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1. Introduction 
 

Uncertainties in structural parameters and their effect on 

the response of the structure are continuously gaining in 

significance. These uncertainties may be resulted from 

manufacturing tolerances, determining external forces, 

insufficient data on material properties and imprecise 

statistical data. In the last three decades nondeterministic 

analysis of engineering structures has received considerable 

attention of an increasing number of researchers. Numerical 

techniques have become widely used methods to develop 

the field of stochastic mechanics in large and highly-

complex problems with the help of the fast computing 

technology. Various techniques for discretization of the 

random fields in random variables are presented in the 

literature (Li and Der Kiureghian 1993). The stochastic 

finite element method is one of the powerful tools in 

computational stochastic mechanics. However, the mesh 

dependency of the simulation results remains a topic of 

concern. To overcome this drawback, several adaptive mesh 

refinement strategies have been proposed in the recent years. 

One of the challenging problems in numerical solutions 

of differential equations governing physical phenomena is 

the estimation of discretizing errors and how far is it from 

the exact solution. In most of the problems, the exact 

solution is unknown, and several methods have been 

proposed to estimate the error and improve the accuracy of 

the results. Richardson (1910) was one of the pioneers who 

applied error estimation in finite difference method. The  
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estimated error in any mesh depends on the size of the mesh 

and the error function degree, also, depends on the method 

of the solution (Zienkiewicz 2006). The priori error 

estimators are one of the first methods for error estimation 

which didn’t provide any information on the exact value of 

error, and they determined the rate of convergence of the 

solution qualitatively using the general form of the solution 

(Grätsch and Bathe 2005). In another attitude called 

posteriori error estimation, an initial hypothesis about the 

form of the solution is used for error estimation. This type 

of error estimation can be generally divided into two 

different categories; the residual based and the recovery 

based techniques. In the residual-based method proposed by 

Babuška and Reinboldt (1987), after the solution by finite 

element method, the results for boundary points were 

placed in the governing differential equation and the 

residuals were calculated in a patch of elements. Özakça 

(2003) compared error estimators based on residual 

methods and discussed their performance, reliability and 

convergence. 

On the other hand, Zienkiewicz and Zhu (1987) 

proposed recovery-based error estimation which improves 

the finite element solution through a recovery procedure to 

obtain a more accurate representation of the variables. In 

this procedure, the error is approximated by the difference 

between the recovered solution and finite element solution. 

Various recovery procedures were proposed in the literature 

starting from the simplest form of averaging at each node to 

the superconvergent patch recovery technique. The 

superconvergent patch recovery (SPR) technique introduced 

by Zienkiewicz and Zhu (1992) for recovery of the gradient 

values. They improved the recovery process using the 

superconvergence behavior in the Gauss points of the 

regular isoparametric elements. A similar technique was 

proposed by Boroomand and Zienkiewicz (1997) which 
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does not need to identify super-convergent points 

particularly in element without superconvergent points. 

Ródenas et al. (2008) applied SPR technique for the XFEM 

framework using different recovery methods for singular 

and smooth stress fields. Moslemi and Khoei (2009,2010) 

proposed the weighted superconvergent patch recovery 

(WSPR) which estimates the error more efficient and 

realistic particularly in crack problems. The SPR technique 

is enhanced by Gonzalez-Estrada et al. (2013) to be applied 

in goal-oriented error estimation recovering both primal and 

dual solutions. Kumar et al. (2017) developed a posteriori 

error estimator in isogeometric analysis (IGA) based on B-

splines and LR B-splines for an elliptic model problem. A 

statistical approach for error estimation in adaptive finite 

element method was presented by Moslemi and Tavakkoli 

(2018) using the statistical distribution of the stress values 

at Gauss points. They proposed the new error estimator as 

the difference between the actual distribution and the 

uniform distribution function.  

