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1. Introduction 
 

The laminated composite plate appears to be a 

promising candidate for different engineering applications 

in various industries. The investigation about buckling 

characteristics of structures made of laminated composites 

has gained increasing attention over the past few decades. 

In the stability of structures, the reactions of the edges are 

one of the most important factors, which have a great effect 

on the critical load of structures (Belkacem et al. (2018)). 

Usually, the boundary conditions of the structural elements 

are simplified to classical models such as clamped, simply-

supported, sliding, and free, while in practical situations, we 

deal with elastic (or general) boundary conditions. The 

classic forms of boundary conditions are extensively 

examined in various problems including buckling analysis. 

However, there is a need to present a unified solution of the 

buckling problems which covers all classic and elastically 

restrained boundary conditions. 

Compared to the number of studies on the buckling of 

simply-supported (Bohlooly and Mirzavand 2016, 2017, 

Dietrich et al. 1978, Matsunaga 2005, Mirzavand and 

Bohlooly 2015) or at least two simply-supported opposite 

edges (Ghasemabadian and Saidi 2017, Hosseini-Hashemi 

et al. 2015, Liew et al. 1996, Lopatin and Morozov 2009, 

Thai and Kim 2011, Xiang et al. 1996, Yu and Wang 2008), 

there exist limited investigations on the critical load of 

plates with general boundary conditions. Ungbhakorn and 

Singhatanadgid 2006, Singhatanadgid and Jommalai 2016, 

and Shufrin et al. 2008a,b presented the stability of 

laminated composite plates with symmetric lay-up 
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configuration using extended Kantorovich method. This 

method determines the critical load of plates with an 

iterative procedure in which the function of lateral 

deflection changes in each iteration. Raju et al. (2012) 

studied buckling analysis of variable angle tow plates by 

numerical methodology based on differential quadrature 

method (DQM). In this context, Golmakani and Far (2017) 

reported the buckling behavior of double-layered graphene 

plates according to DQM. The DQM methodology is an 

efficient numerical method for the solution of differential 

equations by simplifying to algebraic equations at discrete 

points, although the drawback of this method is its 

complexity and time consumption. Besides, some 

researchers have solved this challenge by Ritz methods 

using various admissible functions. One of these functions 

is sinusoidal, which leads to quick calculations for limited 

cases of boundary conditions like simply-supported, 

clamped, and a combination of them. In this field, 

Swaminathan and Naveenkumar (2014) studied refined 

higher-order models for the stability analysis of plates. 

Iyengar and Karasimhan (1965) solved the buckling 

problem of an isotropic plate with simply-supported and 

clamped edges. Gunda (2013) presented thermal buckling 

and postbuckling of isotropic square plate. Baucke and 

Mittelstedt (2015) determined the critical load of 

symmetrically laminated composite plates. Panda and 

Ramachandra (2010) studied the buckling behavior of 

symmetric cross-ply plates for in-plane parabolic loads 

using higher-order shear deformation theory. Mijušković et 

al. (2014, 2015) presented the critical load of isotropic plate 

subjected to different nonlinear in-plane loads. Also, Latifi 

et al. (2013) calculated the critical load of functionally 

graded plates using various sinusoidal functions for lateral 

displacement of non-boundary points and boundary points. 

The advantage of this difference in deflection (for non-
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boundary and boundary points) is that the edges of plate can 

be combined of clamped, simply-supported, and free. 

However, it increases the amount of computation. Some 

researchers have implemented Chebyshev polynomials into 

the Ritz method to derive the critical load of plates with 

different classic boundary conditions such as simply-

supported, free, sliding, and clamped. Chebyshev 

polynomials should be used with special auxiliary functions 

in each case to fulfill essential boundary conditions. In this 

subject, Shukla et al. (2005) studied the critical load of 

generally laminated composite plate based on the first-order 

shear deformation theory. Li and Pan Iu (2010) worked on 

three-dimensional buckling of isotropic plate using 

triplicate forms of Chebyshev polynomials for all 

displacement coefficients. Tang and Wang (2011) 

investigated the influences of in-plane parabolic loads on 

the critical load of laminated composite plates with 

symmetric lay-up configuration. Tamijani and Kapania 

(2012) developed the Ritz-Chebyshev procedure for the 

critical load of isotropic plate with eccentrically and/or 

concentrically curvilinear stiffeners. Uymaz and Aydogdu 

(2013a, b) presented the critical load of functionally graded 

plates under in-plane normal and shear loads, respectively. 

