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1. Introduction 
 

The cable-stayed bridge has become one of the fastest-

developing, innovating and the most competitive bridge 

types in modern bridge engineering due to its superior 

spanning ability, reasonability in terms of mechanical 

performance and structural behavior, novel structural form 

and beautiful geometry (Gimsing 2005). As one of the most 

important members of the cable-stayed bridge, the cable 

takes up most of the structural loads. However, due to the 

characteristics of small stiffness and low strength-to-density 

ratio of the cable, the sag effect is very prominent. The sag 

effect caused by the self-weight of a long stay cable is one 

of the main factors limiting the further development of the 

span of the cable-stayed bridge (Starossek 1996). With the 

increased span of cable-stayed bridges, the cable's own 

weight and horizontal projection length increase, such that 

the sag effect becomes more obvious and there is a 

significant decrease in cable stiffness, which leads to an 

increase in the deflection and stress of the girder. In 

addition, the decrease in the cable inclination at the far 

pylon also leads to decreased vertical support efficiency of 

the cable. Therefore, how to effectively reduce the sag 
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effect of a super-long stay cable has become another 

important topic for improving the span of the cable-stayed 

bridge (Virlogeux 1999, Tang 2017). 

Currently, there are two main means for reducing the 

cable sag effect. One is to use high strength-to-density ratio 

materials for the cable, such as the carbon-fiber-reinforced 

polymer (CFRP) stay cables scheme (Christoffersen et al. 

1999, Noisternig 2000, Wu and Wang 2008) and the CFRP-

steel composite stay cable scheme (Xiong et al. 2011). The 

other is to improve the arrangement of the cable system, 

such as the cable-stayed and suspension hybrid system with 

cables connected to vertical hangers (Zhang 2007, Zhang 

and Yu 2015, Sun et al. 2016) and a cable net system with 

secondary cross cables (Gimsing 1980, Gimsing and 

Georgakis 2012). Recently, a lifted stay cables suspended 

by an auxiliary cable concept in cross-strait cable-stayed 

bridges has been put forward for reducing the sag of super-

long stay cables (Tang 2006, Tang 2014). Taking external 

cables at midspan as an example, as shown in Fig. 1, 

diagonal auxiliary lifting cables (blue line) are suspended 

by the auxiliary suspension cable (magenta line) that lifts 

the external cables (red line) at their midpoint to achieve the 

purpose of reducing the sag effect of the long stay cable. 

From relevant studies (Tang 2006, Tang 2014), a lifted stay 

cable can improve the sag effect, support efficiency and 

stiffness of the lifted stay cables which allow for further 

improvement to the span limit of cable-stayed bridges. 
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Abstract.  The sag effect of long stay cables is one of the key factors restricting further increase in the span of cable-stayed bridges. 

Based on the formerly proposed concept of long stay cables lifted by an auxiliary suspension cable in cross-strait cable-stayed 

bridges, corresponding static approximate calculations and analytical theory based on catenary and parabolic cable configurations 

are established. Taking a main span 1400 m cable-stayed bridge as the research object, three typical lifting conditions and the whole 

process of auxiliary cable lifting are analyzed and discussed. The results show that the sag effect is effectively reduced. The support 

efficiency is only improved when the cables are lifted above the original cable chord. Reduction of the horizontal component force 

of the cable is limited. The equivalent elastic modulus and the vertical support stiffness of the lifted cables are significantly increased 

with increased horizontal projection length and not sensitive to the change of the lifting point position. The scheme of lifting the 

cable to the chord midpoint is more economical because of the less steel required for the auxiliary suspension cable, but its effect on 

improving the vertical support efficiency is limited. The support efficiency is better when the cable is lifted to the cable end 

tangential to the original cable chord, but the lifting force and the cross-sectional area of the auxiliary suspension cable are doubled. 

The approximate calculation results of the lifted cables are very close to the numerical analysis results, which verifies the 

applicability of the approximation method proposed in this study. The results of parabolic approximation calculations are 

approximately equal to that of catenary cable geometry. As the parabolic approximation analysis theory of lifted cables is more 

convenient in mathematical processing, it is feasible to use parabolic approximation analysis theory as the analytical method for the 

conceptual design of lifted cables of super-long span cable-stayed bridges. 
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However, the above auxiliary lifting-suspended cable 

system is only in the conceptual design stage and has yet to 

be applied in practice. There have been no further studies 

regarding the extent to which the above proposed concept 

scheme might improve the sag effect, support efficiency and 

stiffness of the lifted stay cables. Therefore, it is necessary 

to establish a reasonable and feasible approximate 

calculation method for studying the problem. 

In this study, for the cable-suspended system concept of 

cable-stayed bridges, the corresponding approximate 

calculations of the static analysis based on catenary and 

parabolic cable configurations were established for three 

typical lifting conditions of lifted cable and the whole 

lifting process. Then, taking a self-anchored cable-stayed 

bridge with a main span of 1400 m as a study case, the 

lifting force of the auxiliary lifting cable, vertical sag of the 

lifted cable, support efficiency and horizontal force were 

calculated and numerically analyzed. The advantages and 

disadvantages of the two typical lifting schemes were then 

compared. The cross-sectional area of the auxiliary 

suspension cable was preliminarily estimated. And finally, 

the equivalent elastic modulus and vertical support stiffness 

of the lifted cable were discussed. 

 

 

2. Approximate calculations of the static analysis of 
the lifted cable 

 

2.1 Approximate analysis of typical lifting 
conditions 

 

As each load or supporting condition leads to a specific 

cable curve, the transition from one load or supporting 

condition to another implies a change of the cable geometry. 

In order to establish the approximate condition equation of 

the lifted cable, it is necessary to study the cable in each 

condition separately. For the lifted cable, three typical 

lifting conditions are first considered. First, the auxiliary 

cable is not used (Fig. 2(a)); second, the auxiliary cable is 

used to lift the stay cable to the midpoint of the original 

cable chord (Fig. 2(b)); and third, the auxiliary cable is used 

to lift the stay cable to the position where the end of the 

cable is tangent to the original cable chord (Fig. 2(c)). 

For an inclined stay cable, the sag-creating transverse 

load has an intensity of g
cb
cos𝜑 (Fig. 3). As the chord-

wise load intensity along the chord length g
cb
sin𝜑 makes 

little contribution to the transverse deformation of the cable 

sag, the deformational characteristics of the inclined cable 

will be very close to those of a horizontal cable with the 

same chord length c, but subjected to a vertical dead load 

g
cb
cos𝜑 (Gimsing and Georgakis 2012). 

 

 
(a) Condition 1 

 
(b) Condition 2 

 
(c) Condition 3 

Fig. 2 Three typical lifting conditions of the lifted cable 
 

 

Based on the above equivalent horizontal stay cable 

theory, the above three basic conditions are respectively 

equivalent to the equivalent horizontal stay cables (Fig. 4). 

In condition 1, the cable is supported at points A(0, 0) and 

B(2a, 0), only carrying its own weight g
cb
′ (= g

cb
cos𝜑) 

(Fig. 4(a)). In condition 2, the cable is supported at points 

A(0, 0) and B(2a, 0), with the cable midpoint lifted to C′(a, 

0), carrying its own weight g
cb
′  and concentrated force 𝐹𝑐

′ 

acting on the point C′(a, 0) (Fig. 4(b)). In condition 3, the 

end of the lifted cable is tangent to the original cable chord 

and supported at points A(0, 0) and B(2a, 0), with the 

cablemidpoint lifted to C″(a, atanα3), carrying its own 

weight and concentrated force 𝐹𝑐
″ acting on the point C″ 

(Fig. 4(c)). 

 

2.1.1 Approximate calculation of condition 1 
Catenary cable geometry 

For condition 1, the cable geometry is a catenary under 

the cable self-weight (Fig. 4(a)). According to the above- 

 
Fig. 1 Diagram of auxiliary lifting-suspended cable concept of super-long span cable-stayed bridges 
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mentioned equivalent horizontal stay cable theory, the cable 

geometry in condition 1 is 

1, cat cb cb
1, cat

cb 1, cat 1, cat

cosh cosh ( )
T g g

y a x a
g T T

      
= − −              

(1) 

where T1,cat is the chord force of the equivalent horizontal 

stay cable for condition 1 (without auxiliary cable lifting). 

