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1. Introduction 
 

In the past two decades, cable-net structures have been 

widely used in various large-span projects (Luo et al. 2012) 

and aviation antennas (Liu et al. 2013, Deng et al. 2014). 

With more advanced development, more complex cable-net 

structures will be used to cover wider spans. For such 

applications, the spoke double-layer cable-net structure 

(SDLC) is a well-suited approach; SDLCs have been widely 

used in many large-span structures, such as the National 

Stadium in Warsaw (Fig. 1) and the Sony Center in Berlin’s 

Potsdamer Square (Fig. 2).  

Unlike traditional grid structures, cables have a 

relatively small bending rigidity (Vu et al. 2012, Wang et al. 

2014) that is even negligible in some cases. Cables are 

suspended with almost no stiffness in the nontensioned state, 

and the initial prestress in the cables gives rigidity to 
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Fig. 1 National Stadium of Warsaw 

 

 
Fig. 2 Sony Center in Potsdamer, Berlin 
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Abstract.  An optimal design method for a spoke double-layer cable-net structure (SDLC) is proposed in this study. Simplified 

calculation models of the SDLC are put forward to reveal the static responses under vertical loads and wind loads. Next, based on an 

energy principle, the relationship among the initial prestress level, cross-sectional areas of the components, rise height, sag height, 

overall displacement, and relative deformation is proposed. Moreover, a calculation model of the Foshan Center SDLC is built and 

optimized. Given the limited loading cases, material properties of the components, and variation ranges of the rise height and sag 

height, the self-weight and initial prestress level of the entire structure can be obtained. Because the self-weight of the cables 

decreases with increasing of the rise height and sag height, while the self-weight of the inner strut increases, the total weight of the 

entire structure successively exhibits a sharp reduction, a gradual decrease, a slow increase, and a sharp increase during the 

optimization process. For the simplified model, the optimal design corresponds to the combination of rise height and sag height that 

results in an appropriate prestress level of the entire structure with the minimum total weight. 
 

Keywords:  spoke double-layer cable-net; simplified calculation model; energy principle; structural optimal design; 

comparative analysis 

 



 

Mingmin Ding, Bin Luo, Lifeng Han, Qianhao Shi and Zhengxing Guo 

 

 

the SDLC, producing a structure with the ability to resist 

external loads and maintain its inherent shape. Furthermore, 

an SDLC has geometric nonlinearity, which leads to large 

variations in the structural performance from minor changes 

in geometry. Therefore, two key issues in the design of an 

SDLC are finding the initial prestress distribution and 

finding the initial structural shape that satisfies both the 

equilibrium conditions and the corresponding prestress 

distribution. 

Currently, most of the research on structural optimal 

design is focused on rigid structures, and many theories 

have been proposed based on energy principles, e.g., the 

gradient-based energy minimization methods discussed by 

Prada and González (2014), the total potential optimization 

using meta-heuristic algorithms (TPO/MA) presented by 

Toklu et al. (2013), and a virtual strain energy density 

approach developed by Makris et al. (2006). However, 

research on the structural optimal design of prestressed 

spatial structures is lacking, with only limited studies 

(Toklu et al. 2017) related to cable structures. 

Extensive research has been conducted on the shape and 

pretension optimization of tensile structures. Kawaguchi et 

al. (1999) presented a study on optimizing the maximum 

stiffness of a full-scale cable dome with a membrane roof. 

Guo and Jiang (2016) proposed a simple method for 

updating the geometry based on the geometrical differences 

under different states, and they developed a process for 

finding the feasible prestress of cable-strut structures. More 

recently, Liu et al. (2017) proposed a shape accuracy 

optimization method to find the optimal pretension for the 

desired shape of a cable-rib tension deployable antenna 

structure with tensioned cables. 

A majority of the above studies involve shape and 

prestress optimization, and are related to the structural 

optimal design of SDLCs. Moreover, these methods are 

mainly based on the determined configuration modes of 

completed structures. If the locations of the cable nodes or 

strut nodes are unclear or change within a certain range, 

then the optimization simulation will be more complex. 

However, few studies have focused on optimization 

problems with this condition, and such studies have 

predominantly focused on antennas (Deng et al. 2014).  

Considering the characteristics of SDLCs, the present 

study proposes a structural optimal design method that can  

 

 

be applied to SDLCs without determining the initial 

prestress distributions and even with unknown cable cross-

sectional areas. This method proposes that the total weight 

of the cables and struts be used as the optimization 

objective and that the rise height and sag height be used as 

the optimization variables. By deducing the relationships 

among the cable forces, strut force, cross-sectional areas of 

the cables, rise height, and sag height, the structural optimal 

design of an SDLC can be obtained, including the initial 

prestress level, the specifications of structural components, 

and the initial structural shape. This optimization method is 

capable of producing an SDLC with a lighter self-weight 

and appropriate mechanical performance. Finally, a 

comparative analysis between the theoretical results and the 

FE results is conducted to verify the accuracy of this 

method. 