Also, Aydogdu and Aksencer (2018) extended the work on 

the cross-ply lay-up sequence under in-plane loads with 

linear variations based on different  shear deformation 

theories. Mirzaei and Kiani (2016) and Kiani (2017) 

obtained the critical load of functionally graded plates 

reinforced with carbon nanotubes under thermal and 

mechanical loads. In Refs. (Aydogdu and Aksencer (2018); 

Kiani (2017); Li and Pan Iu (2010); Mirzaei and Kiani 

(2016); Shukla et al. (2005); Tamijani and Kapania (2012); 

Tang and Wang (2011); Uymaz and Aydogdu (2013a, b)), 

the suggestion of an auxiliary function has critical 

importance because the accuracy of the predictions depends 

on how the auxiliary functions can fulfill the essential 

boundary conditions. On the other hand, the investigators 

should be aware that 256 different auxiliary functions can 

be constituted for a plate with four edges and considering 

four classic boundary conditions like simply-supported, 

free, sliding, and clamped. So, the finding of suitable 

auxiliary functions has grueling operations.  

The boundary conditions of plates in real applications 

are different from well-known classic forms. The real 

boundaries are elastically restrained on complicated shapes 

of foundations, which can be modeled by simple springs. 

With considering of this vital topic, Khov et al. (2009); Li 

(2000, 2004); Zhang and Li (2009); Song et al. (2015); Jin 

et al. (2014);  Qu et al. (2013); Song et al. (2020); Wang et 

al. (2017) presented the vibrations of beams, plates, and 

cylindrical shells with linear and rotational springs on 

edges. Some researchers modeled the interaction of 

foundations by using linear and nonlinear springs. In this 

regard, Civalek and Acar (2007) presented the bending 

analysis of Mindlin plates on two-parameter elastic 

foundations. Akgoz and Civalek (2011) worked on the 

vibrational analysis of laminated composite plates with 

considerations of elastic foundations. Bohlooly and 

Malekzadeh Fard (2019); Bohlooly and Mirzavand (2018); 

Bohlooly et al. (2018); Mirzavand and Bohlooly (2019)  

 

Fig. 1 The geometry of plate with elastic constraints 
 
 

presented the effects of elastic foundations on the buckling 

and postbuckling of plates and panels. However, the 

foregoing literature review indicates that no investigations 

have been performed on the buckling analysis using elastic 

springs as boundary conditions. 

In the current research, the buckling behavior of a 

laminated composite plate with symmetric lay-up 

configuration is investigated. The formulations are derived 

by the classical theory of plates and shells. The solutions 

are based on Ritz method. The boundary conditions of the 

plate are simulated by eight uniform springs (four linear and 

four rotational) which can be used for all classic and 

elastically restrained edges.  A unified lateral displacement 

is introduced by simple polynomials without any auxiliary 

functions. Results for various combinations of classic 

boundary conditions are verified with the available data in 

the literature. A range of parameters like different spring 

factors, lay-up configurations, and geometry are 

investigated on the critical loads and mode shapes. 
 

 

2. Fundamental equations 
 

Figure 1 presents a schematic of the rectangular plate. 

The dimensions of the plate are 2a×2b×h. The plate is 

composed of laminated composite with a symmetric lay-up 

configuration. The laminated composite consists of N  

plies, whereas all orthotropic plies have equal thickness. A 

ply is reinforced by parallel unidirectional fibers. These 

fibers are embedded in a polymer base matrix. A fixed 

Cartesian coordinate system (x,y,z) is used with the origin 

on the center of plate. In order to generate arbitrary 

boundary conditions, two linear and rotational springs 

(ki,Ki) are distributed along each edge. The boundary 

conditions of the plate are controlled by eight springs which 

can make different combinations of elastic and/or classic 

boundary conditions such as free, sliding, simply-supported, 

and clamped. 

The laminated composite plate is subjected to in-plane 

biaxial compression of 
xN and yN  where y xN RN= . 

578



 

Buckling of laminated composite plates with elastically restrained boundary conditions 

 

In order to solve the buckling problem and determine the 

critical value of Nx, the Ritz method is applied in this paper. 