The cable sag k1,cat is 

1, cat cb
1, cat

cb 1, cat

cosh 1
T g

k a
g T

  
= −         

(2) 

 

 

The cable end inclination angle α1,cat is 

2

cb cb cb
1, cat

1, cat 1, cat 1, cat

arcsinh ln 1
g g g

a a a
T T T



 
      = = + +       
       

(3) 

The cable curve length s1,cat from supporting point A to 

C(a, k1,cat) is 

2

1, cat 1, cat cb
1, cat

0
cb 1, cat

d
1 d sinh

d

a y T g
s x a

x g T

  
= + =        


 

(4) 

In this study of lifted cable under different load 

conditions, each is characterized by a different elongation 

Δs of the cable from the unstressed condition. 

 
Fig. 3 Inclined stay cable and equivalent horizontal stay cable 

 

 
(a) Condition 1 

 
(b) Condition 2 

 
(c) Condition 3 

Fig. 4 Equivalent horizontal condition of three typical lifting conditions 
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2

0 0
cb cb

d 1 d
( ) d ( ) 1 d

d d

a as y
s x x H x x

x E A x


  
 = = +  

   
 

 

(5) 

where H(x) is horizontal force, which here is H(x) = H = 

Const. Then, the elongation of the half-span equivalent 

horizontal stay cable in condition 1 Δs1 is obtained from the 

above equation. 

The expression for Δs1,cat is derived after substituting 

H=T1,cat and d𝑦1,cat/d𝑥 = sinh⁡[g
cb
′ (𝑥 − 𝑎)/𝑇1,cat] into Eq. 

(5) and rearranged as 

2

1, cat cb cb
1, cat

cb cb cb 1, cat 1, cat

2 2
sinh

4

T g g
s a a

g E A T T

   
 = +         

(6) 

 

Approximate parabolic cable configuration 

For condition 1, the corresponding approximation 

analysis is equivalent to the quadratic parabolic geometry 

and the parabolic approximation curve equation of the 

equivalent horizontal stay cable is 

1, par

1, par 2
(2 )

k
y x a x

a
= −

 

(7) 

where k1,par is the parabolic approximation cable sag and 

there is 

2

cb
1, par

1, par2

g a
k

T


=

 

(8) 

The cable end inclination angle α1,par is 

1, par

1, par

2
arctan

k

a


 
=  

   

(9) 

The cable curve length s1,par from supporting point A to 

C(a, k1,par) is obtained after integration and arrangement to 

yield 

2

1, par

1, par 2

1, par 1, par

1, par

1
1 4

2

ln 2 1 4
4

k

a

s a
k ka

k a a

 
 

 +  
   

=  
     
 + + +     
       

 
(10) 

Expanding the above equation by the Taylor expansion 

with only the first two items yields the approximate 

expression of s1,par as 

2 4 6 2

1, par 1, par 1, par 1, par

1, par

2 2 4 2
1 1

3 5 7 3

k k k k
s a a

a a a a

          
   = + − + −  +       
               

(11) 

For a general stay cable (k/a < 0.02), the difference 

between the approximate value of the curve length from the 

above equation and the exact value from Eq. (10) is much 

less than 0.001‰. Thus, the approximate expression 

(Eq.(11)) gives adequate results, meeting the accuracy 

requirements of actual projects. 

The half-span elongation expression for Δs1,par of the 

parabola based equivalent horizontal cable in condition 1 is 

derived after substituting H = 𝑇1,par = g
cb

′ 𝑎2/(2𝑘1,par) 

and d𝑦1,par/d𝑥 = 2𝑘1,par(𝑥 − 𝑎)/𝑎2 into Eq. (5) as 

2
1, parcb

1, par

cb cb 1, par

2

2 3

kg a a
s

E A k a

 
 = + 

 
   

(12) 

 

2.1.2 Approximate calculation of condition 2 
 

Catenary cable geometry 

For condition 2, the catenary cable geometry for a half-

span equivalent horizontal stay cable is (Fig. 4(b)) 

2, cat cb cb
2, cat

cb 2, cat 2, cat

cosh cosh
2 2

T g g a
y a x

g T T

       
= − −                

(13) 

The sag of half-span horizontal cable k2,cat is 

2, cat cb
2, cat

cb 2, cat

cosh 1
2

T g
k a

g T

  
= −         

(14) 

The end inclination angle of half-span horizontal cable 

α2,cat is 

cb
2, cat

2, cat

2

cb cb

2, cat 2, cat

arcsinh
2

ln 1
2 2

g
a

T

g g
a a

T T


 

=   
 

 
   = + +    
   

 (15) 

The cable curve length s2,cat from supporting point A to 

D′(a/2, k2,cat) is 

2

2, cat2
2, cat

0

2, cat cb

cb 2, cat

d
1 d

d

sinh
2

a y
s x

x

T g
a

g T

 
= +  

 

 
=     


 (16) 

The cable curve elongation Δs2,cat from supporting point 

A to D′(a/2, k2,cat) is 

2

2, cat 2, cat2
2, cat

0
cb cb

2

2, cat cb cb

cb cb cb 2, cat 2, cat

d
1 d

d

sinh
4

aT y
s x

E A x

T g g
a a

g E A T T

  
 = +  

   

   
= +       


 (17) 

Referring to Figs. 4(a)-(b), the condition compatibility 

equation is 

1 2 1 22 2s s s s− =  − 
 (18) 
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The following condition compatibility equation of the 

catenary cable is derived after substituting Eqs. (4), (6), (16) 

and (17) into the above equation and rearranged to 

cb cb
1, cat 2, cat

1, cat 2, cat

2 2

1, cat 2, catcb cb cb cb

cb cb 1, cat 1, cat cb cb 2, cat 2, cat

sinh 2 sinh
2

2 2
sinh sinh

4 2

g g
T a T a

T T

T Tg g g g
a a a a

E A T T E A T T

    
− =      

   

         
+ − +         

           

(19) 

Solving Eq. (19) obtains the chord force T2,cat of the 

half-span equivalent horizontal stay cable in condition 2. 

According to Eq. (14), the half-span horizontal cable sag 

k2,cat in condition 2 is subsequently obtained and, then, the 

vertical sag of the inclined stay cable is kv2,cat = k2,cat/cosφ. 

According to Eq. (15), the end inclination angle α2,cat of the 

half-span equivalent horizontal stay cable in condition 2 is 

obtained and then the auxiliary lifting force 𝐹𝑐,cat
′  

determined according to the balance condition at the lifting 

point. 

 

Approximate parabolic cable configuration 

For condition 2, the corresponding approximation 

analysis is equivalent to the quadratic parabolic geometry 

and the parabolic approximation curve equation of the half-

span equivalent horizontal stay cable is 

2, par

2, par 2

4
( )

k
y x a x

a
= −

 

(20) 

where k2,par is the half-span horizontal cable sag and 

there is 

2

cb
2, par

2, par8

g a
k

T


=

 

(21) 

The half-span horizontal cable end inclination angle 

α2,par is 

2, par

2, par

4
arctan

k

a


 
=  

   

(22) 

 

 

The approximate expression of the curve length s2,par 

from supporting point A to D′(a/2, k2,par) is 

2

2, par

2, par

8
1

2 3

ka
s

a

  
  +  
     

(23) 

The cable curve elongation Δs2,par from supporting point 

A to D′(a/2, k2,par) is 

2
2, parcb

2, par

cb cb 2, par

4

4 4 3

kg a a
s

E A k a

 
 = + 

 
   

(24) 

The following condition compatibility equation of the 

parabolic approximation cable is derived after substituting 

Eqs. (11), (12), (23) and (24) into Eq. (18) and rearranged to 

3 2

2, par 2, parcb

cb cb

1, par 1, par 2, par cb

cb cb

4

( ) 33
+ 1 0

8 64

k kg a

a E A a

s s k g a

a a E A

   
−   

   

−    
− − =  

  

 (25) 

Solving the cubic equation concerning sag ratio (k2,par/a) 

obtains the half-span equivalent horizontal stay cable sag 

k2,par in condition 2 and, then, the vertical sag of the inclined 

stay cable is kv2,par = k2,par/cosφ. According to Eq. (21), the 

chord force T2,par in condition 2 is subsequently obtained. 