The study of error estimation strategies to drive adaptive 

mesh refinement in stochastic analysis has recently received 

considerable attention. Deb et al. (2001) presented a 

framework for the construction of Galerkin approximations 

of elliptic boundary-value problems with stochastic input 

data and utilized a theory of a posteriori error estimation 

and corresponding adaptive approaches based on practical 

experience. A posteriori error estimation for the numerical 

solution of a stochastic variational problem arising in the 

context of parametric uncertainties was presented by 

Mathelin and Le Maıtre (2007). The error is approximated 

using the discrete solution of the primal stochastic problem 

and two discrete adjoint solutions on two imbricated spaces 

of the associated dual stochastic problem. An interval 

arithmetic-based finite element analysis was used by Lee et 

al. (2008) to estimate the uncertainties in structural analyses. 

They constructed tree graphs of uncertain data by numerical 

uncertainty combinations of structural parameters. They 

extend this method to to evaluate behavior uncertainties of 

structures without the application of probability theory (Lee 

et al. 2017). Eigel et al. (2014) developed an anisotropic 

residual-based a posteriori error estimator which contains 

bounds for both contributions to the overall error: the error 

due to gpc discretization and the error due to finite element 

discretization of the Galerkin projection onto finite 

generalized polynomial chaos (gpc) coefficients in the 

expansion. An adaptive refinement strategy is presented 

which allows steering the polynomial degree adaptation and 

the dimension adaptation in the stochastic Galerkin 

discretization, and, embedded in the gpc adaptation loop, 

also the Finite Element mesh refinement of the gpc 

coefficients in the physical domain. Guignard et al. (2016) 

used a perturbation approach to expand up the random 

solution to a certain order with respect to a parameter that 

controls the amount of randomness in the input and 

discretized by finite elements. They derived a priori and a 

posteriori error estimates of the error between the exact and 

approximate solution in various norms, including goal-

oriented error estimation. The stochastic Galerkin finite 

element method was implemented by Bespalov and Rocchi 

(2018) for numerical solution of elliptic PDE problems with 

correlated random data. The algorithm employs a 

hierarchical a posteriori error estimation strategy which also 

provides effective estimates of the error reduction for 

enhanced approximations. These error reduction indicators 

are used in the algorithm to perform a balanced adaptive 

refinement of spatial and parametric components of 

Galerkin approximations. 

The present paper deals with the development of a new 

adaptive mesh refinement strategy for two-dimensional 

problems based on the probabilistic error estimation . The 

lower and upper bounds of the structural parameters are 

estimated using first-order perturbation theory. Since these 

intervals are strongly mesh dependent, the mesh should be 

refined in regions with higher tolerance of the results. A 

new error estimator based on the probabilistic tolerance is 

proposed and is combined with the classic one to consider 

both the dispersion and high gradient of the results. The 

proposed algorithm can easily be implemented as a 

postprocessor in available finite element packages. The 

layout of the remainder sections of the paper is organized as 

follows; Section 2, reviews a posteriori error estimation 

based on the WSPR technique proposed by Moslemi and 

Khoei (2009). Next, in Section 3, a novel adaptive mesh 

refinement strategy is introduced based on the probabilistic 

error estimation. Several numerical results demonstrating 

the robustness and the efficiency of proposed algorithm are 

presented in Section 4. Finally, Section 5 is devoted to some 

concluding remarks.   

 

 

2. Adaptive mesh refinement  
 

In the adaptive mesh refinement, the main purpose is to 

create an optimal mesh minimizing the computational costs 

while limiting of discretization error in the finite element 

solution to an acceptable limit. However, the exact value of 

the stress field is not known for most of the problems. Thus, 

the error is approximated as the difference between the 

recovered values and those obtained directly from the finite 

element solution. The results are improved by smoothing 

the finite element solution over a patch using weighted 

superconvergent patch recovery technique (WSPR) 