According to Ritz method (Brush et al. (1975)), the total 

potential energy consists of the strain energy of the 

structure, the potential energy of external loads, and the 

energy of line springs along each edge. The integral form of 

strain energy of a rectangular plate is presented as follow 

(Brush et al. (1975)) 

1
{ }

2
x x y y xy xys dxdyU dz     = + +  (1) 

According to classical lamination theory for thin plates 

(Bohlooly and Mirzavand (2015)) and in the case of 

symmetrically laminated composites, the strain energy can 

be expressed in terms of deflection function w as 

(Ungbhakorn and Singhatanadgid (2006)) 
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in which the bending stiffness Dij (i,j = 1,2,6) are (Cetkovic 

and Vuksanovic (2011); Reddy (2004)) 
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The potential energy of external loads may be calculated 

as (Ungbhakorn and Singhatanadgid (2006)) 
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in which Nx and Ny are uniform in-plane forces in x and y 

directions. Also, the shear force in xy plane (Nxy) is zero. 

The energy of linear springs along each edge is 
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In addition, the energy of rotational springs along each 

edge is 

at x = –a, 
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The total potential energy of the laminated composite 

plate is the sum of strain energy, potential energy due to 

external loads, and energy of linear and rotational springs 

8

1

s i

i

U W U
=

 = − +  (14) 

According to Ritz method in previous studies (Aydogdu 

and Aksencer (2018); Baucke and Mittelstedt (2015); 

Gunda (2013); Iyengar and Karasimhan (1965); Kiani 

(2017); Latifi et al. (2013); Li and Pan Iu (2010); 

Mijušković et al. (2014, 2015); Mirzaei and Kiani (2016); 

Panda and Ramachandra (2010); Shukla et al. (2005); 

Tamijani and Kapania (2012); Tang and Wang (2011); 

Uymaz and Aydogdu (2013a, b)), an approximation of 

deflection function w(x,y) is suggested in terms of unknown 

constant coefficients Cij. In such studies, a function like 

Chebyshev basis polynomials should be used with auxiliary 

functions to satisfy essential boundary conditions. A serious 

problem of these studies is that the deflection function 

depends on boundary conditions. In other words, a new 

deflection function is required, and all calculations should 

be repeated in each case. In current study, we suppose that 

all four edges are free, and boundary conditions appear in 

the analysis with spring factors. Therefore, there is not any 

constraint to be satisfied, and a unified deflection function 

covers all possible cases. 

In the current study, a set of separable orthogonal 

polynomials is considered as an approximation of deflection 

function  
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where dimensionless parameters ζ and η are x/a and y/b, 

respectively. Also, the parameters Cmn are the undetermined 

coefficients. According to previous studies, Pm and/or Pn  

are polynomials which are used from familiar functions like 

Chebyshev (Mirzaei and Kiani (2016); Uymaz and Aydogdu 

(2013a)), Legendre (Feng and Xu (2016)), Hermite (Nosier 

et al. (1994)), etc. For instance, the six polynomials of 

Chebyshev (Mirzaei and Kiani (2016)) are 
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In Eq. (16), the fifth and sixth polynomials have terms 

(e.g. 
4  and 

3 ) which are repeated in previous 

polynomials. These terms add useless complexity to the 

problem. In the current study, we use a simplified form of 

polynomials as below 
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Substitution of Eq. (17) into Eq. (15) gives the 

deflection function as follow 
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Then, by substitution of deflection function in Eqs. (2, 

5-13), integration, inserting the results into Π, and 

minimizing concerning the coefficients Cmn one obtains

( 1) ( 1)M N+  +  algebraic equations. The matrix form of 

these equations can be written as 

0 =Κ Ρ  (19) 

where the matrix K has ( 1) ( 1)M N+  +  rows and columns 

and
00 01 02 0 1[ , , ,..., ,..., ,..., ] .T

N N MNC C C C C C=Ρ The 

lowest eigenvalue of the matrix K in Eq. (19) corresponds 

to the critical buckling load .xcrN The eigenvector 

corresponding to the lowest eigenvalue indicates the 

buckling mode shape. 

 

 

3. Numerical results 
 

In this section, a parametric study is performed to clarify 

the influences of elastic constraints on the critical buckling 

load of symmetrically laminated composite. In this regard, a 

different number of polynomials in the series expansion can 

be considered (see in Eq. (15)). For example, in the case of 

9,M N= = the matrix K in Eq. (19) has 

(9 1) (9 1) 100+  + =  rows and columns. 