According to Eq. (22), the end inclination angle α2,par of the 

half-span equivalent horizontal stay cable in condition 2 is 

obtained and, then, the auxiliary lifting force 𝐹𝑐,par
′  is 

determined according to the balance condition at the lifting 

point. 

 

2.1.3 Approximate calculation of condition 3 
As shown in Fig. 4(c), the end of the lifted cable is 

tangent to the original cable chord. Considering the 

consistency of the approximate calculation method, the 

simplified analysis method of the above-mentioned 

equivalent horizontal stay cable is still adopted to analyze in 

this condition. The cable chord inclinations of the upper and 

 
Fig. 5 Lifted cable geometry relationship in condition 3 

 
Fig. 6 Equivalent horizontal stay cable in condition 3 
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lower cables from the lifting point are inconsistent (Fig. 5) 

and the inclination angle of the upper cable chord is (φ–α3), 

while the lower side is (φ+α3). Therefore, relative to C–C″ 

axis, the cable geometry curves on both sides are not 

completely symmetrical. Considering α3 ≪ φ, it might 

have roughly approximated the two sides of the cable curve 

equivalent to a chord length a3 = a/cosα3 and a chord line 

inclination φ equivalent horizontal stay cable (Fig. 6). 
 

Catenary cable geometry 

Based on the above approximation assumption, for 

condition 3 (Fig. 6), the catenary cable geometry of the 

equivalent horizontal stay cable is 

3, cat cb cb 3
3, cat 3

cb 3, cat 3, cat

cosh cosh
2 2

T g g a
y a x

g T T

       
= − −                

(26) 

where g
cb
″ ≈ g

cb
cos𝜑 = g

cb
′  and a3(= a/cosα3). 

The sag of equivalent horizontal stay cable k3,cat is 

3, cat cb
3, cat 3

cb 3, cat

cosh 1
2

T g
k a

g T

   
= −         

(27) 

Equivalent horizontal stay cable end inclination angle 

α3,cat is 

cb
3, cat 3

3, cat

2

cb cb
3 3

3, cat 3, cat

arcsinh
2

ln 1
2 2

g
a

T

g g
a a

T T


 

=   
 

 
   = + +    
   

 (28) 

The cable curve length s3,cat from supporting point A(B) 

to D″(a3/2, k3,cat) is 

3, cat cb
3, cat 3

cb 3, cat

sinh
2

T g
s a

g T

 
=       

(29) 

The cable curve elongation Δs3,cat from supporting point 

A(B) to D″(a3/2, k3,cat) is 

2

3, cat cb cb
3, cat 3 3

cb cb cb 3, cat 3, cat

sinh
4

T g g
s a a

g E A T T

   
 = +         

(30) 

Referring to Figs. 4(a) and 4(c), the condition 

compatibility equation is 

1 3 1 32 2s s s s− =  − 
 (31) 

The following condition compatibility equation of the 

catenary cable is derived after substituting Eqs. (4), (6), (29) 

and (30) into the above equation and rearranged to 

cb cb
1, cat 3, cat 3

1, cat 3, cat

2 2

1, cat 3, catcb cb cb cb
3 3

cb cb 1, cat 1, cat cb cb 3, cat 3, cat

sinh 2 sinh
2

2 2
sinh sinh

4 2

g g
T a T a

T T

T Tg g g g
a a a a

E A T T E A T T

    
− =      

   

         
+ − +         

           

(32) 

In addition to the unknown chord-wise force T3,cat, the 

end inclination angle α3,cat of the equivalent horizontal stay 

cable is also unknown and to be solved in the above 

equation. It can be seen from Eq. (28), α3,cat is the function 

of chord force T3,cat. Combining the above equation with the 

Eq. (28), the chord force T3,cat and end inclination angle 

α3,cat are obtained. According to Eq. (27), the equivalent 

horizontal cable sag k3,cat in condition 3 is subsequently 

obtained and, then, the auxiliary lifting force 𝐹𝑐,cat
″  of the 

lifted cable, of which the end is tangent to the original cable 

chord, is determined according to the balance condition at 

the lifting point. 

It should be pointed out that the condition compatibility 

equation is not unique. The following compatibility 

equation could have also been used 

2 3 2 3s s s s− =  −
 (33) 

 

Approximate parabolic cable configuration 

For condition 3, the corresponding approximation 

analysis is equivalent to the quadratic parabolic geometry 

and the parabolic approximation curve equation of the 

equivalent horizontal stay cable is 

3, par

3, par 32

3

4
( )

k
y x a x

a
= −

 

(34) 

where k3,par is the horizontal cable sag and there is 

2

cb 3
3, par

3, par8

g a
k

T


=

 

(35) 

Equivalent horizontal stay cable end inclination angle 

α3,par is 

3, par

3, par

3

4
arctan

k

a


 
=  

   

(36) 

The approximate expression of the curve length s3,par 

from supporting point A(B) to D″(a3/2, k3,par) is 

2

3, par3
3, par

3

8
1

2 3

ka
s

a

  
  +  
     

(37) 

The cable curve elongation Δs3,par from supporting point 

A(B) to D″(a3/2, k3,par) is 

2
3, parcb 3 3

3, par

cb cb 3, par 3

4

4 4 3

kg a a
s

E A k a

 
 = + 

 
   

(38) 

The following condition compatibility equation of the 

parabolic approximation cable is derived after substituting 

Eqs. (11), (12), (37) and (38) into the Eq. (31) and 

rearranged to 

3 2

3, par 3, parcb 3

3 cb cb 3

1, par 1, par 3, par cb 3

3 3 cb cb

4

( ) 33
+ 1 0

8 64

k kg a

a E A a

s s k g a

a a E A

   
−   

   

−    
− − =  

  

 (39) 
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Similar to the calculation of the catenary cable geometry 

analysis above in condition 3, it is also noted that, besides 

the unknown sag ratio (k3,par/a3), the end inclination angle 

α3,par of the equivalent horizontal stay cable is also unknown 

and to be solved in the above equation. It can be seen from 

Eq. (36) that α3,par is the function of sag ratio (k3,par/a3). 

Combining the above equation with Eq. (36), the sag ratio 

(k3,par/a3) and end inclination angle α3,par are obtained. 

According to Eq. (35), the chord force T3,par in condition 3 

is subsequently obtained and, then, the auxiliary lifting 

force 𝐹𝑐,par
″  of the lifted cable, of which the end is tangent 

to the original cable chord, is determined according to the 

balance condition at the lifting point. 
 

2.2 Approximate calculation of the general auxiliary 
cable-lifting conditions 

 

Three typical lifting conditions of the lifted cable are 

introduced in the previous section. Based on the simplified 

approximation analysis of condition 3, the more general 

lifting conditions of the auxiliary cable are analyzed in this 

section in order to complete the approximate static 

calculation method of the lifted cable. 

Along with whole auxiliary cable-lifting process from 

condition 1 (without auxiliary cable lifting) to condition 3 

 

 

(lifted cable end tangent to the original cable chord), in 

addition to the three typical conditions mentioned above, 

there are also two interval conditions: interval condition I is 

a lifting condition between conditions 1 and 2 (Fig. 7(a)), 

which is a lifting condition in which the lifting point of the 

cable is located between C and the midpoint of the chord 

and the distance from the lifting point to the chord midpoint 

is δI; and interval condition II (Fig. 7(b)), which is a lifting 

condition in which the lifting point of the cable is located 

outside the chord line and the distance from the lifting point 

to the midpoint of the original cable chord is δⅡ. 

Similar to condition 3, the inclination angles of the 

upper and lower side cable chord of the interval conditions I 

and II are inconsistent. The inclination angle of the upper 

side chord of the interval condition I is (φ+βI), while the 

lower side is (φ–βI), wherein βI = arctan(δI/a). The 

inclination angle of the upper side chord of the interval 

condition II is (φ–βⅡ), while the lower side is (φ+βⅡ), 

wherein βⅡ = arctan(δⅡ/a). Therefore, relative to the 𝐶 −
𝐶I
″(𝐶II

″)  axis, the cable curves on both sides are not 

completely symmetrical. Considering βI(βⅡ)≪φ, similar to 

the approximation treatment of condition 3, the two side 

cable curves of the two interval conditions are uniformly 

equivalent to a chord length aδ = a/cosβδ and chord line 

inclination φ equivalent horizontal stay cable (Fig. 8), 

 
(a) Interval condition I 

 
(b) Interval condition II 

Fig. 7 General auxiliary cable-lifting conditions 

 

 
Fig. 8 Equivalent horizontal stay cable of the general lifting condition 
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wherein βδ = arctan(δ/a) with δ the distance from the lifting 

point to the midpoint of the original cable chord. It is 

specified as a negative value when the lifting point is below 

the chord midpoint and a positive one above the chord 

midpoint. 