proposed by Moslemi and Khoei (2009). The concept of 

superconvergence is that at some points the rate of 

convergence is higher than that in other points. The Gauss 

integration points are also the superconvergent points for 

the regular isoparametric elements (Zienkiewicz and Zhu 

1992). In WSPR technique, a polynomial is fitted over the 

Gauss points of the element patch surrounding the target 

node. The improved stress can be obtained as a polynomial 

with unknown coefficients for each component of σ*
i by 

*

0 1 21 ... ...Pa = = n

i nx y y a a a a
 
(1) 

where P contains the polynomial base functions and a 

denotes the vector of unknowns. A common method for 

determination of the unknown vector a is to perform a least 

square fit to the finite element solutions in the patch for 

considered vertex node. In this process, the number of 

Gauss points in the patch should be taken as greater than the 
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number of unknown parameters in the polynomial. In the 

case of boundary nodes which have few Gauss points in the 

patch, the patch can be expanded to adjacent elements. In 

the WSPR technique different weighting parameters are 

assumed for the sampling points of the patch in the error 

functions. This results a more realistic recovered value of 

stress at the nodal point particularly in the boundary regions. 

The error function can be written as the difference between 

improved solution σ* and finite element solution 𝜎̂, i.e. e = 

σ*-𝜎̂. Applying WSPR technique for recovering the stresses 

and performing a least square fit will give the error function 

as: 
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where n is the number of the sampling points and (xk,yk) 

denotes their coordinates. To make the nearest sampling 

points more effective in the recovery process, the weighting 

factor wk is taken as the distance between the recovered 

nodal point and the sampling point. Thus, the weighting 

parameter is defined wk=1/rk, with rk denoting the distance 

of each sampling point from the vertex node which is under 

recovery. The vector of unknowns a is obtained by 

minimization of the error function F(a).  
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(3) 

The recovery of the stresses from Gauss points to nodal 

points is accomplished for all of the nodes of the domain. 

Then the nodal stresses are transferred to Gauss points by 

standard shape function of the element.  

* *
=N.Gauss 

 
(4) 

The process of the recovery of the stresses is illustrated 

schematically in Fig. 1. The approximation of stress error 

can be therefore written as the difference between the 

recovered values and those given directly by the finite 

element.  

* ˆ
Gausse   −

 
(5) 

 

 

This is a pointwise definition of error and is used for 

local refinement. To determine the accuracy of the overall 

solution, the error estimator is changed to a global 

parameter using the norm of error. The L2 norm is usually 

employed for globalizing the error and defined as 
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where e is the error vector over the domain Ω. This norm 

can be evaluated in each element domain to achieve each 

element contribution in the total error. The square of the 

total error norm can be obtained by using the sum square 

root of elements error norm.  

2 2

1

m

i
i

e e 
=

=
 

(7) 

with i denoting an element contribution and m the total 

number of elements. The distribution of error norm at the 

elements of domain depends on the problem and the 

discretization scheme. This distribution indicates the 

portions with high gradient stress field need refinement and 

other parts with uniform stress field need coarsening 

elements. This strategy leads to an optimal mesh with 

uniform distribution of error norm across the domain. To 

make the domain error independent of the problem type, the 

L2 norm is normalized to the state variable, such as the 

stress norm. After the mesh refinement, this relative error 

should be less than the target percentage error, i.e.  

 
ˆ ˆ
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with ηaim denoting the prescribed target percentage error. 

The rate of convergence of local error in the standard 

elements depends on the order of shape functions. Thus, the 

new size of the elements for reaching the aim error can be 

evaluated as:  

( )
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(9) 

 

Fig. 1 The process of recovering of the stresses; ● nodal points, × Gauss points 
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where p is the order of shape function. This process will 

lead to an element density distribution exported to a mesh 

generator to produce a new mesh with desired element sizes. 

In the mesh generator proposed here, the nodal element size 

is needed for creating the new mesh. Thus, the nodal 

element size is obtained using a simple averaging method 

on the Gauss points data around each node. After indicating 

the size of elements, a mesh satisfying the requirements will 

be finally generated by an efficient mesh generator which 

allows the new mesh to be constructed according to a 

predetermined size. However, to prevent the mesh 

generation difficulties, the element size is limited by an 

upper and a lower bound. To attain the aim error, several 

adaptive mesh refinement steps may be needed. In this 

condition the new mesh is considered as the old one for 

next step of adaptive remeshing.    