 

 

2. Simplified calculation model of an SDLC 
 

An SDLC is a tensile structure composed of n 

substructures (where n is a positive constant larger than 

one). Each substructure contains two ridge cables and two 

diagonal cables, with the n substructures sharing only one 

inner strut. In addition, all the joints between the cables and 

the inner strut are hinged. The simplified model of an 

SDLC is shown in Fig. 3(a), and the simplified calculation 

model of an SDLC substructure is shown in Fig. 3(b). 

According to their directions, the loads on SDLCs can 

be divided into two categories: vertical loads (e.g., dead 

loads, roof live loads, or snow loads), which point down 

toward the ground, and wind loads (e.g., suction wind loads 

or pressure wind loads), which point perpendicular to the 

ridge cables. 

Because the substructures of an SDLC are arranged 

radially around the inner strut at the center, the ridge cables 

of the SDLC bear triangularly distributed loads for both the 

vertical and wind loads. The detailed deformations of the 

SDLC are shown in Figs. 4(a)-(c), where qv, qsw, and qpw are 

the equivalent vertical line load, the equivalent suction wind 

line load, and the equivalent pressure wind line load, 

respectively; wv, wsw, and wpw are the vertical deformations 

of the inner strut (i.e., the mid-span displacement of the 

entire structure) for the vertical load condition, the suction  

 

 

(a) Entire model (b) Calculation model of a substructure 

Fig. 3 Simplified models of an SDLC 
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wind load condition, and the pressure wind load condition, 

respectively; fv, fsw, and fpw are the maximum relative 

deformations of the ridge cables for the vertical load 

condition, the suction wind load condition, and the pressure 

wind load condition, respectively; L is half of the span 

length of the entire structure; c1 is the rise height; and c2 is 

the sag height. 
 

 

3. Structural performance study of SDLCs based on 
an energy principle 

 

Assuming that the cables are flexible components that 

bear only tensile forces, the inner strut is a rigid rod that 

bears only compressive forces. In addition, the cables and 

inner strut all consist of a linear elastic material that meets 

the principle of superposition. Thus, the overall deformation 

and local deformation of an SDLC can be calculated using 

an energy principle. 

 

3.1 Energy principle 
 

For a specific cable-supported structure, several possible 

displacements may occur under a certain load, and these 

displacements must meet the structural boundary conditions. 

In this case, the total energy of a cable can be expressed as 

 = +U P  
(1) 

where Π is the total energy of a cable, U is the total 

strain energy of a cable with possible displacement, and P is 

the negative value of the virtual work imposed by the load 

on the possible displacement. Because the cables bear only 

tensile forces, only axial deformation is considered. 

U is expressed as 

11 1 1 21 2 2

1 1
( ) ( )

2 2
= +   + +  U T T l T T l

 
(2) 
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1

1
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EA l
T
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2

2


 =

EA l
T

l
 

(4) 

where T11 and T21 denote the initial cable forces of the 

ridge cables and diagonal cables, respectively, considering 

only the effect of prestress; T12 and T22 denote the forces of 

the ridge cables and diagonal cables, respectively, 

considering the effects of both the prestress and external 

load; l1 and l2 denote the initial lengths of the ridge cables 

and diagonal cables, respectively; Δl1 and Δl2 denote the 

elongations of the ridge cables and diagonal cables, 

respectively; ΔT1 and ΔT2 denote the increments of the 

cable forces of the ridge cables and diagonal cables, 

respectively; A1 and A2 denote the cross-sectional areas of 

the ridge cables and diagonal cables, respectively; and E 

denotes the elastic modulus of the cables. 

When adding an external load, R, the value of P is 

= − P R X  
(5) 

where ΔX is the increment of the real solution of the 

structural displacement. 

Applying the principle of stationary total potential 

energy (Liu et al. 2008), Eqs. (6)-(7) can be obtained, where 

Eq. (7) is the static equilibrium equation of the structure: 

0


=


Π

w  
(6) 

1 0 1,2,3=  + = ，n

j ij jK X R i = .....,n
 

(7) 

The equation for the principle of minimum potential 

energy (Reissner 1946) is 

  

(a) Triangular vertical load (b) Triangular suction wind load 

 

(c) Triangular pressure wind load 

Fig. 4 Deformations of an SDLC under different loads 
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Fig. 5. Initial pretension state of the SDLC 

 

 

( ) ( )  ( )1 1min =    + X X X X
 () 

where X1 is the real solution of the structural 

displacement, whose total potential is the smallest among 

the possible displacements. 

 

3.2 Relation between the ridge cables and diagonal 
cables 

 

As shown in Fig. 5, the configuration equations of a 

ridge cable and a diagonal cable in the initial pretension 

state (i.e., considering only the forces of the cables and the 

inner strut) can be expressed as 

1
1 =

c
Z x

L  
(9) 

2
2 =

c
Z x

L  
(10) 

where Z1 denotes the value of the z-coordinate of the 

ridge cable, Z2 denotes the value of the z-coordinate of the 

diagonal cable, and x denotes the value of the x-coordinate. 