 
2.2.1 Catenary cable geometry 
Based on the above approximation assumption, for the 

general condition shown in Fig. 8, the catenary cable 

geometry of the equivalent horizontal stay cable is 

δ, cat cb cb δ
δ, cat δ

cb δ, cat δ, cat

cosh cosh
2 2

T g g a
y a x

g T T

       
= − −                

(40) 

where g
cb
″ ≈ g

cb
cos𝜑 = g

cb
′  and aδ = a/cosβδ, with βδ = 

arctan(δ/a) and δ the distance from the lifting point to the 

midpoint of the original cable chord. It is specified as a 

negative value when the lifting point is below the chord 

midpoint and as a positive one above the chord midpoint. 

Equivalent horizontal stay cable sag kδ,cat is 

δ, cat cb
δ, cat δ

cb δ, cat

cosh 1
2

T g
k a

g T

   
= −         

(41) 

Equivalent horizontal stay cable end inclination angle 

αδ,cat is 

cb
δ, cat δ

δ, cat

2

cb cb
δ δ

δ, cat δ, cat

arcsinh
2

ln 1
2 2

g
a

T

g g
a a

T T


 

=   
 

 
   = + +    
   

 (42) 

The cable curve length sδ,cat from supporting point A(B) 

to 𝐷𝛿
″ is 

δ, cat cb
δ, cat δ

cb δ, cat

sinh
2

T g
s a

g T

 
=       

(43) 

The cable curve elongation Δsδ,cat from supporting point 

A(B) to 𝐷𝛿
″ is 

2

δ, cat cb cb
δ, cat δ δ

cb cb cb δ, cat δ, cat

sinh
4

T g g
s a a

g E A T T

   
 = +         

(44) 

The condition compatibility equation is 

1 δ 1 δ2 2s s s s− =  − 
 

(45) 

The following condition compatibility equation of the 

catenary cable is derived after substituting Eqs. (4), (6), (43) 

and (44) into the above equation and rearranged to 

 

 

When the distance δ from the lifting point to the 

midpoint of the original cable chord is given, the chord 

force Tδ,cat is obtained by solving the above equation. 

According to Eq. (41), the horizontal cable sag kδ,cat in a 

general lifting condition is subsequently obtained. 

According to Eq. (42), the end inclination angle αδ,cat of the 

equivalent horizontal stay cable is obtained and, then, the 

auxiliary lifting force 𝐹δ,cat
″  acting at the cable midpoint is 

determined according to the balance condition at the lifting 

point. 

 

2.2.2 Approximate parabolic cable configuration 
For the general condition, the corresponding 

approximation analysis is equivalent to the quadratic 

parabolic geometry and the parabolic approximation curve 

equation of the equivalent horizontal stay cable is 

δ, par

δ, par δ2

δ

4
( )

k
y x a x

a
= −

 

(47) 

where kδ,par is the horizontal cable sag and there is 

2cb
δ, par δ

δ, par8

g
k a

T


=

 

(48) 

Equivalent horizontal stay cable end inclination angle 

αδ,par is 

δ, par

δ, par

δ

4
arctan

k

a


 
=  

   

(49) 

The approximate expression of the curve length δ, pars  

from supporting point A(B) to 𝐷𝛿
″ is 

2

δ, parδ
δ, par

δ

8
1

2 3

ka
s

a

  
  +  
     

(50) 

The cable curve elongation Δsδ,par from supporting point 

A(B) to 𝐷𝛿
″ is 

2
δ, parcb δ δ

δ, par

cb cb δ, par δ

4

4 4 3

kg a a
s

E A k a

 
 = + 

 
   

(51) 

The following condition compatibility equation of the 

parabolic approximation cable is derived after substituting 

Eqs. (11), (12), (50) and (51) into the Eq. (45) and 

rearranged to 

3 2

δ, par δ, parcb δ

δ cb cb δ
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δ δ cb cb

4

( ) 33
+ 1 0

8 64
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 (46) 
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When the distance δ from the lifting point to the 

midpoint of the original cable chord is given, solving the 

cubic equation concerning sag ratio (kδ,par/aδ) obtains the 

equivalent horizontal stay cable sag kδ,par in a general lifting 

condition. According to Eq. (48), the chord force Tδ,par in a 

general lifting condition is subsequently obtained. 

According to Eq. (49), the end inclination angle αδ,par of the 

equivalent horizontal stay cable in a general lifting 

condition is obtained and, then, the auxiliary lifting force 

𝐹δ,par
″  acting at the cable midpoint is determined according 

to the balance condition at the lifting point. 

 

2.3 Cross-sectional area estimation of the auxiliary 
suspension cable  

 

Based on the static approximation calculation method of 

the lifted cable, the section area of the auxiliary suspension 

cable is preliminarily designed, which is based on the lifting 

force of the most unfavorable external cable of the cable-

stayed bridge. The converted load intensity is (Fig. 9) 

c

cos

F
p

 
 =

 

(53) 

Substituting lifting force Fc, external cable chord 

inclination φ and the midspan cable spacing λ into above 

equation allows calculation of the converted load intensity 

p′. It is assumed that the auxiliary suspension cable cross-

sectional area is safely determined according to the uniform 

distribution p′ loading on the whole span and the suspension 

cable material has the same characteristics as that of the 

stay cable; and, as the self-weight of the auxiliary lifting 

cable is small, it is neglected in the preliminary estimation 

of the suspension cable section area. Then, the auxiliary 

suspension cable is approximated by the quadratic parabola 

(Fig. 9) and the maximum horizontal force at the upper 

supporting point FH is 

2

acb m
H

( )

8

g p L
F

f

+
=

 

(54) 

where g
acb

 is the dead load per unit length of the 

auxiliary suspension cable. 

As the auxiliary suspension cable curve is assumed to be 

a quadratic parabola, the maximum cable force of the 

auxiliary suspension cable FT is 

2 2 2 2

m m

T H acb m

m

16 16
( )

8

L f L f
F F g p L

L f

+ +
= = + 

 

(55) 

 

 

Then, the auxiliary suspension cable cross-sectional area 

A is obtained after substituting 𝐹T = [𝜎]cb𝐴 and g
acb

= 

𝛾𝑐𝑏𝐴 into the above equation, yielding 

2 2

m m

2 2

cb cb m m

16

8[ ] 16

p L L f
A

f L L f 

 +
=

− +
 

(56) 

The auxiliary suspension cable cross-sectional area A is 

preliminarily determined from the above equation. 
 

2.4 Analysis of equivalent elastic modulus and 
vertical support stiffness of the lifted cable 

 

Currently, the Ernst formula is commonly used in 

engineering to calculate the equivalent elastic modulus of a 

stay cable, but the application of this formula to a long stay 

cable will produce a large error and, thus, it is necessary 

here to discuss the axial stiffness of the lifted cable based 

on the approximation calculation method and catenary cable 

geometry. 

According to the calculation assumption of the general 

lifting condition, the cable curves on the two sides are 

equivalent to a horizontal cable with chord length aδ (Fig. 8), 

such that the lifted cable is approximately equivalent to a 

series connection of two equivalent horizontal stay cables 

with equal axial stiffness and length. Thus, the equivalent 

elastic modulus of the lifted cable is determined by the 

elastic modulus of the equivalent horizontal stay cable. The 

following two loading conditions are analyzed to study the 

relationship between the chord force and chord length of the 

equivalent horizontal stay cable (Fig. 10). 