 

 

3. Probabilistic error estimation 

 
The classic adaptive finite element method described in 

Section 2, would lead to mesh refinement in high gradient 

regions such as load points, crack tips, strain localization 

regions, etc. The uncertainties in the system parameters 

such as geometric sizes, material properties and loading 

conditions, would affect the response tolerances. In finite 

element method, discretization error would intensify this 

tolerance and affect the design purposes. A proper mesh in 

finite element method would reduce the mesh dependency 

of response tolerances. The mesh would be refined in 

regions with higher tolerance and vice versa. The lower and 

upper bounds of the nodal displacements and stresses have 

been achieved using first-order perturbation theory. This 

theory is efficient and accurate when the uncertainties are 

not too large. Let random vector R= {R1, R2, …Rn} 

represent all random variables of the structural system. In 

two dimensional linear systems, it may include elasticity 

module E, geometric sizes in two directions Lx, Ly, 

thickness t and load vector F. In the displacement based 

finite element method, the equilibrium equation can be 

written as  

    K u F=
 

(10) 

where [K] is the stochastic global stiffness matrix; {u} is the 

nodal displacement vector and {F} is the stochastic force 

vector. Stochastic stiffness matrix and force vector can be 

related to the mean value and random variables as 

1
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(12) 

where 𝐾 and 𝐹̅ are mean values of stiffness matrix and 

force vector. The variation of force vector is a random 

variable. To express the variation of stiffness matrix dK in 

terms of random variables, the stiffness matrix in two 

dimensional problems is written as 

   .T

A

K B DB t dA= 
 

(13) 

where B, D, t denote the generalized gradient matrix, 

material property matrix and thickness of the problem, 

respectively and A is the domain area. Thus, the variation of 

stiffness matrix can be expressed as 
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The generalized gradient matrix B can be obtained 

differentiation of shape functions as  
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The variation of each component of this matrix is 

affected by the planar geometric random variables. For 

instance the variation of the first component of this matrix 

can be expressed as 

2

1
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(16) 

where m is the number of nodes in each element, xi denotes 

the coordinates of each node of the element and dLx is the 

geometry size random variable in x direction. Substituting 

dK and dF in Eqs. 11,12 and applying them into Eq. 10 

gives the tolerance of nodal displacement. 

1 1

1 1 1

( )

. .

du d K F K dF

K dK K F K dF

− −

− − −

= +

= − +
 (17) 

This leads to the lower and upper bounds of the nodal 

displacements and determines the nodes with higher 

tolerance in displacements. Using root sum squared method 

the x , y components of nodal displacements are combined 

and then it is normalized with respect to the average domain 

displacement. This normalized tolerance is taken as the 

probabilistic error estimator in correspondence with the 

classic error estimator. 

pr

du
e

u


 

(18) 

After defining new probabilistic error estimator, the 

remaining stages of adaptive mesh refinement is similar to 

the classic method through Eqs. (6)-(9). This process results 

to a new element density distribution with finer mesh in 

regions with the higher tolerance of results and larger mesh 

in elements with more determinant results. It is evident that 

each of the classic and probabilistic mesh refinements only 
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affect their correspondent parameters. To attain a mesh with 

the proper classic and probabilistic estimated error, these 

two mesh refinements are combined together. In this way, 

the optimal mesh would be refined properly in regions with 

either high gradients or high dispersion of the responses.  

The new size of the elements in the combinational case is 

defined as the geometrical mean of new sizes in classic and 

probabilistic adaptive mesh refinement.  

( ) ( ) ( )
, , ,i i inew combinational new classic new probabilistic

h h h= 
 
(19) 

Although this combined form of mesh refinement, does 

not act as effective as each of classic and probabilistic 

methods individually, but it will reduce the estimated errors 

totally.   
 

