𝐺𝑃𝑎) 𝐸11(𝐺𝑃𝑎) 𝜂1 𝐸22(𝐺𝑃𝑎) 𝜂2 

0.12 94.6 2.9 94.78 0.137 2.9 1.022 

0.17 138.9 4.9 138.68 0.142 4.9 1.626 

0.28 224.2 5.5 224.5 0.141 5.5 1.585 

 

Table 5 The difference percentage of radial displacement for type UD of grading patterns with other types of grading patterns  

Type 
fiber angle 

𝟎 𝟓 𝟕 

Type V 3.37 0.73 3.51 

Type Λ 1.71 6.9 8.46 

Type X 3.98 10.41 12.62 

 

Table 6 The difference percentage of hoop displacement for type UD of grading patterns with other types of grading patterns  

Type 
fiber angle 

𝟎 𝟓 𝟕 

Type V 6.42 3.44 2.57 

Type Λ 2.4 9.23 11.12 

Type X 7.92 5.17 12.57 

  

(a) (b) 

 

(c) 

Fig. 19 Wave propagation for radial displacement and type UD of grading patterns which angle of nanocomposite 

reinforcements = 0 Deg 
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(a) (b) 

 

(c) 

Fig. 20 Wave propagation for radial displacement and type UD of grading patterns which angle of nanocomposite 

reinforcements = 5 Deg 

 
 

(a) (b) 
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(a) (b) 

 

(c) 

Fig. 22 Wave propagation for radial displacement and type X of grading patterns which angle of nanocomposite 

reinforcements = 0 Deg 

 

(c) 

Fig. 21 Wave propagation for radial displacement and type UD of grading patterns which angle of nanocomposite 

reinforcements = 7 Deg 
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Figs. 19-24 show radial displacement wave propagation 

for type UD and the fourth of grading pattern with various 

angle of nanocomposite reinforcements. From these Figures 

can be concluded for type UD and the fourth of grading 

pattern with increasing of the angle of nanocomposite 

reinforcements, the radial displacement increases. By 

comparison the wave propagation of two kinds of grading 

patterns can be shown the velocity of wave propagation for 

type UD is more than of type X. 
 

 

7. Conclusion  
 

The MLPG method is used to analyze non-

symmetric nanocomposite cylinder reinforced by 

different angle of carbon nanotubes reinforcement. 

The micro mechanical model is applied to mechanical 

properties of the nanocomposite cylinder. The 

Newmark time approximation scheme with suitable  

 

 

time step was employed for transfer the derived 

equation with MLPG method in time domain. The 

brief outline that it has been obtained through the 

above analysis is as follows: 

•  The non-symmetric nanocomposite cylinder 

under shock loading is analyzed based on meshless 

local Petrov-Galerkin (MLPG) method. 

•  A comparison between the obtained results 

from the present method with analytical method 

demonstrates the accuracy and effectiveness of the 

presented MLPG method for analyze non-symmetric 

nanocomposite cylinder. 

•  To show capacity of the present method for 

shock loading analysis, this method compares with 

FEM and EFG method. The accuracy and the 

convergence of the presented method for shock 

loading analysis have been demonstrated. 

•  From analyses of the non-symmetric 

 
 

(a) (b) 

 

(c) 

Fig. 23 Wave propagation for radial displacement and type X of grading patterns which angle of nanocomposite 

reinforcements = 5 Deg 
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nanocomposite cylindrical shell can be concluded for 

radial displacement, the most percent difference 

occurs for type X of grading pattern and the lowest 

percentage difference is related to type V of grading 

pattern. 

•  By comparing the aligned fibers for hoop 

displacement can be resulted the most percent 

difference is related to type X of grading pattern and 

the lowest percentage difference occurs for type Λ of 

grading pattern. 

•  By increasing the angle of nanocomposite 

reinforcements, the values of radial displacement 

contours are increased and the wave propagation 

speed is increased. 

•  By comparison the wave propagation of two 

kinds of grading pattern can be shown the velocity of 

wave propagation for type UD is more than type X. 

The present analysis furnishes a ground for 

dynamic analyses and wave propagation of non-

symmetric nanocomposite cylindrical shell with 

various kinds of grading patterns and angle of 

nanocomposite reinforcements under shock loading. 
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