For condition A, the catenary geometry is 

δ, a cb cb δ
δ, a δ

cb δ, a δ, a

cosh cosh
2 2

T g g a
y a x

g T T

       
= − −                

(57) 

The cable curve length is 

δ, a cb
δ, a δ

cb δ, a

2
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2

T g
s a

g T

 
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(58) 

The total elongation Δsδ,a is 

2
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(59) 

For condition B, the catenary geometry is 

δ, b cb cb δ δ
δ, b δ δ

cb δ, b δ, b

cosh ( ) cosh
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T g g a
y a x
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(60) 

 

Fig. 9 Maximum force loading condition of the auxiliary suspension cable 
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The cable curve length is 

δ, b cb
δ, b δ δ

cb δ, b

2
sinh ( )
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T g
s a

g T

 
= +  
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(61) 

Considering Δδ ≪ aδ, the above equation is replaced 

by 

δ, b cb cb
δ, b δ δ δ

cb δ, b δ, b

2
sinh cosh
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T g g
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g T T

    
= +             

(62) 

The total elongation Δsδ,b is 

2

δ, b cb cb
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cb cb cb δ, b δ, b
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T g g
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g E A T T
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(63) 

According to the condition compatibility equation 

𝑠δ,b − 𝑠δ,a = Δ𝑠δ,b − Δ𝑠δ,a, substituting Eqs. (58), (59), (62) 

and (63) into it, the following expression after arrangement 

is obtained as 

 

 

The elastic modulus of the equivalent horizontal stay 

cable 𝐸δ = (𝑇δ,b − 𝑇δ,a)/(𝐴cb𝜀δ)  is obtained by 

substituting the above equation into it. Then, the equivalent 

elastic modulus of the lifted cable 𝐸δ,eq is determined by 

the series connection of two equal-stiffness idealized 

straight cable elements (Fig. 11). 

δ δ

δ, eq cb δ cb δ cb

δ, eq δ δ

2

cos

a aa

E A E A E A

E E 

= +

 =
 

(65) 

For the chord-wise cable force Tδ,a and Tδ,b in Eq. (64), 

the values are determined by considering the following two 

types of typical loading conditions. One is the case of a 

dead load condition and the other a traffic load condition, 

from which the cable force is thus estimated (Fig. 12). At 

the anchorage point of the girder, it is assumed that the 

cable supports dead and live loads on the girder segment 

within the cable spacing as well as half of the self-weight of 

the cable (Xiao 2016). The cable force of the ith cable 

 
Fig. 10 Equivalent horizontal stay cables under two types of loading conditions 
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Fig. 12 Schematic diagram of loading conditions of the 

stay cable 
 

 

under two types of typical loading conditions is 

+1
δ, a d cb cb1

+1
δ, b d cb cb1

Condition A:
4sin sin 2

Condition B: ( )
4sin sin 2

i i i i

i i

i i i i

i i

l
T g A

l
T g p A

 


 

 


 

+ 
= + 




+ = + +
  

(66) 

Without considering the bending stiffness of the girder, 

the equivalent vertical support stiffness of the lifted cable 

Kv,δ is determined by the following expression according to 

the geometric relationship shown in Fig. 13. 

δ, b δ, a δ, b δ, a 2v
v, δ

v δ δ

( )sin ( )
sin

2 csc 2

T T T TF
K




 

− −
= = =
  

 

(67) 

where Δδ is the chord-wise elongation of single-side 

equivalent cable. 

 

 

3. Example analysis of the lifted cable of the cable-
stayed bridge 

 
3.1 Basic design parameters 
 

In this section, a main span 1400 m cable-stayed bridge 

scenario (Fig. 14(a)) is taken as the engineering case and 

the external cable of the cable-stayed bridge taken as the 

research object (Nagai et al. 2004, Miao 2006, Zhang 2007, 

Xiong et al. 2011). Then, the static approximation analysis 

of the lifted cable of the cable-stayed bridge (Fig. 14(b)) is 

discussed. The specific design parameters of the materials 

and the structural system of the cable-stayed bridge are 

listed below. 

The principle parameters of the main span of the cable-

stayed bridge are Lm = 1400 m, height of the pylon h = 287 

m, horizontal projection length of the cable l = 692 m, 

height-to-span ratio of the cable-stayed bridge n = 0.2,  

 

 
Fig. 13 Equivalent vertical support stiffness of the lifted 

cable 

 

midspan cable spacing λ = 16 m, cable strength [σ]cb = 744 

MPa (fk = 1860 MPa) and weight per unit volume of the 

cable γcb = 80 kN/m3 (including corrosion protection). The 

stay cable is arranged with double planes, with the cross-

sectional area of a single-side external cable Acb1 = 0.01 m2. 

The dead load intensity gd is safely set to 27 t/m. Live loads 

in design codes of most countries are composed of a 

uniformly distributed load and several concentrated forces. 

In super long-span bridges, especially in the preliminary 

design stage, concentrated forces can be safely represented 

as a uniformly distributed load with an amplification factor 

(Sun et al. 2016). Thus, live load intensity p, considering 

the multi-function traffic of long-span cable-stayed bridges 

and concentrated live load (for heavy trucks), with an 

amplification factor 1.5 (Zhang 2013), is safely set to (7 

t/m). Based on the above basic design parameters, the static 

approximation analysis of the lifted cable of the cable-

stayed bridge is carried out. 

 

3.2 Estimation of single-side cable force 

 

The external cable at midspan serves as the research 

object. The single-side cable force is estimated by the traffic 

load condition (Fig. 12); that is, at the girder anchorage 

point, it is assumed that the cable supports dead and traffic 

loads on the girder segment within the cable spacing as well 

as half of the cable self-weight. Thus, the cable force of the 

single-side external cable Tcb1 is 

cb1 d cb cb1( )
2sin sin 2

l
T g p A




 
= + +

 

(68) 

Substituting the parameters presented in Section 3.1 into 

the above equation obtains the single-side external cable 

force Tcb1 = 7882.21 kN. 

 
Fig. 11 Idealized straight cable elements with equivalent axial stiffness of the lifted cable 
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3.3 Typical lifting conditions 
 
3.3.1 Original stay cable (condition 1) 
Using the aforementioned lifted cable approximation 

calculation method, in this example, the external cable of 

the cable-stayed bridge with a main span of 1400 m is 

equivalent to a horizontal cable with the same chord length 

(c = l/cosφ = 2a) (Fig. 15), which is subjected to a vertical 

load intensity g
cb
′ (=g

cb
cos𝜑). 

Substituting each parameter into Eqs. (2) and (8) obtains 

the midspan external cable sag    k1,cat = 6.578 m and k1,par 

= 6.577 m and then the vertical sags are kv1,cat = 7.121 m 

and kv1,par = 7.120 m, respectively. Substituting k1,cat and 

k1,par into Eqs. (3) and (9) obtains the cable end inclinations 

α1,cat = 2.012° and α1,par = 2.011°, respectively. Then, 

according to Eqs. (4), (6), (11) and (12), the non-stress 

lengths of external cable under the catenary cable geometry 

s01,cat = 746.441 m and under parabolic approximation cable 

geometry s01,par = 746.441 m are obtained, respectively. By 

comparing the calculation results based on the catenary and 

parabolic cable configurations in condition 1, the parabolic 

approximation equivalent results are seen to be very 

 

 
Fig. 16 Vertical deformation nephogram of the external 

cable (condition 1) 

 

 

close to those of catenary cable geometry. 

Results of numerical analysis show a vertical sag of the 

inclined cable kv1,cat = 7.120 m, the cable end inclination 

angles of the anchorage point of the pylon and girder are 

α1,top = 1.992° and α1,bot = 2.031°, respectively and the non-

stress length of the external cable s01 = 746.440 m  

 
(a) Span arrangement of 1400 m cable-stayed bridge 

 
(b) External cables and auxiliary cables 

Fig. 14 Layout of external stay cable lifted by the suspension cable with the main 1400 m span self-anchored cable-stayed 

bridge (m) 

 
Fig. 15 The midspan external cable and its equivalent horizontal stay cable (condition 1) 
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(Fig. 16). The approximate calculation results are very close 

to those of the numerical analysis, which meet the accuracy 

requirements of actual projects. 
 

3.3.2 Auxiliary cable-lifting scheme 1 (condition 2) 
The auxiliary cable-lifting scheme 1 is to lift the cable to 

the midpoint of the cable chord (condition 2). 

Solving Eq. (19) obtains the chord force T2,cat = 

7575.770 kN of the half-span equivalent horizontal stay 

cable in condition 2. According to Eq. (14), the half-span 

equivalent horizontal stay cable sag is k2,cat = 1.711 m and 

the stay cable vertical sag is then kv2,cat = 1.852 m. 