 

4. Numerical simulation results 
 

To demonstrate the capability and efficiency of the 

proposed probabilistic error estimator described in section 3, 

some examples are analyzed numerically. Three different 

examples are investigated where the adaptive mesh 

refinement is accomplished using classic, probabilistic and 

combined error estimation. To challenge the ability of the 

algorithm, several different uncertainties are considered in 

the examples such as geometry size, material properties, 

crack length and impact load position. The uncertainty in 

material properties can be modeled as the variation in 

constitutive matrix as shown in Eq. 14. However, the 

uncertainties in geometric parameters such as size of the 

domain, crack length and position of the load can be 

considered via the variation of nodal coordinates, as 

described in Eq. 16. These coefficients of variation are input 

values of the model and may be obtained through the 

statistical analysis on the survey data. In the finite element 

analysis, the two dimensional triangular elements with the 

three Gauss quadrature points for the numerical integration 

are used. A coarse uniform FE mesh is taken for the 

initialization of the remeshing process in all of the examples. 

The proposed algorithm would identify automatically the 

parts of the domain which require finer mesh in each of the 

classic and probabilistic approaches. In simulation of the 

crack propagation in third example, the formulation of 

maximum circumferential stress criterion (Erdogan and Sih 

1963) is employed to determine the crack growth direction. 

The tolerance of the results in the DOFs have been achieved 

using first-order perturbation theory. To investigate the 

effect of adaptive mesh refinement using the probabilistic 

error estimation, the estimated errors are compared for the 

uniform, classic and probabilistic adapted meshes. 

 
4.1 A bi-material square plate with different 

coefficient of variation  
 

The first example is of a bi-material square plate with 

different coefficient of variation subjected to two 

concentrated tensile loads, as shown in Fig. 2-a. The 

coefficient of variation of elasticity modulus is 5% for the 

right half and 1% for the left half of the plate. The 

coefficient of variation of geometry size for in plane and out 

 
(a) 

 
(b) 

Fig. 2 The bi-material plate with different coefficient of 

variation; a) geometry and boundary conditions b) initial 

FE mesh 

 

 

of plane dimensions is taken 1%. This example is chosen to 

compare the classic and probabilistic adaptive techniques 

for a benchmark problem. The initial coarse uniform mesh 

with 249 elements and 440 nodes.is shown in Fig 2-b.  

The finite element analysis of the initial mesh illustrates 

the stress concentration at the concentrated loads and 

restrained points of the plate. Thus, the classic estimated 

error is locally high at these points regardless of different 

coefficient of variation. A very fine mesh refinement can be 

also observed at these regions as shown in Fig 3. This 

remeshing process have reduced the classic estimated error 

from 37.6% in initial mesh to 4.1% in the classic adaptive 

mesh. The probabilistic estimated error have also been 

reduced from 5.0% to 4.2% as shown in Table 1. 
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(a) 

 
(b) 

Fig. 3 The bi-material plate with different coefficient of 

variation; a) classic estimated error b) classic adaptive 

mesh 

 

 

In next step, the error of the initial mesh is estimated 

according to the tolerance of the displacements as it was 

described in Section 3. The contour of estimated 

probabilistic error is shown in Fig. 4.a. Due to the higher 

coefficient of variation, the right half of the plate had a 

larger value of probabilistic error. It is evident that in 

restrained points the displacements are determinant and the 

probabilistic error is zero. Moving toward the top of the 

plate, the tolerance of the results would increase and the 

maximum probabilistic error occurs at the top right corner 

of the plate. The resultant adaptive mesh obtained in this 

approach is shown in Fig. 4.b. In this approach, the classic 

error is reduced from 37.6% in initial mesh to 7.4% in the 

probabilistic adaptive mesh. The probabilistic estimated 

error have also been reduced from 5.0% to 2.8% as shown 

in Table 1. It can be seen that this approach leads to more 

reduction of probabilistic error than the classic method. 