Assuming that the horizontal component of T11, namely, 

H11, is known, then T11 and T21 can be expressed as 

2 2

11 1

11

+
=

H c L
T

L  

(11) 

‘
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(12) 

Then, the total potential of the cables, Π, can be 

expressed as 

2 2

11 1 1 1
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 (13) 

The horizontal component of T21, namely, H21, is 

11 1
21

2

=
H c

H
c

 
(14) 

3.3 Structural response of SDLCs under a 
triangularly distributed vertical load 

 

For SDLCs, assuming that the uniform vertical surface 

load applied to the roof is q0, the value of the simplified 

triangular vertical load, qv, can be expressed as 

0π ( )−
=v

q L x
q

n  
(15) 

where n denotes the number of substructures. 

The deformation of the ridge cables, u1, can be 

expressed as 

1 11 12= +u u u
 (16) 

In Eq. (16), the deformation caused by wv is 

11 = − vw
u x

L  
(17) 

In Eq. (16), the deformation caused by fv is given by 

2 2 3

0 0 0

12
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(18) 

Defining 
𝑑𝑍(𝑥)

𝑑𝑥
= 0, the maximum relative deformation 

of a ridge cable is 

3

0

12

3

27


=v

L q
f

nH
 

(19) 

The total elongation of a ridge cable is 

1 11 12l l l =  + 
 

(20) 

In Eq. (20), the elongation of the ridge cables caused by 

wv is 

2 2

11 0 1 11 1

2 2 2 2

1 1

( 1 ( ) (1 ( ) )

= ( )

L

v

l Z u Z dx

L c w L c

   = + − +

+ − − +

+  (21) 

Based on Eq. (18), the elongation of the ridge cables 

caused by fv is 

5 2 2
2 2 0

12 0 1 12 1 2 2

12

π
( 1 ( ) (1 ( ) )dx

90
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L L q
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(22) 

The total elongation of a ridge cable is 

5 2 2 2
20 1 1

1 2 2 2

12

π
( 1 1 ( ) )

90
 = + − + + + − +vL q c w c

l L
H n L L L

 

(23) 

The variation in the potential energy caused by the 

external load is 

2 2 3
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Combining Eqs. (6), (13), (23) and (24), wv is 
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3.4 Structural response of SDLCs under a 
triangularly distributed suction wind load 

 

Assuming that the uniform suction wind surface load 

applied to the roof is qsw0, the value of the simplified 

triangular wind load, qsw, can be expressed as 

2 2

0 1π ( )+ −
= sw

sw

q L c x
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(26) 

The deformation caused by fsw is 
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(27) 

Defining 
𝑑𝑍(𝑥)

𝑑𝑥
= 0, the maximum relative deformation 

of a ridge cable is 

2 2
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(28) 

Based on Eq. (27), the elongation of the ridge cables 

caused by fsw is 

2 2
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The total elongation of a ridge cable is 

3
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The variation in the potential energy caused by the 

external load is 

Combining Eqs. (6), (13), (30) and (31), wsw is 

2 2 2 2 2 2 22
0 1 1 0 1 10

2 2

12

2 2 2 2 2 2 2
1 0 1 1 1 2 11 1 2

2 2
2 2 2

2
3 3

2 212 2
2

2
1

π ππ

90

π

2 3

)(

90
( ) ( )

+ +
− +

+

=
+

+ +
+

+

+

sw swsw

sw

sw

L q L c EA L q c L cL q

n H

EA L q L c EA c EA c H c c

n H Lc
L c

n n
w

L c  

(32) 

 

3.5 Structural response of SDLCs under a 
triangularly distributed pressure wind load 

 

Assuming that the uniform suction wind surface load 

applied to the roof is qpw0, the value of the simplified 

triangular wind load, qpw, can be expressed as 

2 2

0 1π ( )+ −
=

pw

pw

q L c x
q

n  

(33) 

Then, the maximum relative deformation of a ridge 

cable, fpw, and the vertical deformation of the inner strut, 

wpw, can be obtained using the same derivation process for 

the suction wind load condition. The detailed equations are 

listed as follows: 
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(35) 

 

3.6 Section design of ridge cables and diagonal 
cables 

 

Assuming that the ridge cables and diagonal cables all 

reach their design strength, σcon, then the tension in a 

diagonal cable after loading is 

( )

'
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Moreover, the horizontal component of T11 is 
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Thus, 
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In this case, 
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(40) 

Assume that under the effect of both the triangularly 

distributed vertical load and the triangularly distributed 

wind load, the vertical deformation of the inner strut, w, can 

be calculated using Eq. (41) or Eq. (42). 

Suction wind load:  

= −v sww w w
 

(41) 

Pressure wind load: 

 
= +v pww w w

 

(42) 

In addition, the maximum relative deformation of the 

ridge cables, f, can be calculated using Eq. (43) or Eq. (44). 

Suction wind load:  
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(43) 

Pressure wind load: 
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(44) 

Then, combining Eqs. (19), (25), (28), (32), (34), (35), 

(40), (41), (42), (43), and (44), the cross-sectional areas of 

the ridge cable, A1, and diagonal cable, A2, can be obtained. 

 

3.7 Initial prestress of the cables and inner strut 
 

Combining Eqs. (11), (12), (16) and (36), the initial 

pretension of a ridge cable, a diagonal cable, and the inner 

strut of an SDLC are 
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(47) 

where Ts,1 denotes the initial pretension of the inner strut. 