According to the Eq. (15), the half-span equivalent 

horizontal stay cable end inclination angle is α2,cat = 1.047°. 

Then, from Eqs. (16)-(17), the non-stress length of the half-

span equivalent horizontal stay cable with catenary 

geometry is s02,cat = 373.221 m. 

Solving cubic Eq. (25) concerning the sag ratio (k2,par/a) 

obtains k2,par = 1.711 m and then the vertical sag of the 

inclined cable kv2,par = 1.852 m. Substituting the value of 

kv2,par into Eqs. (21)-(22), the half-span equivalent 

horizontal stay cable chord force T2,par = 7575.793 kN and 

end inclination angle α2,par = 1.047° are obtained. According 

to Eqs. (23)-(24), the non-stress length of the half-span 

equivalent horizontal stay cable under parabolic 

approximation is s02,par = 373.221 m. By comparing the 

calculation results based on catenary and parabolic cable 

configurations in condition 2, the parabolic approximation 

equivalent results are seen to be very close to those of 

catenary cable geometry. 

Results of numerical calculation show that the sag of the 

half-span external cable under the auxiliary lifting scheme 1 

is reduced to k2 = 1.712 m. The cable end inclination angles 

of the anchorage point of the pylon and girder are α2,top = 

1.042° and α2,bot = 1.053°, respectively (Fig. 18). The non-

stress length of the half-span external cable under the 

auxiliary lifting scheme 1 is s02 = 373.222 m. The 

approximate calculation results are very close to those of 

the numerical analysis, which meet the accuracy 

requirements of actual projects. 

 

 
Fig. 18 Vertical deformation nephogram of the half-span 

external cable (condition 2) 

 

 

The concentrated force acting on the midpoint of cable 

𝐹𝑐
′  is determined from the force balance condition 

combined with the geometric relationship at the lifting point 

(Fig. 17). 

c c 22 sinF N  =
 (69) 

where 𝑁𝑐
′ is obtained according to the force balance in the 

direction of the cable chord in Fig. 3, such that 𝑁𝑐
′ = (𝑇2 +

2g
cb
sin𝜑 ∙ 𝑠02)/cos𝛼2. Substituting T2 and α2 obtained into 

this equation obtains the concentrated force acting on the 

midpoint of the external cable under the cable geometry of 

the catenary as well as the parabolic approximate 𝐹𝑐,cat
′ =

280.995⁡kN and 𝐹𝑐,par
′ = 280.979⁡kN. Then, the section 

area of the auxiliary suspension cable is obtained according 

to Eqs. (53) and (56), such that A2,cat ≈ A2,par = 6.04×10-2 m2. 

By comparing the calculation results of conditions 1 and 

2, the sag of the auxiliary cable-lifting scheme 1, in which 

the cable is lifted at the stay cable midpoint to the chord line 

midpoint, decreases from the original cable sag k1 = 6.58 m 

to the lifted cable k2 = 1.71 m, such that the sag effect 

decreases significantly. The cable end inclination angle is 

 
Fig. 17 Auxiliary cable-lifting scheme 1 and its equivalent horizontal stay1 cable (condition 2) 

647



 

Xinwei Zhao, Rucheng Xiao and Bin Sun 

 

 

reduced by half, from the original value α1 = 2.01° to α2 = 

1.05° after lifting. The cross-sectional area of the auxiliary 

suspension cable is about 0.06 m2. 

 

3.3.3 Auxiliary cable-lifting scheme 2 (condition 3) 

The auxiliary cable-lifting scheme 2 is to lift the cable to 

the cable end tangent to the original cable chord (condition 

3). 

Combining Eqs. (28) and (32) to resolution obtains the 

chord force T3,cat = 7883.426 kN of the equivalent 

horizontal stay cable in condition 3 and the equivalent 

horizontal stay cable end inclination angle α3,cat = 1.006°. 

According to Eq. (27), the equivalent horizontal stay cable 

sag is k3,cat = 1.645 m and, according to Eqs. (29)-(30), the 

non-stress length of the equivalent horizontal stay cable 

with catenary geometry is s03,cat = 373.221 m. In addition, 

the distance from the lifting point, where the cable end is 

tangent to the original cable, to the midpoint of the original 

cable chord is δ3,cat = atanα3,cat = 6.577 m ≈ k1,cat. 

Combining Eqs. (36) and (39) to resolution yields the 

sag ratio k3,par/a3 = 0.0044 and cable end inclination angle 

α3,par = 1.006°. Then, the equivalent horizontal stay cable 

sag is obtained as     k3,par = 1.645 m and substituted into 

Eq. (35) to obtain the equivalent horizontal stay cable chord 

force T3,par = 7883.418 kN. According to Eqs. (37)-(38), the 

non-stress length of the equivalent horizontal stay cable 

under parabolic approximation is s03,par = 373.221 m. The 

distance from the lifting point, where the cable end is 

tangent to the original cable, to the midpoint of the original 

cable chord is δ3,par = atanα3,par = 6.577 m ≈ k1,par. The 

parabolic approximate equivalent calculation results are 

very close to those of the catenary cable geometry. 

 

 
Fig. 20 Vertical deformation nephogram of the external 

cable (condition 3) 

 

 
Fig. 21 Schematic diagram of the general conditions of 

auxiliary cable lifting 
 
 

Results of numerical analysis show that the sag of the 

stay cable under the auxiliary lifting scheme 2 is reduced to 

k3 = 1.643 m and the cable end inclination angles of the 

anchorage point of the pylon and girder are α3,top = 1.00° and 

α3,bot = 1.01°, respectively and the non-stress length of  

 
Fig. 19 Auxiliary cable-lifting scheme 2 and its equivalent horizontal stay cable (condition 3) 
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external cable under the auxiliary lifting scheme 2 is s03 = 

373.229 m (Fig. 20). The approximate calculation results 

are very close to those from the numerical analysis, which 

meet the accuracy requirements of actual projects. 

The concentrated force acting on the cable midpoint 𝐹𝑐
″ 

is determined from the force balance condition combined 

with the geometric relationship at the lifting point (Fig. 19) 

c c 32 sin2F N  =
 (70) 

in which 𝑁𝑐
″ is obtained according to the force balance in 

the cable chord direction in Fig. 3 and thus 𝑁𝑐
″ = (𝑇3 +

2g
cb
sin𝜑 ∙ 𝑠03)/cos𝛼3 . Substituting T3 and α3, obtained 

above, into this equation obtains the concentrated force 

acting on the cable midpoint under the cable geometry of 

the catenary and the parabolic approximation, as 𝐹𝑐,cat
″ =

561.661⁡𝑘𝑁 and 𝐹𝑐,par
″ = 561.632⁡𝑘𝑁, respectively. Then, 

the section area of the auxiliary suspension cable is 

obtained according to Eqs. (53) and (56), such that A3,cat ≈ 

A3,par = 0.121 m2. 

By comparing the calculation results of the two typical 

lifting schemes, the cable sag of the auxiliary cable-lifting 

scheme 2, which makes the cable end tangent to the original 

cable chord, is reduced to about 1.65 m from the 1.71 m of 

the auxiliary cable-lifting scheme 1. The sag effect 

reduction is not obvious and the lifting force acting at the 

cable midpoint is increased from 281 kN under auxiliary 

cable-lifting scheme 1 to 562 kN under lifting scheme 2, 

such that the lifting force is doubled. The section area of the 

auxiliary suspension cable in auxiliary cable-lifting scheme 

2 is about 0.12 m2, with the cross-sectional area doubled 

compared to that of lifting scheme 1. 

 

3.4 General conditions of the auxiliary cable-lifting 
process 

 

Three typical conditions of the auxiliary cable lifting are 

discussed here in detail. In this section, the general 

conditions of the cable-lifting process from condition 1 to 

condition 3 are analyzed and discussed. The distance δ from 

the lifting point to the midpoint of the original cable chord 

is a variable (Fig. 21), with the cable chord midpoint 

(original point C′) as the origin O. If the cable-lifting point  

 
 

is below the chord midpoint, δ is negative, if the lifting 

point is higher than the chord midpoint, δ is positive and if 

the lifting point is at the origin O, then δ = 0 (condition 2). 