 

3.1 Comparison examples  
 

Unlikely, there are not reliable references on the 

buckling of different structures with elastically restrained 

boundary conditions. Therefore, the results of the current 

study are validated by classic boundary conditions such as 

simply-supported (S), clamped (C), sliding (X), and free 

(F). For instance, the rectangular plate with FXSC boundary 

conditions can be modeled according to Table 1 for 

corresponding springs. 
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In the first example, the values of dimensionless critical 

load δ1 = Nx(2b)2/(π2D) of an isotropic plate (E=200 GPa, 

v=0.3) under uniaxial compression (R = 0) are calculated. In 

the case of a/b=1 the results are verified by Ritz method and 

FEM presentation of Mijušković et al. (2015) in Table 2. 

According to this table, the convergence study shows the 

required numbers of polynomials in the series expansion for 

predicting accurate calculations. Also, it is shown that good 

agreements can be seen for simply-supported, clamped, and 

combined conditions. 

In the second example, the results of present study are 

compared with the Levy-type solution based on first-order 

shear deformation theory (FSDT) and classical lamination 

theory (CLT) of Thai and Kim (2011) for a square 

orthotropic plate under both uniaxial and biaxial 

compression (R=0,1). The results are shown in Table 3. The 

mechanical properties of ply are 

11 22 12 22 12/ 10, / 0.5, 0.25E E G E = = =  (20) 

The dimensionless critical load δ2= Nx (2b)2 / (h3E22) 

agrees well with those of Thai and Kim (2011). In some 

cases, lower values of critical load corresponding to 

different mode shapes are calculated in the current study, 

which seems to be missed by Thai and Kim (2011). 

In the third example, the comparisons of the critical load 

of cross-ply laminated composite plate [0/90]2S under 

uniaxial compression (R=0) is presented with the results of 

Ungbhakorn and Singhatanadgid (2006) in Table 4. The 

mechanical properties of composite plies are similar to the 

second example, and the critical loads are normalized by 

δ3= Nx (2b)2 / (π2D22). In the study of Ungbhakorn and 

Singhatanadgid (2006), the calculations are based on 

extended Kantorovich method. The results of current 

investigations are well justified with those of Ungbhakorn 

and Singhatanadgid (2006). 

In the last example, the critical load of a square 

symmetric angle-ply laminated composite plate [30/-30/30]  

 

 

with different boundary conditions are verified by the 

results of Liu et al. (2002); Shufrin et al. (2008b); 

Singhatanadgid and Jommalai (2016) in Table 5. The plate 

is subjected to uniaxial compression ( 0R = ), and the 

mechanical properties of plies are 

11 22 12 22 12/ 2.45, / 0.48, 0.23E E G E = = =  (21) 

The dimensionless form of critical load is δ4 = 12(1–

v12v21)Nx (2b)2 / (h3E11). According to Table 5, a good 

agreement is achieved. 
 

3.2 Parametric study  
 

The effects of different parameters on the stability of 

laminated composite plates with elastically restrained 

boundary conditions are studied. The mechanical properties 

for each ply of Graphite/epoxy laminated composite (Fard 

and Bohlooly (2017)) are 

11 22

12 12

150 GPa, 9 GPa

7.1 GPa, 0.3.

E E

G 

= =

= =
 (22) 

The critical load is normalized according to the third 

example of verifications (δ= Nx (2b)2/(π2D22)). In Figs. 2-5, 

the critical loads of square symmetric cross-ply laminated 

composite plate [0/90/0] with length to thickness ratio of 

2a/h=100 under uniaxial compression (R = 0) are presented. 

Four linear springs have constant values (either zero or a 

very large value), and the rotational springs vary from null 

to large values in different conditions. In Fig. 6, the critical 

loads of square plate with the previous condition (lay-up 

configuration and uniaxial compression) are studied for 

different length to thickness ratios. In Fig. 7, the critical 

loads of square plate ( 2 / 100a h = ) with various lay-up 

configurations are examined for biaxial compression (

1R = ). In Figs. 6 and 7, the plate has variable linear 

springs in x a=  , and other linear and rotational springs 

Table 1 The stiffness of springs for a plate with FXSC boundary conditions 

edge  linear spring [N/m2]  rotational spring [N/rad∙m]  B.C. of edge 

x = –a  kx1 = 0  Kx1 = 0  F 

y = –b  ky1 = 0  Ky1 = 1010  X 

x = +a  kx2 = 1010  Kx2 = 0  S 

y = +b  ky2 = 1010  Ky2 = 1010  C 

 

Table 2 Convergence study and comparisons of buckling load factor 
1  for an isotropic plate under uniaxial compression 

2

21

(2 )xN b

D



=   SSSS 

 

CSCS 

 