 

3.8 Section design of the inner strut 
 

After loading, the axial forces of the inner strut for the 

SDLC, Ts,2, can be expressed as follows: 

Suction wind load: 
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Pressure wind load: 
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(49) 

According to the Chinese code GB50017 (2003), the 

effective length factor of the struts is 1.0, and the buckling 

loads of these members are calculated from Eq. (50), where 

the maximum compressive force of a specific strut is no 

more than 50 % of its vertical buckling load. Thus, the 

cross-sectional area of a strut can be obtained by replacing 

the vertical buckling load, N, in Eq. (50) with Ts,2. 

0.5
 


ys

N

A
 

(50) 

where N, φ, As and σy are the vertical buckling load, the 

stability factor, the cross-sectional area and the yield 

strength of the inner strut, respectively. 

 

3.9 Total self-weight of the cables and inner strut 
 

After determining the cross-sectional areas of the cables 

and the inner strut, the total self-weight of the cables and 

inner strut can be obtained as follows: 

( ) ( )2 2 2 2

1 1 2 2 1 22  = + + + + +s cable strut sZ n A L c A L c A c c
 
(51) 

where Zs is the total self-weight of the cables and inner 

strut, ρcable is the density of the cables, and ρstrut is the 

density of the inner strut. 

Therefore, the optimal initial prestress distribution (i.e., 

T11, T12 and Ts,1) and the total self-weight of the cables and  
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strut (i.e., Zs) of an SDLC can be derived using A1, A2, c1 

and c2. Furthermore, if the values of n, L, q0, qsw0, f, w, σcon,  

ρcable, and ρstrut are known, then the optima values of A1 and 

A2 can be calculated using a given c1 and c2. In this case, the 

structural optimal design of an SDLC is related only to the 

variation ranges of c1 and c2. 
 

 

4. Structural optimal design of SDLCs 
 

4.1 Optimization objective and optimization 
variables 

 

During the structural optimization of SDLCs, a suitable 

configuration of an SDLC must supply a sufficient reaction 

force to resist the external load. In addition, the self-weight 

of the components has a strong effect on the lengths and 

bearing forces of the structural components, thus 

determining the structural stiffness to some extent. 

Moreover, the weights of the cables and struts are altered 

during the optimization, significant affecting the economic 

performance of the entire structure. In this case, the total 

weight of the cables and struts is taken as the optimization 

objective. 

For SDLCs, the coordinates of the cable nodes and strut 

nodes are important parameters that determine the  

 

 
geometric configuration of the entire structure. Because the 

roof of a building must cover a specific area, c1 and c2, 

which determine the z-coordinates of the two nodes of the 

inner struts, are the only variables in most cases. 

Furthermore, under certain boundary conditions, the level 

and distribution mode of the prestress strongly affect the 

geometric configuration, and the overall rigidity of an 

SDLC is related to the cross-sectional area of the cables. 

However, as discussed above, the optimal design of the 

forces and cross-sectional area of the cables can be obtained 

by determining the values of c1 and c2, and the strut can be 

selected afterwards. Therefore, c1 and c2 are chosen as the 

two optimization variables in this study. 

 
4.2 Optimal design process 
 

The specific steps of the structural optimal design are as 

follows: 

1) Preparation for optimal design: Define the values of 

the constant parameters (i.e., n, L, E, qsw0 (or qpw0), ρcable, 

and ρstrut) and the variation ranges of c1 and c2 for an SDLC. 

Determine the uniform vertical surface load (except for the 

self-weight of the cables and inner strut), q0(0), the nodal 

displacement limit of ridge cables, fcon, the mid-span 

displacement limit of the entire structure, wcon, the stress 

Preparation

Define the values of consistent parameters of 

an SDLC that needed to be designed

Divide the feasible values of the vector 

height and the sag height into n sets
Set the accuracy criterion of the total 

self-weight of the entire structure

Set the values of the vector height and 

the sag height of set-i

i=1

Iteration 

analysis Calculate the initial prestress of the cables and 

inner strut, determine the cross-sectional area of 

the inner strut

Obtain the total self-weight of the cables and 

inner strut

Determine the cross-sectional area of ridge 

cables and diagonal cables

Calculate the horizontal force of the ridge cable 

before loading and after loading

Add the self-weight of 

cables and inner strut 

to the vertical load

No

Output the required 

results of set-i

Yes

Whether or not  i = n
No

i =
 i +

1

Compare the total self-weights of cables and 

inner strut of all these n sets, and define the 

minimum value as the optimal choice

Yes

Output the corresponding structural 

parameters of the optimal design

Whether or not achieve 

the accuracy criterion of the 

total self-weight of the entire 

structure

 

Fig. 6. Flowchart of the optimization method 
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limit value of the cables, σcon, and the maximum permissible 

variation value of the total self-weight of the entire structure, 

ΔZs,lim. 

2) Parametric decomposition: Divide the values of c1 

and c2 into n sets (i.e., (c1,1, c2,1), (c1,2, c2,2), (c1,3, c2,3), …, 

(c1,i, c2,i), …, and (c1,n, c2,n)), and define them with the 

names set-1, set-2, …, set-i, …, and set-n, respectively. 