From the calculation results of the last section, it is found 

that the distance from the cable-lifting point, where the 

cable end is tangent to the original cable chord, to the 

midpoint of the original chord (condition 3) is nearly equal 

to the sag of the original inclined non-lifted cable (condition 

1), such that the general conditions of the auxiliary cable-

lifting process is discussed by selecting the lifting process 

within the range from condition 1 (δ = –k1) to condition 3 (δ 

= k1). 
 

3.4.1 Relationship between auxiliary cable-lifting 
force and auxiliary suspension cable cross-sectional 
area and δ 

The relationship between the auxiliary cable-lifting 

force and the required auxiliary suspension cable cross-

sectional area and the distance at the corresponding lifting 

position from the lifting point to the midpoint of the original 

chord line δ during the lifting process is shown in Fig. 22. 

It is observed from the Fig. 22 that the relationship of 

the auxiliary cable-lifting force and the required auxiliary 

suspension cable cross-sectional area of the numerical 

analysis and the approximate calculation results are both 

close to linear with δ, with the curves of both basically 

consistent. The results of the lifting forces and cross-

sectional area of auxiliary suspension cables in condition 2 

(δ = 0) and condition 3 (δ = k1) are consistent with the 

results calculated by the typical auxiliary cable-lifting 

schemes mentioned above. The results of the parabolic 

equivalent approximation are close to those of the catenary 

cable. 
 

3.4.2 Relationship between the lifted cable vertical 
sag and δ 

In the general conditions of cable lifting, the vertical 

sags of the upper and lower cables are determined by the 

following expressions, according to the geometric 

relationship shown in Fig. 7 

vt δ δ

vb δ δ

for upper cable, sec( )

for lower cable, sec( )

k k

k k

 

 

= − 


= +   

(71) 

  
(a) Fc – δ (b) A – δ 

Fig. 22 Relationship between the auxiliary cable-lifting force and the auxiliary suspension cable cross-sectional area and the 

distance δ from the lifting point to the chord line midpoint 
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Fig. 23 Relationship between the vertical sags of the upper 

and lower cables and the distance δ from the lifting point 

to the chord line midpoint 
 

 

where kδ is the sag of the corresponding equivalent 

horizontal stay cable. Then, the relationship between the 

vertical sags of the upper and lower side cables and the 

distance δ from the lifting point to the chord line midpoint 

during the lifting process are obtained from the above 

equation (Fig. 23). 

It is observed from the Fig. 23 that the numerical 

analysis results are close to the approximate calculation 

results. Variations in the vertical sags of the upper and 

lower side cables are minor during the lifting process. When 

the cable is lifted to the chord line midpoint in condition 2 

(δ = 0), the vertical sags of the upper and lower side cables 

are nearly the same, which is basically consistent with the 

actual situation. And the vertical sag values are consistent 

with the calculation results of the typical lifting scheme 

mentioned above. During the process of cable lifting, the 

vertical sag values of the upper and lower side cables show 

a symmetrical relationship relating to (δ = 0). 

 

3.4.3 Relationship between vertical support 
efficiency and δ 

For long-span stay cables, the cable end inclination at 

the girder anchorage point is reduced due to an obvious sag 

effect, which significantly reduces the vertical support 

efficiency, especially for the near midspan stay cables. To 

discuss the change relationship of the vertical support 

efficiency during the lifting process of the cable, the vertical 

support efficiency ratio 𝜂ev,δ of the cable is defined as 

vδ
ev, δ

v1

100%
F

F
 = 

 

(72) 

where Fvδ is the vertical force component of the cable at the 

distance of auxiliary cable lifting δ from the lifting point to 

the chord line midpoint and Fv1 the vertical force 

component of the original non-lifted cable at the girder 

anchorage point. Then, the relationship between the vertical 

support efficiency of the cable and the distance δ from the 

lifting point to the chord line midpoint during the lifting 

process is calculated using Eq. (72) (Fig. 24). 

It is observed from the Fig. 24 that the vertical support 

efficiency of the cable does not increase linearly with the 

lifting force during the lifting process, but decreases slightly 

when the lifting position is below the chord line midpoint  

 
Fig. 24 Relationship between the vertical support 

efficiency ratio and the distance δ from the lifting point to 

the chord line midpoint 

 

 
Fig. 25 Relationship between the horizontal component 

ratio of the cable force and the distance δ from the lifting 

point to the chord line midpoint 

 

 

and then increases when the cable is lifted to the chord line 

midpoint (condition 1), such that the vertical support 

efficiency is basically the same as that of the original non-

lifted cable. After that, with further elevation of the lifting 

point, the vertical support efficiency of the cable increases 

significantly and reaches a maximum in condition 3 (the 

lifted cable end tangent to the chord line). This means that 

the cable must be lifted above the cable chord to achieve the 

purpose of improving the vertical support efficiency by 

auxiliary cable lifting. In addition, the support efficiency 

change curve of the approximate calculation results is well 

consistent with that of the numerical analysis and the results 

of the parabolic equivalent approximation are close to the 

results of catenary cable geometry. 

 

3.4.4 Relationship between cable force horizontal 
component and δ 

As the span of the cable-stayed bridge increases, due to 

the accumulation of the horizontal component of the cable 

force, a large axial pressure is formed in the girder near the 

pylon and the excessive axial force of the girder becomes a 

factor in determining the span limit (Zhao et al. 2019). To 

discuss the change relationship of the horizontal component 

force during the auxiliary cable lifting, the horizontal 

component ratio 𝜂eh,δ of the cable force is defined as 
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hδ
eh, δ

h1

100%
F

F
 = 

 

(73) 

where Fhδ is the cable force horizontal component at the 

girder anchorage point at the distance of auxiliary cable 

lifting δ from the lifting point to the chord midpoint and Fh1 

the horizontal force component of the girder anchorage 

point of the original non-lifted cable. Therefore, variation 

between the cable force horizontal component during the 

lifting process and the distance from the lifting point to the 

chord midpoint is calculated using Eq. (73) (Fig. 25). 

It is observed from the Fig. 25 that, during the lifting 

process, when the lifting point is below the chord line 

midpoint, the cable horizontal component decreases. When 

the cable is lifted to about   δ = 1 m outside the chord line 

midpoint, the cable horizontal component reaches a 

minimum and, then, with further elevation of the lifting 

point, the cable horizontal component gradually increases. 

The maximum value is reached when the cable is elevated 

to condition 3 (lifted cable to the cable end tangent to the 

chord line), but it is still slightly smaller than for the non-

lifted cable (condition 1). The horizontal component 

variation shows that the lifted cable has limited effect on 

reducing the horizontal component. In addition, the 

variation of the horizontal component force curve 

calculated by the approximate calculation method is well 

consistent with that of the numerical analysis results and the 

results of the parabolic equivalent approximation are close 

to the results of catenary cable geometry. 

 

3.5 Equivalent elastic modulus and vertical support 
stiffness of the lifted cable 

 
3.5.1 Relationship between the equivalent elastic 

modulus and δ 
According to the analysis in Section 2.6, the equivalent 

elastic modulus Eδ,eq of the lifted cable is determined by the 

series connection of the idealized stiffness of the straight 

cable elements with same section area, modulus of elasticity  

 

 
Fig. 27 Relationship between the equivalent elastic 

modulus ratio of the lifted cable and the distance δ from 

the lifting point to the chord line midpoint 

 

 

Eδ and the length aδ (Fig. 26(b)); thus Eq. (65) is established. 

To discuss the effect of auxiliary cable lifting on axial 

stiffness, the equivalent elastic modulus ratio 𝜂eq,δ of the 

lifted cable and the original non-lifted cable (condition 1) is 

defined as 

δ, eq

eq, δ

eq, 1

= 100%
E

E
 

 

(74) 

The relationship between the equivalent elastic modulus 

of the lifted cable and the distance from the lifting point to 

the chord line midpoint δ is shown in Fig. 27. 