Comparing these two approaches illustrates each 

approach is more successful in reduction of corresponding 

error value. Thus, an intermediate case is the combinational 

approach described in Section 3 where the new size of the 

elements can be obtained from Eq. 19. In this case the mesh 

is refined at stress concentration regions and in the right 

half of the plate with higher coefficient of variant, as shown 

in Fig. 5.a. The contours of the reduced classic error and 

 
(a) 

 
(b) 

Fig. 4 The bi-material plate with different coefficient of 

variation; a) probabilistic estimated error b) probabilistic 

adaptive mesh 

 

 

probabilistic error for the combinational mesh are shown in 

Figs. 5.b and 5.c. The classic error have been reduced to 

6.5% and the probabilistic error have been reduced to 3.3% 

in the combined approach. It indicates that this combined 

approach would result a balanced reduction in both error 

indices. The estimated error for different uniform and 

adapted meshes are summarized in Table 1.  

 
4.2 Cracked beam with uncertainty on crack length 
 

The second example is a bending beam with an 8 cm 

crack which is subjected to a midspan 300 kN concentrated 

load as shown in Fig. 6.a. The geometry, boundary 

condition and initial FE mesh with 205 nodes and 348 

elements are indicated in Fig. 6. In this example, the 

coefficient of variation in geometry dimensions and 

elasticity modulus is taken 1% all over the domain. In 

addition the uncertainty in the initial crack length is taken 

10%. This uncertainty affects the nodal coordinates of the 

FE mesh especially near the crack.  

The classic finite element analysis indicates that the 

focus of estimated error is near the concentrated loads and 
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(a) 

 
(b) 

 
(c) 

Fig. 5. The bi-material plate with different coefficient of 

variation; a) combinatioanl adaptive mesh, b) classic 

estimated error, c) probabilistic estimated error 

 

 

Table 1 The bi-material plate with different coefficient of 

variation; Summary of estimated errors for different 

uniform and adapted meshes 

estimated 

probabilistic 

error 

estimated 

classic error 

number 

of 

elements 

number 

of nodes 

parameters 

mesh type 

0.05 0.3765 440 249 initial mesh 

0.0419 0.0414 2280 1221 
classic adaptive 

mesh 

0.0283 0.0739 2312 1223 
probabilistic 

adaptive mesh 

0.0334 0.0650 1566 845 
combinational 

adaptive mesh 

 
(a) 

 
(b) 

Fig. 6 Cracked beam with uncertainty on crack length; 

a)geometry and boundary conditions, b) initial FE mesh 

 

 

restraints. Due to the singular stress field near the crack tip 

in linear elastic fracture mechanics (LEFM), the crack tip 

zone shows a high value of error. The contour of classic 

estimated error in Fig. 7.a confirms this behavior.  

The classic adaptive mesh as shown in Fig. 7.b have 

applied the refinement near the load, restraints and near the 

crack tip zone which is in concordance with the contour of 

error. Table 2 shows that the classic estimated error have 

been reduced drastically from 36.9% in the initial mesh to 

2.9% after adaptive mesh refinement, but the probabilistic 

estimated error is reduced slightly from 3.9% to 2.8%. 

On the other hand, probabilistic adaptive mesh 

refinement accomplished on the initial mesh using proposed 

algorithm. The variation of crack length has led to a high 

probabilistic estimated error in a vertical band around the 

crack. This effect is more highlighted under the load (high 

tolerance in vertical displacement) and near the crack 

opening mouth (high tolerance in horizontal displacement). 

The distribution of the probabilistic error is shown in Fig. 

8.a. To distribute the probabilistic error uniformly over the 

elements, the remeshing process is accomplished and the 

probabilistic adaptive mesh is obtained as shown in Fig. 8.b. 

Through this procedure the probabilistic error have reached 

to 2.4%. Due to the high uncertainties of the problem, the 

reduction of the probabilistic error is very limited. 