3) Iteration analysis of set-i 

(a) The first iteration: Define q0 = q0(0), c1 = c1,i, c2 = c2,i, 

f = fcon, and w = wcon. Determine the cross-sectional areas of 

the ridge cables and diagonal cables based on Eqs. (19), 

(25), (28), (32), (34), (35), (40), (41), (42), (43), and (44), 

and define them as A1i(0) and A2i(0), respectively. Obtain 

the axial forces of the inner strut and the total self-weight of 

the cables and inner strut by using Eqs. (48), (49), and (51), 

and define them as Ts,2(0) and Zsi(0), respectively. Add the 

self-weight of the cables and inner strut to the vertical load 

as shown in Eq. (52). Then, define q0 = q0(1), determine the 

cross-sectional areas of the ridge cables and diagonal cables 

based on Eqs. (19), (25), (28), (32), (34), (35), (40), (41), 

(42), (43), and (44), and define them as A1i(1) and A2i(1), 

respectively. Obtain the axial forces of the inner strut and 

the total self-weight of the cables and inner strut by using 

Eqs. (48), (49), and (51), and define them as Ts,2(1) and 

Zsi(1), respectively. Check the accuracy criterion of ΔZsi(1) 

shown in Eq. (53). 

( )0 0 2 2

1,

(0)
(1) (0)


= +

+

si

i

Z g
q q

L c
 

(52) 

( ) ( ) ( ) ,lim1 1 0 = −  si si si sZ Z Z Z
 

(53) 

where q0(1) is the uniform vertical surface load applied to 

the roof, which considers the effect of the weight of the 

cables and inner strut in the first iteration, and g is the 

gravitational acceleration. In this paper, g is defined as 9.8 

N/kg. 

If Eq. (53) is satisfied, terminate the iteration analysis. If 

not, add the self-weight of the cables and inner strut to the 

vertical load as follows, and start the next iteration. 

(b) The kth iteration (k ≥ 2): Add the self-weight of the 

cables and inner strut from the (k-1)th iteration to the 

vertical load as shown in Eq. (54). Then, define q0 = q0(k), 

determine the cross-sectional areas of the ridge cables and 

diagonal cables based on Eqs. (19), (25), (28), (32), (34), 

(35), (40), (41), (42), (43), and (44), and define them as 

A1i(k) and A2i(k), respectively. Obtain the axial force of the 

inner strut and the total self-weight of the cables and inner 

strut by using Eqs. (48), (49), and (51), and define them as 

Tsi,2(k) and Zsi(k), respectively. Check the accuracy criterion 

of ΔZsi(k) shown in Eq. (55). 

( )0 0 2 2

1,

( 1)
( ) (0)



−
= +

+

si

i

Z k g
q k q

L c
 

(54) 

( ) ( ) ( ) ,lim1 = − −  si si si sZ k Z k Z k Z
 

(55) 

where q0(k) is the uniform vertical surface load applied to 

the roof, which considers the effect of the weight of the 

cables and inner strut in the kth iteration. 

If Eq. (55) is satisfied, terminate the iteration analysis. If 

not, add the self-weight of the cables and inner strut to the 

vertical load as follows, and start the next iteration. 

Assume that ΔZsi(m) meets the accuracy condition. Then, 

the required cross-sectional area of the ridge cables of set-i, 

A1i = A1i(m), the required cross-sectional area of the 

diagonal cables of set-i, A2i = A1i(m), the axial force of the 

inner strut of set-i, Tsi,2 = Tsi,2(m), and the total self-weight 

of the cables and inner strut of set-i, Zsi = Zsi(m), can be 

obtained. Furthermore, the required initial cable forces of 

the ridge cables and diagonal cables of set-i, T11i and T21i, 

respectively, can then be obtained. 

4) Final computation: After the iteration analyses of all n 

sets, compare the total self-weights of the entire structure 

for each set, and define the minimum value as the optimal 

choice (i.e., Zs,optimal in Eq. (56)) and the corresponding 

structural parameters as the optimal structural design. 

 , 1 2min , ,...,=s optimal s s nZ Z Z Z
 

(56) 

The flowchart of the detailed optimal design process is 

illustrated in Fig. 6. 
 

 
5. Example 

 

5.1 Simplified calculation model 
 

The roof of the Foshan Center is a typical SDLC; the 

roof has a span of 84 m and 64 radial pieces, i.e., the 

complete structure contains 64 ridge cables, 64 diagonal 

cables, and one inner strut (details in Figs. 7(a)-(c)). The 

roof is covered by membrane surface and all the cables are 

connected with an external support via hinged joints in 

three directions (x-coordinate, y-coordinate, and z-

coordinate). All the cables have a density of 7.85 × 103 

kg/m3, an elastic modulus of 1.95 × 105 MPa, and a design 

strength (σcon) of 928 MPa. The inner strut has a density of 

7.85 × 103 kg/m3, an elastic modulus of 2.06 × 105 MPa, 

and a yield strength (σy) of 310 MPa.  
 