It is observed from the Fig. 27 that the axial stiffness of 

the lifted cable is increased by about 10% over that of the 

original non-lifted cable, but the equivalent stiffness change 

of the lifted cable is not obvious for different δ. It should be 

pointed out that, unlike the continuous process of the cable 

lifting discussed above, the axial stiffness change of the 

lifted cables and non-lifted cable is discussed here under 

two different boundary conditions. Therefore, the 

equivalent elastic modulus ratio of the lifted cables does not 

begin to change from 100%. This also shows that the  

 
(a) Original non-lifted cable 

 
(b) Lifted cables 

Fig. 26 Cables and idealized straight cable elements with equivalent axial stiffness 
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increase of axial stiffness of lifted cables is mainly affected 

by the change in cable boundary conditions after lifting and 

is not sensitive to the change of the lifting point position. 
 

3.5.2 Relationship between the equivalent elastic 
modulus of the lifted cable and the horizontal 
projection length of the cable 

From the analysis discussed in the above section, the 

equivalent axial stiffness of the lifted cable does not change 

significantly relative to δ and, thus, the relationship between 

the equivalent elastic modulus of the lifted cable and the 

horizontal projection length is analyzed and discussed here, 

using the typical lifting condition 2 (δ = 0). The discussion 

range of horizontal projection length of stay cables is 

selected from 200 to 800 m and the height-to-span ratio of 

the cable-stayed bridge n = 0.2, with other parameters the 

same as before. To discuss the relationship between the 

axial stiffness of the lifted cables and the horizontal 

projection length, the equivalent elastic modulus ratio 𝜂2E,𝑥 

of the lifted cables and the original non-lifted cable is 

defined as 

2, 

2E, 

1, 

= 100%
x

x

x

E

E
 

 

(75) 

The relationship between the equivalent elastic modulus 

ratio of the lifted cable and the horizontal projection length 

is shown in Fig. 28. In addition, the secant and tangent 

moduli (Ernst formula) using the parabolic approximation 

and the error (𝛿appr/𝛿cat − 1)  by application of the 

tangent or secant modulus are also shown. 

 

 

It is observed from the Fig. 28 that the equivalent elastic 

modulus ratio of the lifted cables increases significantly 

with increased horizontal projection length while the 

equivalent elastic modulus value decreases with increased 

horizontal projection length. When the horizontal projection 

length is 200 m, the axial stiffness increases by only 1% 

while, when the horizontal projection length is 800 m, the 

axial stiffness increases by 12%, which indicates that the 

lifted cable, using the auxiliary cable-lifting scheme has an 

obvious increasing effect on the stiffness of the super-long 

stay cables. In addition, comparing the results of correct 

catenary solution and secant and tangent moduli based on 

the parabolic approximation show that the secant modulus 

is a good approximation of the catenary solution, while the 

application of tangent modulus (Ernst formula) will produce 

a large error. 

Equivalent vertical support stiffness of lifted cables is 

obtained using Eq. (67). To discuss the relationship between 

the vertical support stiffness of the lifted cables and the 

horizontal projection length, the equivalent vertical stiffness 

ratio 𝜂2K,𝑥 of the lifted cable and original non-lifted cable 

is defined as 

2, 

2K, 

1, 

= 100%
x

x

x

K

K
 

 

(76) 

The relationship between the equivalent vertical support 

stiffness ratio of the lifted cable and the horizontal 

projection length is shown in Fig. 29. 

It is observed from the Fig. 29 that the equivalent 

vertical support stiffness ratio of the lifted cables increases 

  
(a) E – l (b) Error (𝛿appr/𝛿cat − 1) – l 

 
(c) 𝜂2E,𝑥 – l 

Fig. 28 Relationship between the equivalent elastic modulus of the lifted cables and the horizontal projection length 
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significantly with increased horizontal projection length 

while the equivalent support stiffness value decreases with 

increased horizontal projection length, which is similar to 

the variation in the equivalent elastic modulus ratio 

relationship. When the horizontal projection length is 200 m, 

the vertical support stiffness increases by only 1% while, 

when the horizontal projection length is 800 m, the vertical 

support stiffness increases by 12%. This also shows that the 

lifted cable, using the auxiliary cable-lifting scheme has an 

obvious increasing effect on the vertical support stiffness of 

the super-long cables. 

 

 

5. Conclusions 
 

The results of this study can be summarized as follows: 

•  The approximate calculation results of a lifted stay 

cable based on catenary and parabolic cable configurations 

in three typical lifting conditions and the whole process of 

auxiliary cable lifting are very close to the numerical 

analysis results, which verifies the applicability of the 

approximation method proposed in this paper. 

•  The scheme of lifting the cable to the chord line 

midpoint is more economical due to the less steel required 

for the auxiliary suspension cable, but its effect on 

improving the vertical support efficiency is limited. While 

the support efficiency is better with the cable lifted to the 

cable end tangential to the original cable chord, the lifting 

force and cross-sectional area of the auxiliary suspension 

cable are doubled. 

•  The sag effect is effectively reduced using auxiliary 

lifting-suspended cables to lift long stay cables, but the 

support efficiency can only be improved when the cables 

are lifted above the original cable chord. Reduction of the 

cable horizontal component force is limited when the cable 

is lifted. 

•  The equivalent elastic modulus and the vertical 

support stiffness of the lifted cables are significantly 

increased with the increase of the horizontal projection 

length and not sensitive to the change of the lifting point 

position. 

•  The results of parabolic approximation calculations 

are approximately equal to that of catenary cable geometry.  

 

 

As the parabolic approximation analysis theory of lifted 

cables is more convenient in mathematical processing, it is 

feasible to use parabolic approximation analysis theory as 

the analytical method for the conceptual design of lifted 

cables of super-long span cable-stayed bridges. 
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Notation 
 

The following main variables are used in this paper: 

A cross-sectional area of the auxiliary suspension 

cable; 

Acb cross-sectional area of the cable; 

Acb1 cross-sectional area of a single-side cable; 

Ecb elastic modulus of the cable; 

Eeq,1 equivalent elastic modulus of the original non-

lifted cable; 

Eδ elastic modulus of the equivalent horizontal stay 

cable; 

Eδ,eq equivalent elastic modulus of the lifted cable; 

FH horizontal component of cable force of the 

auxiliary suspension cable; 

FT cable force of the auxiliary suspension cable; 

𝐹𝑐
′ concentrated force acting on the midpoint of cable; 

Fh1 horizontal force component of the girder anchorage 

point of the original non-lifted cable; 

Fhδ horizontal component of the cable at the girder 

anchorage point at the distance of auxiliary cable 

lifting δ from the lifting point to the chord 

midpoint; 

Fv1 vertical force component of the original non-lifted 

cable at the girder anchorage point; 

Fvδ vertical force component of the cable at the 

distance of auxiliary cable lifting δ from the lifting 

point to the chord line midpoint; 

H horizontal component of cable force; 

Kv,δ equivalent vertical support stiffness of the lifted 

cable; 

T chord-wise cable force; 

[σ]cb allowable stress of the cable; 

a half the length of the original cable chord; 

c chord length of the original cable; 

g
acb 

dead load per unit length of the auxiliary 

suspension cable; 

g
cb

 dead load per unit length of the cable; 

g
d
 dead load of the girder; 

h height of the pylon; 

k inclined cable sag; 

kv vertical sag of the inclined cable; 

kδ sag of the corresponding equivalent horizontal stay 

cable; 

l horizontal projection length of the cable; 
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n height-to-span ratio of the cable-stayed bridge; 

p live load intensity on the girder; 

p′ converted load intensity on the suspension cable; 

s cable curve length; 

w load of the girder per meter of track; 

α inclination angle of the cable end; 

δ distance from the lifting point to the midpoint of 

the original cable chord; 

Δ chord-wise elongation of the cable; 

Δs elongation of the cable from the unstressed 

condition; 

Δδ chord-wise elongation of single-side equivalent 

cable; 

𝜂2E,𝑥 equivalent elastic modulus ratio; 

𝜂2K,𝑥 equivalent vertical stiffness ratio of the lifted cable 

and original non-lifted cable; 

𝜂eh,δ horizontal component ratio of the lifted cable and 

original non-lifted cable; 

𝜂eq,δ equivalent elastic modulus ratio of the lifted cable 

and original non-lifted cable; 

𝜂ev,δ vertical support efficiency of the lifted cable and 

original non-lifted cable; 

γcb weight per unit volume of the cable; 

λ midspan cable spacing cable spacing; and 

φ inclination of the chord linking the two cable ends. 
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