CCCC 

Mijušković et al. (2015)  4.000 6.7432 10.0759 

FEM (ANSYS), Mijušković et al. (2015)  3.966 6.7388 10.0729 

Present (M=N=6)   3.9997 6.7471 10.1065 

Present (M=N=8)  3.9996 6.7430 10.0737 

Present (M=N=10)  3.9995 6.7430 10.0733 

Present (M=N=12)  3.9994 6.7430 10.0733 

Present (M=N=14)  3.9993 6.7430 10.0733 
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Fig. 2 Effects of rotational springs on the buckling loads 

for the plate with stiff linear springs in all edges, R=0 
 

 

are considered to have constant values. In order to ensure 

the correctness of performance of elastic constraints in 

buckling mode shapes, some selected mode shape 

associated with specific spring factors are provided in Figs. 

8-13. These figures are associated with some results in Figs. 

2-5, and 7. 

Figs. 2-5 show that the rotational springs have 

substantial influences on the critical loads. While the 

rotational springs increase from 10-2 to 1010, firstly, a slight 

increment can be seen for the critical loads. Then, a rapid 

enhancement happens within the range of 103 to 107, 

 

 
Fig. 3 Effects of rotational springs on the buckling loads 

for the plate with stiff linear springs in x= ±a, R=0 

 

 

and finally remains unaltered. In the first and final stages, 

the edges act as classic boundary conditions. Furthermore, 

the influence of the rotational springs in x a=   is higher 

than those in y = ±b. This result can be interpreted by the 

condition of uniaxial compression, in which the rotational 

springs in x a=   increase the moments of resistance 

against bending. It should be noticed that the effects of the 

rotational springs in y = ±b are insignificant when the linear 

springs of these edges are zero (Fig. 3). 

It is observed from Fig. 6 that the effect of variations of 

linear springs in x a=   from 10-2 to 1010 on the critical 

Table 3 Comparisons of buckling load factor δ2 for a square orthotropic plate under uniaxial and biaxial compression 

2

32
22

(2 )xN b

h E
 =  R  CSCS SSCS SSSS FSCS FSSS FSFS 

*Thai and Kim (2011) 0 35.5455 19.5929 11.1415 4.9710 4.0475 2.3122 

**Thai and Kim (2011) 0 35.7845 19.6635 11.1628 4.9753 4.0498 2.3131 

present 0 35.7841 19.6627 11.1622 4.9747 4.0492 2.3126 

*Thai and Kim (2011) 1 20.1558 10.7273 5.5707 1.7733 1.0165 1.2745 

**Thai and Kim (2011) 1 20.2904 10.7658 5.5814 1.7747 1.0169 1.2750 

present 1 20.2877   10.7648 5.5810 1.7745 1.0168 1.2747 

***present 1   12.9426 10.6990 - - - 0.8228 

*FSDT, **CLT, ***Critical values 

 

Table 4 Comparisons of buckling load factor δ3 for a square symmetric cross-ply laminated composite plate [0/90]2S under 

uniaxial compression 

2

23
22

(2 )xN b

D



=   SSSF SCSF SCSC CCCF CSSC CSCS 

Ungbhakorn and Singhatanadgid (2006)  2.0396 2.2294 7.8342 7.8494 6.5576 8.9399 
present  2.0395 2.2293 7.8325 7.8478 6.5562 8.9397 

 

Table 5 Comparisons of buckling load factor δ4 for a symmetric laminated composite plate [30°/-30°/30°] under uniaxial 

compression 

2

12 21
34

11

12(1 ) (2 )xv v N b

h E


−
=  SSSS CCCC SCSC SCCS 

Liu et al. (2002) 25.36 62.77 47.77 39.08 
Shufrin et al. (2008b) 25.25 62.05 47.04 38.54 

Singhatanadgid and Jommalai (2016) 25.31 62.02 47.12 38.59 
present 25.2481 62.0459 47.0418 38.5429 
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Fig. 4. Effects of rotational springs on the buckling loads 

for the plate with stiff linear springs in y = ±b , R=0 

 

 

 
Fig. 5 Effects of rotational springs on the buckling loads 

for the plate with stiff linear springs in x a= −  and 

y b= − ,
 
R=0 

 

 

 
Fig. 6 Effects of linear springs in x=±a on the buckling 

loads for the plates with different length to thickness 

ratios, R=0 

 
Fig. 7 Effects of linear springs in x a=   on the 

buckling loads for the plates with different lay-up 

configurations, R=1 

 

 

load are similar to the influence of changes in rotational 

springs (Figs. 2-5) and the critical loads grow from first to 

final values. These growths start in lower spring stiffnesses 

for thinner plates. Obviously, this is related to the bending 

matrix Dij of laminated composite plates. Hence, a high 

value of Dij makes plate to has reaction in high elastic 

restraints. 