5.2 External load and load distributions 
 

The external load consists of four parts: the dead load 

(D’), roof live load (L’), wind load (W’), and initial 

pretension load (P’). The dead load includes the weights of 

all the structural components and the weight of the 

membrane roof system. The total weight of all the structural 

components, Zs, is calculated after each iteration and is 

added to the structural weight. The weight of the membrane 

roof system is assumed to be 0.10 kN/m2. The roof live load 

is equivalent to 0.50 kN/m2. The relevant provision in the 

Load Code for the Design of Building Structures GB 50009 

(2012) indicates that the basic wind pressure is w0 = 0.50 

kN/m2, the surface roughness is B, the wind-pressure height 

coefficient is μz = 1.5, the wind vibration coefficient is βz = 

1.8, and the shape coefficient is μs = 0.8. Thus, the wind 

suction load (W’) is wk = βzμsμzw0 = 1.08 kN/m2. Moreover, 

the initial pretension load (P’) is obtained from the 

optimization results. 

540



 

Optimal design of spoke double-layer cable-net structures based on an energy principle 

 

 

Table 1 Load cases 

Name Load case 

LC-1 1.2D’ + 1.4L’ + 1.0P’ 

LC-2 1.0D’ + 1.0L’ + 1.0P’ 

LC-3 1.0D’ + 1.4W’ + 1.0P’ 

LC-4 1.0D’ - 1.4W’ + 1.0P’ 

 

 

There are four load cases considered in this study, as 

listed in Table 1. LC-1 and LC-2 consider the effects of the 

vertical loads and initial pretension. Cases LC-3 and LC-4 

additionally consider the suction wind load and pressure 

wind load, respectively, to consider the combined effect of 

the vertical load and wind load. For convenience, the 

weights of the membrane roof system, roof live load, snow 

load, and wind load are simplified as line loads applied on 

the cables of the simplified model. 

 

5.3 Limiting factors 
 

During the structural optimal design analysis, the cross-

sectional dimensions of the cables are constantly changed to 

determine the optimal structure for a specific roof load. To 

guarantee the bearing capacity is met under diverse load 

cases, the optimal structural models must comply with the 

following limiting factors: 

1) The maximum relative displacement of the ridge 

cables, f, must be restricted to the range of [0, √𝐿2 + 𝑐1
2 

/100] (i.e., fcon =√𝐿2 + 𝑐1
2  /100), and the mid-span 

 

 

displacement of the whole structure, w, must be restricted to 

[0, L/500] (i.e., wcon = L/500).  

2) The values of c1 and c2 both vary in the range of 

[1000 mm, 21000 mm], as suggested by experts at the 

conference held for the Foshan Center. 

3) The maximum stress of a specific cable should be 

less than its design strength. 

 
5.4 Result of the optimization analysis 
 

Figs. 8(a)-(b) show the contour map of the self-weight 

of the cables and that of the inner strut of LC-1, respectively. 

As shown in these figures, given the design values of L, σcon, 

q0, qsw0 (or qpw0), fcon, and wcon, with increasing c1 and c2, the 

self-weight of all the cables significantly decreases, whereas 

the self-weight of the inner strut increases because the 

geometric stiffness of the structure increases with 

increasing rise-to-span and sag-to-span ratios. In this case, 

the prestress level of the entire structure decreases with 

increasing c1 and c2, thus reducing the cross-sectional areas 

of the cables. However, with increasing c1 and c2, the 

lengths of the cables also increase, resulting in a slow 

decrease in the self-weight of the cables during the last 

stage of Fig. 8(a). In contrast, with increasing c1 and c2, the 

slenderness ratio of the inner strut increases, reducing the 

stability factor and increasing the cross-sectional area of the 

inner strut, as indicated in Eq. (50); these effects sharply 

increase the self-weight of the inner strut. 

Fig. 8(c) displays the contour map of the total self-

weight of the entire structure, Zs, for LC-1. As stated above, 

 
(a) Three-dimensional graph 

 

 

(b) Top view (c) Section view 

Fig. 7. Simplified calculation model of the Foshan Center 

Membrane surface

Diagonal cable

Ridge cable

Inner strut

42000 42000

4
2

0
0

0
4

2
0

0
0

Ridge cable

c
2

4200042000

c
1

Ridge cable

Diagonal cable

Inner strut

541



 

Mingmin Ding, Bin Luo, Lifeng Han, Qianhao Shi and Zhengxing Guo 

 

 

Zs is large for small values of c1 and c2 during the initial 

stage because of the large pretension forces of the cables. 

With increasing c1 and c2, the prestress level of the entire 

structure decreases along with Zs. However, when the value 

of Zs reaches a critical point, the self-weight of the inner 

strut significantly increases, and Zs increases again. In this 

case, the optimal mode of the SDLC for LC-1 is the 

corresponding combination of c1 and c2 at the critical point 

in Fig. 8(c) that results in a suitable slenderness ratio of the 

inner strut, an appropriate prestress level of the entire 

structure, and the minimum value of Zs. 

Fig. 9(a) illustrates the variation of Zs with various 

values of c1 (1000 ≤ c1 ≤ 21000) for LC-1, and Fig. 9(b) 

shows the variation of Zs with various values of c2 (1000 ≤ 

c2 ≤ 21000) for LC-1. The results reveal that the variation of 

Zs exhibits four stages under a vertical load. For a consistent 

value of c2 (or c1), Zs decreases sharply from a relatively 

high point during the initial increasing stage of c1 (or c2) 

and then starts to decrease gradually in the second stage. 