To balance the reduction of classic and probabilistic 

error, the combinational adaptive mesh refinement is 

accomplished on the initial mesh. Since the region near the 

concentrated load experience high value of error in both of 

the approaches, very high dense mesh is generated in this  
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(a) 

 

(b) 

Fig. 7 Cracked beam with uncertainty on crack length; a) 

classic estimated error b) classic adaptive mesh 
 

 

(a) 

 

(b) 

Fig. 8 Cracked beam with uncertainty on crack length; a) 

probabilistic estimated error b) probabilistic adaptive 

mesh 

 

 

region using combinational. The concentrated restraints and 

vertical band near the crack have relative fine mesh and 

other parts of the domain are meshed with coarse elements 

algorithm as shown in Fig. 9.a. The effect of combinational 

adaptive mesh refinement is illustrated through contours of 

the reduced classic error and probabilistic error in Figs. 9.b 

and 9.c. The estimated error for different uniform and 

adapted meshes are summarized in Table 2. It can be seen 

from Table 2 that another advantage of combinational 

method is the balanced reduction of error with lower 

number of degrees of freedom (1205 nodes vs. 1950 nodes). 
 

Table 2 Cracked beam with uncertainty on crack length; 

Summary of estimated errors for different uniform and 

adapted meshes 

estimated 

probabilistic 

error 

estimated 

classic error 

number of 

elements 

number of 

nodes 

parameters 

 

mesh type 

0.0385 0.3689 348 205 initial mesh 

0.0283 0.0294 3685 1914 
classic adaptive 

mesh 

0.0243 0.1146 3754 1950 
probabilistic 

adaptive mesh 

0.0246 0.0457 2305 1205 
combinational 

adaptive mesh 
   

 
(a) 

 
(b) 

 
(c) 

Fig. 9 Cracked beam with uncertainty on crack length; a) 

combinatioanl adaptive mesh, b) classic estimated error, c) 

probabilistic estimated error 
 

4.3 Mixed mode crack growth with uncertainty on 
impact load position 

 

The last example presents a simply supported beam with 

an edge notch at 13 cm from the center of beam. The 

eccentric crack leads to the mixed combination of mode I 

and II crack behavior. A 500 kN impact load is exerted to 

the center of top edge of the beam. The geometry and 

boundary conditions of the beam are shown in the Fig. 10.a. 

This example is chosen to demonstrate the effect of 

probabilistic mesh refinement on the upper bound and lower 

bound of crack growth trajectory. The beam is meshed 

initially with uniform coarse elements as shown in Fig. 10.b 

(205 nodes and 345 elements). 
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As with the previous example, the coefficient of variation in 

geometry dimensions and elasticity modulus is taken 1% all 

over the domain. In addition the uncertainty in the impact 

load position is taken 5%. The formulation of maximum 

circumferential stress criterion (Erdogan and Sih 1963) is 

employed to determine the crack growth direction. In this 

method, the stress components are recovered at the crack tip 

node, as described in Section 3. Based on this theory, the 

hoop stress reaches its maximum value on the plane of zero 

shear stress. The crack propagation angle 𝜃 can be 

expressed by using the angle between the line of crack and 

the crack growth direction.  

𝜃 =  
1

2
  𝑎𝑟𝑐𝑡𝑎𝑛 (

2𝜏𝑥𝑦

𝜎𝑥 − 𝜎𝑦

)  (20) 

where σx , σy , 𝜏xy  are recovered stresses at the crack tip 

node and the positive value of 𝜃 defined in the anti-

clockwise direction. The mixed mode behavior of the crack 

would turn the crack toward the midspan of the beam. Due 

to the uncertainty of the impact load position, the crack 

growth trajectory lies between an upper bound and lower 

bound. Since the discretization error would intensify the 

tolerance of uncertainties, analyzing the model with initial 

mesh would lead to a wide bound for the crack path. 