It can be found in Fig. 7 that the influence of the angle 

of fibers on the critical load is significant. The critical load 

of the plate [0]3 is the highest. When the linear springs in 

x=±a are sufficiently large, this influence is more 

pronounced. Note that for [90]3 configuration, different 

values of linear springs in x=±a have no considerable 

change on the critical load. The reason for this insignificant 

effect may be addressed to the low value of D11, where 

highly stiffened boundary conditions can’t improve the 

stability of the weak structure. 

The corresponding buckling modes for the plate in first 

case of Fig. 2 (black circles) are presented in Fig. 8. As can 

be seen, the essential boundary conditions of clamped edges 

are satisfied by increasing the stiffness of rotational springs 

from 102 to 108. By comparing the buckling modes of SSSS 

and CCCC, it can be shown that the lateral deflection of 

plate with SSSS edges increases smoothly from edges to 

center. In contrast, a sudden jump of lateral deflection is 

occurred for CCCC plate. The buckling modes for the plate 

in the second case of Fig. 3 (red triangles) are provided in 

Fig. 9. In this case, the edges x=±a change fromsimply-

supported to clamped and the edges y=±b remain free. At 

the first glance, the buckling modes of plates with SFSF and 

CFCF edges are very similar. However, the critical buckling 

load factor of CFCF plate is approximately four times 

higher than corresponding factor of SFSF plate. The reason 

for this event is high potential of clamped edges against 

buckling. Figure 10 depicts the buckling modes of third 

case of Fig. 4 (green squares), where the boundary 

conditions of the plate change from FSFS to FCFC. As th e 

two edges change from simply-supported to clamped 

conditions, the critical buckling load factor grows twice. 
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Fig. 8 The variations of mode shapes versus spring factors corresponding to first case in Fig. 2 

 

Fig. 9 The variations of mode shapes versus spring factors corresponding to second case in Fig. 3 

 

Fig. 10 The variations of mode shapes versus spring factors corresponding to third case in Fig. 4 
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Here, the compression is on x=±a edges, and the clamped 

edges of y=±b have no significant resistance versus bending 

of plate. The results of forth case of Fig. 5 (yellow 

rhombus) are demonstrated in Fig. 11 which the edges x=+a 

and y=+b remain free and opposite edges change from 

simply-supported to clamped conditions. It can be seen that 

a large area of plate with CCFF edges have no considerable 

deflection. In contrast, the plate with SSFF edges has 

alinear and continuous increment of deflection from x=–a 

x=–a, y=–b to x=+a, y=+b. Finally, the buckling modes of 

plate in first and third cases of Fig. 7 with lay-up 

configuration of [0]3 and [45/-45/45] are presented in Figs. 

12 and 13, respectively. In both figures, the deflections of 

plate in x=±a edges decrease to zero by increasing of the 

stiffness of linear springs. Also Fig. 13 reveals that the 

mode shapes significantly change with lay-up 

configuration. In other words, the deflection contours show 

that the wave lines have non-zero angles with respect to the 

edges of plate. 

 

 

4. Conclusions 
 

This article focused on the buckling behavior of 

rectangular symmetric composite plates with new types of 

boundary conditions (elastically restrained edges modeled 

by a set of linear and rotational springs) by utilizing Ritz 

method and simple polynomials. Compared with the 

methods in the literature, the present analysis may be 

considered as a unified solution to deal with buckling 

analysis of plates under different combinations of classic 

and elastically restrained boundary conditions with 

appropriate accuracy. It was illustrated that both springs 

(i.e. linear and rotational) have substantial influence on the 

critical load, especially the springs of loaded edges. The 

influence of springs on the critical load changes during the 

whole range of variations of spring factors. Usually, the 

critical buckling loads grow between two values, which 

these values are associated to classic boundary conditions. 

It is found that the growths start in lower spring stiffnesses 

 
Fig. 11 The variations of mode shapes versus spring factors corresponding to forth case in Fig. 5 

 

 

Fig. 12 The variations of mode shapes versus spring factors corresponding to first case in Fig. 7 
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for thinner plates. Besides, it is concluded that the lay-up 

configuration is more significant on the buckling load, 

when the linear springs are sufficiently large. 
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