After reaching a critical point, Zs slowly increases during 

the third stage. Finally, the increasing slope of Zs accelerates, 

and a sharp increase in Zs occurs in the last stage. 

For LC-1, the critical value of Zs occurs at c1 = 10000 

mm in Fig. 9(a) and at c2 = 12000 mm in Fig. 9(b), which is 

the optimal combination of c1 and c2, and the following 

parameters can be obtained: A1 = 618.96 mm2, A2 = 608.39 

mm2, inner strut dimensions of 730 mm × 35 mm, T11 = 

595.07 kN, T21 = 501.71 kN, and Zs = 526.83 kN.  

Similarly, the optimal combinations of c1 and c2 for the 

other load cases can be obtained by the above calculation 

process, and the corresponding results are listed in Table 2. 

 

Table 2 Optimal modes of the calculation model under 

different load cases 

Load case LC-1 LC-2 LC-3 LC-4 

c1 (mm) 10000 9000 10000 11000 

c2 (mm) 12000 11000 11000 14000 

A1 (mm2) 618.96 542.69 773.46 943.65 

A2 (mm2) 608.39 514.14 818.25 903.52 

Dimensions of the 

inner strut (mm) 
730 × 35 670 × 30 740 × 35 780 × 40 

T11 (kN) 595.07 517.56 744.75 914.23 

T21 (kN) 501.71 428.02 680.85 732.47 

Zs (kN) 526.83 421.06 593.92 822.27 

 

 

The results of LC-1 and LC-2 indicates that the vertical 

loads greatly affect the optimal modes of SDLCs. A larger 

total value of the vertical loads (i.e., LC-1) requires a 

relatively large rise height (i.e., c1) and sag height (i.e., c2) 

to increase the overall stiffness; thus, the initial pretension 

forces of the cables, the cross-sectional areas of the cables, 

the dimensions of the inner strut, and the total self-weight 

of the entire structure are larger. In addition, when 

considering the effect of wind loads, the direction of the 

wind is extremely important. A pressure wind load increases 

the total value of the downward load, increasing the vertical 

deformation of the inner strut and the relative deformations 

of the ridge cables, whereas the vertical loads offset part of 

the effect of the suction wind load. In this case, the 

structural parameters (i.e., c1, c2, A1, A2, T11, T21, Zs, and the 

dimensions of the inner strut) of the optimal mode with 
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(a) Total self-weight of all the cables (b) Self-weight of the inner strut 
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(c) Total self-weight of the entire structure, Zs 

Fig. 8. Contour maps of LC-1 
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Table 3 Parameters of the final optimal structure 

c1 

(mm) 

c2 

(mm) 

A1 

(mm2) 

A2 

(mm2) 

Dimensions 

of the inner 

strut (mm) 

T11 

(kN) 

T21 

(kN) 

Zs 

(kN) 

11000 14000 943.65 903.52 780 × 40 914.23 732.47 822.27 

 

 

pressure wind are relatively large. After a comprehensive 

review of the above four optimal modes, the parameters of 

the final optimal structure are selected and are listed in 

Table 3 to meet the requirements of all four load cases. 

 

5.5 Comparison of the theoretical solution and FE 
solution 

 

To verify the accuracy of the optimization method 

proposed in this study, a numerical model is built in 

ANSYS with parameters that match those of the final 

optimal structure listed in Table 3. The initial pretension 

forces of the cables are determined by adding an equivalent 

strain. 

The three-dimensional two-node cable element LINK10 

is chosen for the ridge cables and diagonal cables. The 

three-dimensional linear finite strain beam element 

BEAM188 is chosen for the inner strut. The three-

dimensional structural surface effect element SURF154 is 

selected for the roof. The ridge cables and diagonal cables 

are all meshed into 30 elements to simulate the local 

deformation, the inner strut is meshed into four elements to 

consider the buckling condition, and the roof is meshed into 

60 divisions along the radial direction and 64 divisions 

along the circumferential direction to share the same nodes 

with the ridge cables and to transfer the load added to the 

roof. Two loads (i.e., the vertical load, qv0, and the suction 

wind load, qsw0) are added to the model, both with a range 

of 0.1-1.0 kN/m2. 

Tables 4-5 show the total potential energies and the 

values of wv, fv, wsw, and fsw with the variations of the two 

loads, respectively. The largest difference in the vertical 

displacement between the theoretical and FE values is -1.94 

mm, the largest difference in the relative deflection of the 

ridge cables is 8.25 mm, and the largest difference in the 

 

Table 4 Total potential energies and downward 

displacements of the final optimal structure under vertical 

load 

Vertical 

load 

(kN/m2) 

Present theoretical method FE method 

wv 

(mm) 
fv (mm) 

Total 

potential 

energy 

(kN.m) 

wv 

(mm) 
fv (mm) 

Total 

potential 

energy 

(kN.m) 