Applying the probabilistic adaptive mesh refinement, would 

narrow this bound. The contour of the probabilistic  

 

(a) 

 

(b) 

Fig. 11 Mixed mode crack growth with uncertainty on 

impact load position; a) probabilistic estimated error b) 

probabilistic adaptive mesh 

 

 

estimated error and its corresponding refined mesh is shown 

in Fig. 11.  

The crack opening mouth sustains larger values of error 

especially on the left side of the beam where roller support 

generates higher tolerances in displacements. The bounds of 

the crack growth path have been calculated again according 

to the new adaptive mesh. Fig. 12 compares the bounds of 

the crack path obtained from initial mesh and probabilistic 

adaptive mesh. It is evident that the latter reduces the 

discretization error effect on displacement tolerances and 

lead to a narrower bound for crack growth path with more 

reliability. Like the previous examples, classic adaptive 

mesh refinement and combinational approach are also 

applied to this problem and the results are summarized in 

Table 3. It is obvious that the applying the proposed 

adaptive algorithms have reduced both of the classic and 

probabilistic estimated errors considerably. Combinational 

case shows a moderate and balanced reduction in both of 

error indices. 

The crack opening mouth sustains larger values of error 

especially on the left side of the beam where roller support 

generates higher tolerances in displacements. The bounds of 

the crack growth path have been calculated again according 

to the new adaptive mesh. Fig. 12 compares the bounds of 

the crack path obtained from initial mesh and probabilistic 

adaptive mesh. It is evident that the latter reduces the 

discretization error effect on displacement tolerances and 

lead to a narrower bound for crack growth path with more 

reliability. Like the previous examples, classic adaptive 

mesh refinement and combinational approach are also 

applied to this problem and the results are summarized in 

Table 3. It is obvious that the applying the proposed 

adaptive algorithms have reduced both of the classic and 

probabilistic estimated errors considerably. Combinational  

 

(a) 

 

(b) 

Fig. 10 Mixed mode crack growth with uncertainty on 

impact load position; a) geometry and boundary 

conditions, b) initial FE mesh 
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(a) 

 

(b) 

Fig. 12 Mixed mode crack growth with uncertainty on 

impact load position; a) the crack growth bounds with 

initial mesh b) the crack growth bounds with probabilistic 

adaptive mesh 

 

Table 3 Mixed mode crack growth with uncertainty on 

impact load position; Summary of estimated errors for 

different uniform and adapted meshes 

estimated 

probabilistic 

error 

estimated 

classic error 

number of 

elements 

number of 

nodes 

parameters 

 

mesh type 

0.0794 0.4151 376 226 initial mesh 

0.0399 0.0447 2835 1492 
classic adaptive 

mesh 

0.0138 0.1313 2820 1503 
probabilistic 

adaptive mesh 

0.0199 0.0666 2283 1222 
combinational 

adaptive mesh 

 

 

case shows a moderate and balanced reduction in both of 

error indices. 

 

 

5. Conclusion 
 

In the present paper, a new probabilistic error estimator 

was presented for the reduction of mesh dependency in the 

tolerances of the FE results. The classic error estimators 

focus on the error reduction of the regions with high 

gradient stress field. However, in the stochastic problems 

high dispersion of the results would affect the design 

purposes. To reduce the discretization error in tolerance of 

the results, a new probabilistic error estimator was 

introduced based on first-order perturbation theory. The 

adaptive mesh in correspondence with error estimator 

refines the mesh in regions with higher tolerance of the 

results. The suggested error estimator neglects the 

refinement at the critical points with stress concentration. 

Therefore, the proposed strategy is combined with the 

classic adaptive mesh refinement to achieve an optimal 

mesh refined properly in regions with either high gradients 

or high dispersion of the responses. The efficiency and 

robustness of proposed adaptive algorithm in error 

reduction were presented by three numerical examples with 

different stochastic variables. The results indicated that each 

of the classic and probabilistic strategies have reduced 

corresponding error estimator considerably, but they have 

affected the other index moderately. The combinational 

strategy would result a balanced reduction in both error 

indices with lower number of degrees of freedom. 
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