0.1 2.77 26.21 31788.76 2.47 23.83 31827.70 

0.2 5.61 49.51 31805.68 4.92 45.94 31781.67 

0.3 8.52 72.90 31743.75 7.37 68.55 31729.38 

0.4 11.20 96.30 31714.22 9.82 90.69 31671.52 

0.5 13.86 119.69 31633.35 12.27 112.37 31607.83 

0.6 16.75 146.84 31521.34 14.93 143.24 31530.56 

0.7 20.98 171.27 31501.14 19.8 169.66 31461.19 

0.8 24.59 195.79 31429.55 23.06 196.83 31402.70 

0.9 27.28 220.37 31382.55 26.43 224.7 31343.57 

1.0 31.85 245.01 31353.59 29.91 253.26 31283.53 

Maximum difference -1.94 8.25 -70.06 

 

Table 5 Total potential energies and upward displacements 

of the final optimal structure under suction wind load 

Suction 

wind load 

(kN/m2) 

Present theoretical method FE method 

wsw 

(mm) 

fsw 

(mm) 

Total 

potential 

energy 

(kN.m) 

wsw 

(mm) 

fsw 

(mm) 

Total 

potential 

energy 

(kN.m) 

0.1 1.64 14.23 32083.23 1.89 16.33 32055.58 

0.2 3.3 29.2 32115.49 3.78 33.03 32085.14 

0.3 4.99 44.61 32101.13 5.67 49.73 32110.14 

0.4 6.7 60.39 32106.39 7.56 66.43 32130.59 

0.5 8.44 76.57 32109.16 9.45 83.13 32146.48 

0.6 10.21 92.99 32108.81 11.34 99.84 32157.80 

0.7 12 109.85 32157.98 13.23 116.53 32165.72 

0.8 13.87 126.1 32190.89 15.11 133.23 32166.80 

0.9 15.78 145.06 32194.12 17.69 151.33 32163.07 

1.0 17.52 161.67 32221.01 18.89 166.64 32157.56 

Maximum difference 1.91 6.27 -63.45 
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(a) Variation of Zs with various values of c1 (1000 ≤ c1 ≤ 21000) 
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Fig. 9. Variation of the total self-weight of the entire structure, Zs, for LC-1 
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total potential energy value of the final optimal structure is -

70.06 kN.m; all of these values were obtained with a 

vertical load of 1.0 kN/m2. The values of T12 and T22 with 

the variations of the two loads are presented in Figs. 10 and 

11. The errors between the theoretical and FE values of the 

cable forces are within 8.07 kN. Thus, the theoretical 

solution is confirmed to ensure the accuracy of the 

optimization analysis. 

 

 

6. Conclusion 
 

This study presented a structural optimal design method 

for SDLCs taking the rise height and sag height as the 

optimization variables and taking the total weight of the 

cables and inner strut as the optimization objective. The 

simplified calculation model of the SDLC was proposed to 

reveal the structural characteristics and static response. 

Furthermore, the relationships among the initial component 

forces, cross-sectional areas of the cables, rise height, sag 

height, overall displacement and local displacement were 

proposed based on an energy principle. Given the load cases, 

displacement limits, design strength of the cables, and 

buckling criteria of the inner strut, the initial prestress level 

of the entire structure, the cross-sectional areas of the cables, 

and the specification of the inner strut can be obtained by 

simply determining the rise height and sag height. A 

simplified model of a typical SDLC project was built and 

optimized, and a comparative analysis between the 

theoretical results and the FE results was conducted to 

verify the accuracy of this method. The following 

conclusions were drawn: 

1. The structural optimal design method for an SDLC 

proposed in this study is accurate and efficient. 

2. The values of rise height and sag height significantly 

affect the self-weight of the components and the initial 

prestress level of an SDLC. In particular, when the 

combination of these two values is suitable, the material 

properties of the cables and the inner strut are fully used, 

reducing the total weight. 

3. With increasing rise height and sag height, the 

geometric stiffness of the entire structure increases, 

decreasing the prestress level, cable cross-sectional areas, 

and cable self-weight. However, during this process, the 

 

 

cable lengths also increase, gradually decreasing the cable 

self-weight at large values of rise height and sag height. 

Moreover, with increasing rise height and sag height, the 

slenderness ratio of the inner strut increases, reducing the 

stability factor and increasing the cross-sectional area of the 

inner strut and thus sharply increasing the self-weight of the 

inner strut. 

4. Because the self-weight of the cables decreases with 

increasing self-weight of the inner strut, the total self-

weight of the entire structure exhibits four stages with 

increasing rise height and sag height: a sharp reduction 

during the initial stage, a subsequent gradual decrease in the 

second stage, a slow increase in the third stage, and a sharp 

increase in the last stage. The optimal mode of the SDLC is 

the corresponding combination of the rise height and sag 

height that results in a suitable slenderness ratio of the inner 

strut, an appropriate prestress level of the entire structure, 

and the minimum total self-weight of the entire structure, 

which appears between the second stage and the third stage. 

5. A larger total value of the vertical loads needs a larger 

rise height and sag height to increase the overall stiffness; 

thus, the initial pretension forces and the dimensions and 

self-weight of the structural components are larger. 

Furthermore, because the vertical loads counteract part of 

the suction wind load, the structural parameters of the 

optimal mode for the pressure wind condition are relatively 

larger than those for the suction wind condition. 
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